Observation of $B^0_s \to \bar{D}^{0}K^0_S$ and Evidence for $B^0_s \to \bar{D}^{*0}K^0_S$ Decays

R. Aaij et al.*

(LHCb Collaboration)

(Received 9 March 2016; published 21 April 2016)

The first observation of the $B^0_s \to \bar{D}^{0}K^0_S$ decay mode and evidence for the $B^0_s \to \bar{D}^{*0}K^0_S$ decay mode are reported. The data sample corresponds to an integrated luminosity of 3.0 fb$^{-1}$ collected in pp collisions by LHCb at center-of-mass energies of 7 and 8 TeV. The branching fractions are measured to be

$$B(B^0_s \to \bar{D}^0K^0_S) = [4.3 \pm 0.5 \text{(stat)} \pm 0.3 \text{(syst)} \pm 0.3 \text{(frag)} \pm 0.6 \text{(norm)}] \times 10^{-4},$$

$$B(B^0_s \to \bar{D}^{*0}K^0_S) = [2.8 \pm 1.0 \text{(stat)} \pm 0.3 \text{(syst)} \pm 0.2 \text{(frag)} \pm 0.4 \text{(norm)}] \times 10^{-4},$$

where the uncertainties are due to contributions coming from statistical precision, systematic effects, and the precision of two external inputs, the ratio f_s/f_d and the branching fraction of $B^0 \to \bar{D}^0K^0_S$, which is used as a calibration channel.

DOI: 10.1103/PhysRevLett.116.161802

The study of CP violation is one of the most important topics in flavor physics. In B^0 decays, the phenomenon of CP violation has been extensively studied at BABAR, Belle, and LHCb, which confirmed many predictions of the standard model (SM) [1–4]. Nowadays, the focus is on the search for beyond the standard model (BSM) effects by improving the statistical precision of the CP violation parameters and looking for deviations from the SM predictions.

In the SM, violation of CP symmetry in B decays is commonly parametrized by three phase angles (α, β, γ) derived from the Cabibbo-Kobayashi-Maskawa matrix, which describes the charged-current interactions among quarks [5]. Since the angles sum up to 180°, any deviation found in measurements of the phases would be a sign of BSM physics affecting at least one of the results. Currently, the angle γ is only known with an uncertainty of about 10° [6]; experimental efforts are required to improve its precision and thus the sensitivity to BSM effects. Another sensitive observable is the B^0_s mixing phase, ϕ_s, which in the SM is predicted with good precision to be close to zero [7]. Any significant deviation here would also reveal physics BSM [8,9]. The current uncertainty is $O(0.1)$ rad [6].

In this Letter, two decay modes that can improve the knowledge of γ and ϕ_s are studied. The $B^0 \to \bar{D}^{0}K^0_S$ decay [10] offers a determination of the angle γ with small theoretical uncertainties [11], while $B^0_s \to \bar{D}^{*0}K^0_S$, similar to the $B^0 \to \bar{D}^{*0}\phi$ [12] mode, provides sensitivity to ϕ_s with a theoretical accuracy of $O(0.01)$ rad [13].

While the decay $B^0 \to \bar{D}^{*0}K^0_S$ has been seen at the B factories [14], $B^0_s \to \bar{D}^{*0}K^0_S$ decays have not previously been observed. Theoretical predictions of their branching fractions are of the order of 5×10^{-4} [15–17]. This Letter reports the first observation of $B^0_s \to \bar{D}^{*0}K^0_S$ and evidence for $B^0_s \to \bar{D}^{*0}K^0_S$ decays, and it provides measurements of branching fractions of these channels normalized to $B^0 \to \bar{D}^{0}K^0_S$ decays.

The analysis is based on data collected in pp collisions by the LHCb experiment at $\sqrt{s} = 7$ and 8 TeV corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The LHCb detector [18,19] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 T m, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. Two ring-imaging Cherenkov (RICH) detectors are able to discriminate between different species of charged hadrons. The online event selection is performed by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

In the simulation, pp collisions are generated using PYTHIA [20] with a specific LHCb configuration [21]. Decays of hadronic particles are described by EVTGEN.

Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
inconsistent with originating from a PV. The invariant mass range classifier are the different categories, the first involving K^0 better mass, momentum, and vertex resolution than the detector, referred to as $p_\text{T}>1.7$ GeV/c and be inconsistent with originating from a PV. A multivariate algorithm [26] is used to identify secondary vertices consistent with the decay of a b hadron.

Candidate $K^0_S \to \pi^+\pi^-$ decays are reconstructed in two different categories, the first involving K^0_S mesons that decay early enough for the daughter pions to be reconstructed in the vertex detector, referred to as long, and the second containing K^0_S's that decay later, such that track segments of the pions cannot be formed in the vertex detector, referred to as downstream. The long category has better mass, momentum, and vertex resolution than the downstream category. Long (downstream) K^0_S candidates are required to have decay lengths larger than 12 (9) times the decay length uncertainty. The invariant mass of the candidate is required to be within 30 MeV/c2 of the known K^0_S mass [27].

The $\bar{D}^0 \to K^+\pi^-$ candidates are formed from combinations of kaon and pion candidate tracks identified by the RICH detectors. The pion (kaon) must have $p > 1(5)$ GeV/c and $p_\text{T} > 100(500)$ MeV/c, and it must be inconsistent with originating from a PV. The invariant mass of the candidate is required to be within 50 MeV/c2 of the known \bar{D}^0 mass [27].

The $B (B^0_0$ or B^0_S) candidate is formed by combining \bar{D}^0 and K^0_S candidates and requiring an invariant mass in the range 4500–7000 MeV/c2, a decay time greater than 0.2 ps, and a momentum vector pointing back to the associated PV. To improve the mass resolution of the B candidates, a kinematic fit is performed constraining the masses of the \bar{D}^0 and K^0_S candidates to the known values [27].

The purity of the B candidate sample is then increased by means of a multivariate classifier [28,29] that separates the signal from the combinatorial background. Separate algorithms are trained for candidates with long and downstream K^0_S candidates. The discriminating variables used in the classifier are the x^2 of the kinematic fit, geometric variables related to the finite lifetime of the B, \bar{D}^0, and K^0_S, the decay time, and the p_T and p of the K^0_S candidate. The multivariate classifier is trained and tested using signal candidates from simulations and background candidates from data in the upper sideband of the B mass spectrum, corresponding to $m(\bar{D}^0K^0_S) > 5500$ MeV/c2, where no backgrounds are expected from B decays in which a photon or a π meson is not reconstructed. The selection is optimized to minimize the statistical uncertainty on the ratio of B^0_0 over B^0 signal event yields. The signal efficiency and background rejection factors are 76% and 98%, respectively. B candidates in the mass range 5000–5900 MeV/c2 are retained. Multiple candidates occur in 0.2% (0.4%) of long (downstream) K^0_S events, in which case one candidate, chosen at random, is kept.

The B^0_0 and B^0 signal yields in the selected sample are obtained from an unbinned extended maximum likelihood fit simultaneously performed on the long and downstream K^0_S samples. The observables used in the fit are $m_{K^0_S}$, the mass of the $K^0_S \to \pi^+\pi^-$ candidates, $m_{\bar{D}^0}$, the mass of the $\bar{D}^0 \to K^+\pi^-$ candidates, and m_B, the mass of the B meson candidates. The probability density function (PDF) contains four terms,

$$P(m_{\bar{D}^0}, m_{K^0_S}, m_B) = \sum_{i=1}^{4} N_i F_i(m_{\bar{D}^0}, m_{K^0_S}, m_B)$$

$$= \sum_{i=1}^{4} N_i P_i(m_B) S_i(m_{\bar{D}^0}, m_{K^0_S}),$$

where N_i represents the respective yield, P_i parametrizes the mass distribution of the B meson candidates and S_i is the joint PDF of the candidates for its decay products. The term F_1 describes correctly reconstructed \bar{D}^0 and K^0_S candidates, F_2 a correctly reconstructed \bar{D}^0 meson in association with two random pions, F_3 a correctly reconstructed K^0_S meson in association with a random kaon and pion, and F_4 random combinations of the four final-state particles. Johnson SU distributions [30], characterized by asymmetric tails to account for radiative losses and vertex reconstruction uncertainties, are used to parametrize the \bar{D}^0 and K^0_S signals in $S_{1,2,3,4}$, and exponential functions describe the backgrounds in $S_{2,3,4}$.

The B mass in candidates with correctly reconstructed \bar{D}^0 and K^0_S mesons ($P_{1,2,3,4}$) is described by three categories of shapes: the $B^0_0 \to \bar{D}^0 K^0_S$ signal, peaking structures at lower mass from other B decays, and the combinatorial background. Signal shapes for the B^0_0 and B^0 candidates decaying to $\bar{D}^0 K^0_S$ are described by means of Johnson SU distributions with shape parameters determined from fits to the simulated signal samples, corrected for differences between the simulation and the data. The peaking structures at lower mass correspond to decays of B^0_0 and B^0_S mesons that include \bar{D}^0 and K^0_S mesons in the final state where a photon or a π meson is not reconstructed, such as $B^0_0 \to \bar{D}^0(\bar{D}^0\pi^0)K^0_S$, $B^0_0 \to \bar{D}^0(\bar{D}^0\pi^0)K^0_S$, $B^0_0 \to \bar{D}^0 K^+\pi^-$, and $B^0_0 \to \bar{D}^0 K^0(S^0\pi^0)$. These shapes are described with kernel estimated PDFs [31] obtained from simulation.

The same exponential function is used for the combinatorial background description of the B mass distribution in $P_{1,2,3,4}$. Possible contaminations from $B^0_0 \to \bar{D}^0\pi^+\pi^-$ and $B^0_0 \to \bar{D}^0\pi^+\pi^-$ in P_2, and $B^0_0 \to K^0_S K^+\pi^-$ and
$B^0 \rightarrow K^{*0}(K_S^0 \pi^0)K^+\pi^-$ in P_3 are accounted for using the function that describes the $B^0_{(s)}$ candidates in P_1.

The PDFs F_i are distinct for the long and downstream samples but share certain parameters, including those of the \bar{D}^0 signal distribution and the yield fractions of the non-combinatorial components of the B mass spectrum. Gaussian constraints are applied to the branching fraction ratios $B(B_s^0 \rightarrow \bar{D}^0 K^0)/[B(B^0 \rightarrow \bar{D}^0 K^0) + B(B_s^0 \rightarrow \bar{D}^0 K^0)]$ and $B(B_s^{(s)} \rightarrow \bar{D}^0(\bar{D}^0\pi^0)K^0)/[B(B_s^{(s)} \rightarrow \bar{D}^0(\bar{D}^0\gamma)K^0) + B(B_s^{(s)} \rightarrow \bar{D}^0(\bar{D}^0\rho^0)K^0)]$. These constraints improve the stability of the fit and are determined from measurements of branching fractions reported in Ref. [27], corrected by the efficiencies of the relevant $B^0_{(s)}$ decays as determined from simulated samples.

Projections of the fit results on the data sample are shown in Fig. 1. The numbers of signal candidates determined from the fit are $N(B^0 \rightarrow \bar{D}^0 K_S^0) = 219 \pm 21$, $N(B_s^0 \rightarrow \bar{D}^0 K_S^0) = 471 \pm 26$ and $N(B_s^0 \rightarrow \bar{D}^0 K_S^0) = 258 \pm 83$, where the uncertainties are purely statistical.

The branching fractions, B, of the $B_s^0 \rightarrow \bar{D}^0(\bar{D}^0\pi^0)K^0$ decays are calculated from the ratio of branching fractions between B_s^0 and B^0,

$$B(B_s^0 \rightarrow \bar{D}^0(\bar{D}^0\pi^0)K^0) = \mathcal{R}(\pi) \times B_{\text{sum}},$$

where $B_{\text{sum}} = B(B^0 \rightarrow \bar{D}^0 K^0) + B(B^0 \rightarrow \bar{D}^0 K^0)$ since the analysis does not distinguish between K^0 and \bar{K}^0. The quantity

$$\mathcal{R}(\pi) = \frac{f_d}{f_s} \frac{N(B_s^0 \rightarrow \bar{D}^0 K_S^0)}{N(B^0 \rightarrow \bar{D}^0 K_S^0) + N(B^0 \rightarrow \bar{D}^0 K_S^0)} e_{B^0}$$

is the product of the production ratio of B^0 over B_s^0 decays in LHCb (f_d/f_s), the ratio of reconstructed B_s^0 and B^0 events $

![FIG. 1. The projection of the fit results (solid line) on the data sample (points) is shown for the \bar{D}^0 candidate (a),(d), the K_S^0 candidate (b),(e), and B candidate (c),(f) mass spectra. The long K_S^0 sample is shown in (a)-(c), and the downstream sample in (d)-(f). The dashed line in the \bar{D}^0 and K_S^0 candidate mass plots represents events corresponding to background categories $S_{2,3,4}$ in the fit and includes peaks due to, for example, real \bar{D}^0 mesons paired with two random pions. The double-peak behavior of the $B_s^0 \rightarrow \bar{D}^0(\bar{D}^0\pi^0)K_S^0$ shape is due to the missing momentum of the x^π and the helicity amplitude of the $\bar{D}^0 \rightarrow \bar{D}^0 x^0$ decay.](image-url)
TABLE I. Summary of the systematic uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>(B_s^0 \to D^0 K_S^0)</th>
<th>(B_s^0 \to \bar{D}^0 K_S^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit model</td>
<td>5.4%</td>
<td>11.9%</td>
</tr>
<tr>
<td>(\epsilon_{B_s^0}/\epsilon_{B_s^0})</td>
<td>2.4%</td>
<td>2.5%</td>
</tr>
<tr>
<td>(f_s/f_d)</td>
<td>5.8%</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}_{\text{sum}})</td>
<td>13.5%</td>
<td></td>
</tr>
</tbody>
</table>

signal candidates, and the ratio of efficiencies of \(B^0\) to \(B_s^0\) candidates decaying to \(\bar{D}^{(*)0} K_S^0\) in the LHCb detector \((\epsilon_{B^0}/\epsilon_{B_s^0})\). The value of \(f_s/f_d = 0.259 \pm 0.015\) is provided by previous LHCb measurements \([32,33]\). The ratios of efficiencies \(\epsilon_{B^0 \to D^0 K_S^0}/\epsilon_{B^0 \to \bar{D}^0 K_S^0} = 0.997 \pm 0.024\) and \(\epsilon_{B^0 \to \bar{D}^0 K_S^0}/\epsilon_{B_s^0 \to D^0 K_S^0} = 1.181 \pm 0.029\) are obtained from simulated samples. The ratio of \(B_s^0\) and \(B^0\) signal candidates is a free parameter in the fit and is measured to be \(N(B_s^0 \to \bar{D}^0 K_S^0)/[N(B^0 \to D^0 K_S^0) + N(B_s^0 \to \bar{D}^0 K_S^0)] = 2.15 \pm 0.23\). Similarly, the ratio \(N(B_s^0 \to \bar{D}^0 K_S^0)/[N(B^0 \to D^0 K_S^0) + N(B_s^0 \to \bar{D}^0 K_S^0)] = 1.17 \pm 0.44\) is measured.

Various sources of systematic uncertainty have been considered. These are summarized in Table I and discussed below.

The uncertainty associated with the fit model is assessed by the use of other functions for the PDFs \(\mathcal{P}_i\) and \(\mathcal{S}_i\). For the mass distribution of the signal events, four alternative models are used. Each pseudoexperiment generated in this way is then fitted with the baseline model, and the difference of the signal yields ratio with respect to the generated value is considered. The mean of the distribution that shows the largest deviation from zero is taken as the systematic uncertainty, corresponding to 5.4% (11.9%) for \(B_s^0 \to \bar{D}^0 K_S^0\) (\(B_s^0 \to D^0 K_S^0\)).

The ratio of efficiencies of the \(B^0\) and \(B_s^0\) decays is determined from simulation and is limited by the finite size of the sample. The statistical uncertainties on the efficiency ratios and the statistical uncertainties of the external inputs, \(f_s/f_d\) and the branching fraction \(\mathcal{B}_{\text{sum}}\), are propagated to the systematic uncertainty of this measurement.

To test the stability of the result with respect to the offline selection, the measurement is repeated at different cuts on the multivariate classifier. The deviations from the nominal result are consistent with statistical fluctuations and no systematic uncertainty is assigned. Possible bias due to the random removal of multiple candidates is tested by removing or keeping all of them, and no significant effect is observed.

Further cross-checks on the stability of the result are made by measuring the branching fractions independently for the long and downstream \(K_S^0\) samples, for the two different polarities of the LHCb magnet and for different running conditions. No significant effect is observed.

Only the fit model is considered when determining the systematic uncertainty on the number of signal candidates. The statistical uncertainty on the efficiencies and on \(f_s/f_d\) are also included in the sum in quadrature to give the systematic uncertainty on the ratio of branching fractions \(\mathcal{R}(\cdot)\). Finally, the uncertainty on \(\mathcal{B}_{\text{sum}}\) is also included for the measurement of the branching fraction \(\mathcal{B}(B_s^0 \to \bar{D}^{(*)0} K^0)\).

Signal yields of

\[
N(B^0 \to D^0 K_S^0) = 219 \pm 21\text{ (stat)} \pm 11\text{ (syst)},
\]

\[
N(B_s^0 \to D^0 K_S^0) = 471 \pm 26\text{ (stat)} \pm 25\text{ (syst)},
\]

\[
N(B_s^0 \to \bar{D}^0 K_S^0) = 258 \pm 83\text{ (stat)} \pm 30\text{ (syst)}
\]

are found. Those results correspond to the first observation of the \(B_s^0 \to D^0 K_S^0\) decay with a significance of 13.1 standard deviations and evidence for \(B_s^0 \to \bar{D}^0 K_S^0\) with a significance of 4.4 standard deviations, where the significances are calculated using Wilks’s theorem \([34]\).

The ratios of the branching fractions are

\[
\mathcal{R} = 8.3 \pm 0.9\text{ (stat)} \pm 0.5\text{ (syst)} \pm 0.5\text{ (frag)}
\]

\[
\mathcal{R}^* = 5.4 \pm 2.0\text{ (stat)} \pm 0.7\text{ (syst)} \pm 0.3\text{ (frag)}
\]

Here, the correlation coefficient between the two statistical uncertainties is 68% and that between the two systematic uncertainties is 49%. Using the branching fraction \(\mathcal{B}_{\text{sum}} = (5.2 \pm 0.7) \times 10^{-5}\) \([27]\), the values of the branching fractions are

\[
\mathcal{B}(B_s^0 \to D^0 K_S^0) = [4.3 \pm 0.5\text{ (stat)} \pm 0.3\text{ (syst)} \pm 0.3\text{ (frag)} \pm 0.6\text{ (norm)}] \times 10^{-4},
\]

\[
\mathcal{B}(B_s^0 \to \bar{D}^0 K_S^0) = [2.8 \pm 1.0\text{ (stat)} \pm 0.3\text{ (syst)} \pm 0.2\text{ (frag)} \pm 0.4\text{ (norm)}] \times 10^{-4},
\]

where the last uncertainty is due to the uncertainty on \(\mathcal{B}_{\text{sum}}\). These results are consistent with theoretical predictions from Refs. \([15–17]\), when corrections for the difference in width between the \(B_s^0\) mass eigenstates \([35]\) are taken into account.

This Letter reports the first observation of \(B_s^0 \to D^0 K_S^0\) and first evidence of \(B_s^0 \to \bar{D}^0 K_S^0\). Since the theoretical

...
the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); FOM and NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); and the NSF (U.S.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT, and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland), and OSC (U.S.). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions, and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS, and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal, and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851, and the Leverhulme Trust (United Kingdom).

[10] Unless otherwise specified, the inclusion of charge conjugate reactions is implied.

National Research Centre Kurchatov Institute, Moscow, Russia
(associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

Yandex School of Data Analysis, Moscow, Russia
(associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain
(associated with Institution Universitat de Barcelona, Barcelona, Spain)

Van Swinderen Institute, University of Groningen, Groningen, The Netherlands
(associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)

*Deceased.
**Also at Università di Ferrara, Ferrara, Italy.
***Also at Università della Basilicata, Potenza, Italy.
****Also at Università di Milano Bicocca, Milano, Italy.
*****Also at Università di Modena e Reggio Emilia, Modena, Italy.
******Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
*******Also at Università di Bologna, Bologna, Italy.
********Also at Università di Roma Tor Vergata, Roma, Italy.
*********Also at Università di Genova, Genova, Italy.
**********Also at Scuola Normale Superiore, Pisa, Italy.
***********Also at Università di Cagliari, Cagliari, Italy.
************Also at Università di Padova, Padova, Italy.
*************Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
**************Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
***************Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
****************Also at Hanoi University of Science, Hanoi, Viet Nam.
*****************Also at Università di Bari, Bari, Italy.
******************Also at Università degli Studi di Milano, Milano, Italy.
*******************Also at Università di Roma La Sapienza, Roma, Italy.
********************Also at Università di Pisa, Pisa, Italy.
*********************Also at Università di Urbino, Urbino, Italy.
**********************Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.