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ABSTRACT 

 

In this work, an untargeted metabolomic approach based on sensitive analysis by on-

line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS) in 

combination with multivariate data analysis is proposed as an efficient method for the 

identification of biomarkers of Huntington’s disease (HD) progression in plasma. For 

this purpose, plasma samples from wild type (wt) and HD (R6/1) mice of different ages 

(8, 12 and 30 weeks), were analysed by C18-SPE-CE-MS in order to obtain the 

characteristic electrophoretic profiles of low molecular mass compounds. Then, 

multivariate curve resolution alternating least squares (MCR-ALS) was applied to the 

multiple full scan MS data sets. This strategy permitted the resolution of a large number 

of metabolites being characterised by their electrophoretic peaks and their 

corresponding mass spectra. A total number of 29 compounds were relevant to 

discriminate between wt and HD plasma samples, as well as to follow-up the HD 

progression. The intracellular signalling was found to be the most affected metabolic 

pathway in HD mice after 12 weeks of birth, when mice already showed motor 

coordination deficiencies and cognitive decline. This fact agreed with the atrophy and 

dysfunction of specific neurons, loss of several types of receptors and changed 

expression of neurotransmitters. 

 

 

 

 

 

 

 



1. Introduction 

 

Huntington’s disease (HD) is an inherited neurodegenerative disorder, which is 

characterised by progressive motor and cognitive disturbances. HD is caused by an 

expansion of the cytosine-adenine-guanine (CAG) repeat in the exon 1 of the hungtintin 

gene (HTT), which encodes a stretch of glutamines in the hungtintin protein [1–8]. 

Although the HTT gene is ubiquitously expressed as the huntingtin protein in most 

tissues, HD pathology has primarily been located to the basal ganglia and to the 

neocortex. The pathology involves atrophy and dysfunction of specific neurons, loss of 

several types of receptors, changed expression of neurotransmitters and key proteins, as 

well as formation of ubiquitin positive aggregates [1–8]. HD is a fatal disease, and the 

median interval between clinical diagnosis and death is typically given as 15 to 20 years 

[2,4,6,8].                                               

 

By use of predictive genetic testing, it is possible to identify individuals who carry the 

HTT gene defect before the onset of symptoms, providing a unique window of 

opportunity for intervention aimed at preventing or delaying disease onset [4,7]. 

However, without robust and practical measures of disease progression, the efficacy of 

therapeutic interventions in this premanifest HD cannot be readily assessed. 

Neuroimaging and biochemical biomarkers are being investigated for their potential in 

clinical use and their value in the development of future treatments [4,7]. Modern 

neuroimaging techniques such as magnetic resonance imaging (MRI) enable high- 

quality images of brain structure and function to be obtained [9,10]. However, 

metabolites that can be quantified in biofluids, such as blood or urine, are appealing due 

to the improved selectivity, the minimal requirement for patient involvement, 



opportunity for rapid bulk processing of specimens, availability of reliable assays and 

possibility of carrying out multiple analyses on a single sample [5,7,11]. 

 

Metabolomics aims to obtain a comprehensive coverage of low molecular mass 

compounds from biological systems [12–14]. Metabolomics studies can be approached 

using targeted or untargeted analysis [15–17]. In targeted analysis, a specified list of 

metabolites is analysed. In contrast, untargeted analysis requires comprehensive 

metabolite measurements. Furthermore, it can implicate previously unrecognised 

metabolites or pathways with a unique phenotype and, therefore, is a powerful platform 

to elucidate novel biomarkers and gain insight into disease pathogenesis.  

 

Different techniques are currently used for untargeted metabolomics, including nuclear 

magnetic resonance (NMR), gas chromatography mass spectrometry (GC-MS), liquid 

chromatography mass spectrometry (LC-MS) and capillary electrophoresis mass 

spectrometry (CE-MS) [17–21]. For the first time to our knowledge, the use of on-line 

C18 solid-phase extraction capillary electrophoresis mass spectrometry (C18-SPE-CE-

MS) is proposed as an alternative sensitive method for metabolomic studies of 

biological fluids, which are complex diluted samples. CE is a versatile, high-

performance separation technique with many desirable characteristics such as 

instrumental simplicity, full automation, high efficiency, low consumption of sample 

and reagents and reduced analysis times. However, like many other microanalytical 

techniques, it has poor concentration sensitivity for most analytes, from low molecular 

mass compounds to biopolymers such as proteins [22,23]. Several strategies have been 

proposed to improve CE sensitivity. Today, SPE-CE is becoming widely recognised as 

a powerful approach that overcomes this major drawback [22–27]. In SPE-CE, a 



microcartridge placed inside and near the inlet of the separation capillary contains an 

appropriate extraction sorbent (in our case, C18). This sorbent selectively retains the 

target analyte, enabling large volumes of sample to be introduced (50-100 μL). The 

retained analyte is eluted in a small volume of an appropriate solution (25-50 nL), 

which results in sample clean-up and concentration enhancement with minimum sample 

handling before separation and detection, for example, by on-line mass spectrometry 

(SPE-CE-MS) [22–27].  

 

Chemometric methods play a crucial role in data processing, exploration and 

classification of the massive data sets generated in metabolomic studies [28–34].  If the 

goal of the study is the compound detection, the use of resolution methods such as 

multivariate curve resolution alternating least squares (MCR-ALS) can be an excellent 

alternative. MCR-ALS can resolve overlapped electrophoretic/chromatographic peaks 

from the collected data and provide the separation profiles and mass spectra of the 

constituents in the analysed samples. This approach allows overcoming problems such 

as retention time shifts, background noise contributions, and differences in signal-to-

noise (S/N) ratios among different injections. Several published articles focus on the 

application of MCR-ALS to solve similar problems in LC-MS [32,33] and GC-MS [34]; 

but only a few studies have been previously reported combining CE-MS and MCR-ALS 

in metabolomic applications [35]. 

 

In this paper, we evaluate the capacity of SPE-CE-MS combined with advanced 

multivariate data analysis to preconcentrate, separate, detect and identify low molecular 

mass metabolites in plasma samples from wild type (wt) and HD (R6/1) mice of 

different ages (8, 12 and 30 weeks). A comparison between the different untargeted 



metabolomic profiles allows us to propose novel potential biomarker candidates 

involved in the progression of Huntington’s disease, which could be useful for 

prediction of disease onset or response to treatment. 

 

2. Materials and methods 

2.1 Chemicals and reagents 

 

All the chemicals used in the preparation of buffers and solutions were of analytical 

reagent grade. Acetonitrile (99.9%), methanol (99.9%), 2-propanol (≥99.9%), formic 

acid (HFor) (99.0%), glacial acetic acid (HAc), ammonia (25%) and sodium hydroxide 

(≥99.0%, pellets) were purchased from Merck (Darmstadt, Germany). Methionine 

enkephalin (Met, ≥97.0%) and endomorphin 1 (End 1, ≥98.0%) were provided by 

Sigma (St. Louis, MO, USA). Dynorphin A (1-7) (Dyn A, ≥98.0%) was supplied by 

Bachem (Bubendorff, Switzerland). Polyethylene glycol (PEG) 8,000 Mr (~50% in 

water) was purchased from Fluka (Buchs, Switzerland). Water with a conductivity value 

lower than 0.05 µS/cm was obtained using a Milli-Q water purification system 

(Millipore, Molsheim, France). 

2.2 Electrolyte solutions, sheath liquid and standard solutions 

 

Aqueous standard solutions (2500 µg·mL-1) of Dyn A, End 1 and Met peptides were 

prepared and stored in a freezer at -20ºC when not in use. A 10 ng·mL-1 standard 

mixture of the three peptides was prepared and analysed at the beginning and at the end 

of each SPE-CE-MS sequence, in order to check the proper functioning of the on-line 

SPE microcartridges. The background electrolyte (BGE) contained 50 mM of HAc and 

50 mM of HFor and was adjusted to pH 3.50 with ammonia. The sheath liquid solution 



consisted of a hydroorganic mixture of 60:40 v/v 2-propanol:water with 0.05% v/v of 

HFor. All solutions were passed through a 0.45 µm nylon filter (MSI, Westboro, MA, 

USA) before analysis and were stored at 4ºC when not in use. The sheath liquid was 

degassed for 10 min by sonication before use.  

 

2.3 Mice blood plasma and sample preparation 

 

Plasma samples from male wild type mice (wt) and R6/1 transgenic mice (B6CBA 

background) expressing exon 1 of mutant huntingtin with 145 repeats (HD, R6/1) of 

different ages (8, 12 and 30 weeks, early, middle and late disease stage, respectively), 

were kindly supplied by the Department of Cellular Biology, Immunology and 

Neurosciences (Faculty of Medicine, University of Barcelona) [36]. Blood from mice 

was collected by cardiac puncture in standard clinical vials and placed on ice. Plasma 

was separated from the blood cells, pooled, deposited into polyethylene tubes and 

frozen at -20°C. It is worth mentioning that due to the small amount of blood that was 

possible to extract from a single mouse (between 1 and 2 mL), each set of samples 

corresponded to the combination of the plasma obtained from 4 or 5 mice. All animal 

procedures were approved by the CEEA committee of the University of Barcelona and 

were in accordance with the European Communities Council Directive (2010/63/EU). 

 

The sample pretreatment used for the analysis of low molecular mass compounds in 

plasma samples was described elsewhere [22,37]. The off-line double step pretreatment 

of plasma samples consisted of protein precipitation with cold acetonitrile 

(plasma:acetonitrile, 200 µL:1200 µL) followed by centrifugal filtration with 10000 Mr 



cut-off cellulose acetate filters (Amicon® Ultra-0.5, Millipore). Centrifugal filters were 

passivated before the first use with 5% v/v of PEG in water [37].  

 

2.4 Apparatus and procedures 

 

pH measurements were made with a Crison 2002 potentiometer and a Crison electrode 

52-03 (Crison Instruments, Barcelona, Spain). Centrifugal filtration was carried out in a 

cooled Rotanta 460 centrifuge (Hettich Zentrifugen, Tuttlingen, Germany) for 

centrifugation at controlled temperature (25ºC). 

 

2.4.1 On-line solid-phase extraction capillary electrophoresis mass spectrometry 

 

The construction of the microcartridge or analyte concentrator for C18-SPE-CE-MS was 

carried out as described elsewhere [22,37]. All fused silica capillaries were supplied by 

Polymicro Technologies (Phoenix, AZ, USA). The microcartridge (7 mm LT x 250 µm 

id x 360 µm od) was inserted inside the separation capillary (72 cm LT x 75 µm id x 360 

µm od), at 7.5 cm from the inlet, using two plastic sleeves. Previously, it was filled with 

the sorbent found in C18 Sep-pak cartridges (Waters, Milford, MA, USA). The sorbent 

particles were retained in the microcartridge between two frits (0.1 cm). 

 

All capillary rinses were performed at high pressure (930 mbar). New separation 

capillaries were flushed with 1.0 M NaOH (20 min) and water (15 min) before inserting 

the microcartridge. This activation procedure was performed off-line to avoid the 

unnecessary entrance of NaOH into the MS system. Once inserted the microcartridge, 

the SPE-CE-MS capillaries were first conditioned by consecutive flushes of water (1 



min), methanol (1 min), water (1 min) and BGE (3 min) at 930 mbar. Standard peptide 

mixture (Dyn A, End 1 and Met) or mice plasma samples were then introduced at 930 

mbar for 10 min (approximately 60 µL using the Hagen-Poiseuille equation [38]). A 

final rinse with the BGE (2 min at 930 mbar) eliminated non-retained molecules and 

equilibrated the capillary before the elution. Retained compounds were eluted by 

injecting a solution of 60:40 v/v methanol:water with 50 mM HAc and 50 mM HFor at 

50 mbar for 10 s (approximately 50 nL [38]). Separation was carried out at 25ºC by 

applying a voltage of 17 kV (normal polarity, cathode in the outlet). Between runs, the 

capillary was rinsed for 2 min with water and 2 min with acetonitrile, in order to avoid 

carry-over between consecutive analyses. In general, the different plasma samples (i.e. 

8wt, 12wt, 30wt and 8HD, 12HD and 30HD) were analysed in triplicate (with the 

exception of 12wt, 12HD and 30HD, for which only two replicates were analysed due 

to the small volume of plasma sample available). Each series of replicate analyses was 

performed in a new SPE-CE-MS capillary due to the limited durability of the SPE 

microcartridges (10 analyses) because of the complexity of the plasma matrix and the 

limited selectivity of the C18 sorbent. After these analyses, the extraction efficiency 

decreased and the microcartridge was packed until it was completely clogged [39]. At 

the beginning and at the end of each sequence, a 10 ng·mL-1 standard peptide mixture 

was analysed as a quality control of the system. 

 

All CE-MS experiments were performed in an HP3D CE system coupled with an 

orthogonal G1603A sheath-flow interface to a 6220 oa-TOF LC/MS spectrometer 

(Agilent Technologies, Waldbronn, Germany). The sheath liquid was delivered at a 

flow rate of 3.3 µL·min-1 by a KD Scientific 100 series infusion pump (Holliston, MA, 

USA). ChemStation C.01.06 software (Agilent Technologies) was used for CE control 



and separation data acquisition (e.g. voltage, temperature and current), and was run in 

combination with MassHunter B.04.00 workstation software (Agilent Technologies) for 

control of the mass spectrometer and MS data acquisition. 

 

The TOF mass spectrometer was operated under optimum conditions in positive mode 

using the following parameters: capillary voltage 4000 V, drying gas temperature 

200ºC, drying gas flow rate 4 L·min-1, nebulizer gas 7 psig, fragmentor voltage 215 V, 

skimmer voltage 60 V, OCT 1 RF Vpp voltage 300 V. Data were collected in profile at 

1 spectrum/s between 40 and 1250 m/z, with the mass range set to high resolution mode 

(4 GHz). A standard tune and an external mass calibration were performed daily at the 

beginning of the day following the manufacturer instructions using the typical LC-MS 

sprayer and ESI-L tuning mix (Agilent Technologies). 

 

2.5 Data analysis 

 

SPE-CE-MS data was analysed by a combination of advanced chemometric tools to 

evaluate the most significant metabolic changes involved in HD. Figure 1 shows a 

summary of the data analysis workflow, which is explained in detail in this section. 

 

2.5.1. Data pre-processing of data set 

 

First, SPE-CE-MS raw data was converted to .txt format by using the ProteoWizard 

software [40] and, then, imported into the MATLAB environment (The Mathworks Inc. 

Natick, MA, USA) using in-house made routines. During this import process, MS 

information was compressed to 0.01 Da/e resolution. Every sample provided a data 



matrix with 2490 rows (migration times, 40 minutes of electrophoretic run) and 121001 

columns (m/z values, from 40 to 1250) (see Figure 1A). An automatic weighted least 

squares baseline correction was applied before to the MCR-ALS analysis. 

 

2.5.2. Full scan MS data arrangement and MCR-ALS analysis 

 

MCR-ALS is a chemometric method especially useful to analyse multicomponent 

systems with strongly overlapping contributions, such as those present in CE 

separations, where the electrophoretic behaviour of metabolites is rather similar [41]. In 

the case of SPE-CE-MS, full scan MS data matrix D contains the experimental mass 

spectra at all retention times in their rows and the electropherograms at all m/z values in 

their columns. MCR-ALS analysis of the data matrix D, following a bilinear model, 

gives two factor matrices, C and ST, as in Eq. 1:  

𝐃 =  𝐂𝐒𝐓  + 𝐄         (1)         

where matrix C contains the electrophoretic profiles of the resolved contributions 

(components), matrix ST contains the corresponding mass spectra of the resolved 

contributions, and matrix E contains the residuals unexplained by the model.  

 

The different samples can be simultaneously analysed and compared by MCR-ALS 

using a column-wise augmented data matrix configuration (see matrix Daug in Eq. 2 and 

Figure 1B), following the strategy described in the work of Ortiz-Villanueva [35]:  

𝐃𝐚𝐮𝐠  =  [
𝑫𝟏

⫶
𝑫𝟏𝟓

] =  [
𝑪𝟏

⫶
𝑪𝟏𝟓

] 𝐒𝐓 +  [
𝑬𝟏

⫶
𝑬𝟏𝟓

]  =  𝐂𝐚𝐮𝐠𝐒𝐓 +  𝐄𝐚𝐮𝐠    (2) 

This approach allowed obtaining a common matrix of the mass spectra of the resolved 

components (ST) for all samples, and a set of matrices describing the resolved 



electrophoretic profiles (Caug) in every sample. These electrophoretic peaks resolved in 

matrix Caug are allowed to vary in position (shifts) and shape among samples because 

the only requirement for a proper resolution is that the resolved spectra are the same for 

the common constituents in the different samples [42]. This aspect is especially useful 

in the case of CE data where migration shifts among samples occur and, hence, the 

alignment of electrophoretic peaks before analysis is not needed. 

 

In this study, the electropherograms were partitioned in two time windows 

corresponding to the two regions with the most intense peaks (selected regions, 

depending on the sample, varied approximately from 10 to 25 min and from 30 to 40 

min, respectively, Figure 2). Then, the resulting data matrices were further reduced in 

their m/z mode dimension in 30 different m/z ranges (m/z widths for reduction were 20, 

50 and 100 m/z in the m/z ranges from 40-400, 400-800 and 800-1250 m/z, 

respectively) (Figure 1B) [35].  

 

MCR-ALS analysis was carried out following standard procedures for the determination 

of the number of components (SVD, [43]) and initial estimates (SIMPLISMA, [44]). 

ALS optimization was performed under non-negativity constraints for electrophoretic 

(Caug) and spectral (ST) profiles, and spectral normalization (equal height) [45,46]. 

2.5.3. Detection and identification of potential metabolites 

 

For every resolved MCR-ALS component, electropherogram (peak) profiles of the six 

sample sets (i.e. 8wt, 12wt, 30wt and 8HD, 12HD and 30HD) were compared. Only 

resolved components of Caug that showed S/N ratios higher than 10% of the abundance 

of the most intense component were selected. Next, their corresponding mass spectra 



profiles (ST) were used to identify the m/z values causing the differentiation between wt 

and HD plasma samples at 8, 12 and 30 weeks. Finally, peak areas of these candidate 

m/z values were recovered from the full scan SPE-CE-MS data using the MassHunter 

workstation software, taking as a reference the m/z value and the migration time of the 

MCR-ALS resolved components (Figure 1C). Areas were finally normalised 

considering the peak area corresponding to a compound present in all the samples that 

was not discriminant between control and HD samples (m/z of 72.9858, in the first time 

window). 

 

These areas were used to build a data matrix containing the area of each candidate 

(feature) in every sample. This data matrix was autoscaled in order to give equal 

weighting to all candidates in the measured samples. Finally, partial least squares 

discriminant analysis (PLS-DA) models were applied to the autoscaled data matrix to 

evaluate sample discrimination and to identify the most important features. There are 

numerous methods for feature selection when considering PLS models. In this work, the 

variable importance in the projection (VIP) method was used [47], because it is one of 

the preferred methods to deal with metabolomic data due to its ability for handling 

multicollinear data [48]. For each model, VIP scores estimate the importance of each 

feature in the projection. Only features with a VIP score over a particular threshold 

(usually VIP=1) are considered important and selected for further analysis. In all the 

cases, leave-one-out cross-validation was used to assess the performance of the built 

models. Thereafter, the accurate experimental molecular mass values of the finally VIP 

selected metabolites were searched in on-line databases resources, such as METLIN 

Metabolite Database [49] and Human Metabolome Database (HMDB) [50]. A small 

error from the calculated (theoretical) molecular mass (Mr) was used to evaluate the 



accuracy of possible molecular formulas (Er≤20 ppm, │Mr experimental - Mr theoretical │ / Mr 

theoretical * 106). Finally, the list of the tentatively identified metabolites was used to 

investigate the possible metabolic pathways and mechanisms involved in HD according 

to the KEGG database [51] (Figure 1C).  

 

2.5.4. Software 

 

Most of the calculations and data analysis were performed under MATLAB R2013a 

(The MathworksInc. Natick, MA, USA). PLS Toolbox 7.3.1 (Eigenvector Research 

Inc., Wenatchee, WA, USA) was used for PLS-DA and VIP calculations; and MCR-

ALS toolbox [42] was used for resolution of electrophoretic and mass spectral 

metabolite profiles from full MS scan augmented data matrices.  

 

3. Results and discussion 

3.1 Analysis of mice plasma by C18-SPE-CE-MS 

 

Untargeted metabolomics analysis requires a comprehensive coverage of low molecular 

mass compounds from biological samples. However, very often sample amount 

limitations, matrix complexity and metabolite concentration preclude direct analysis 

with CE-MS. With the aim of solving these issues, plasma samples from wt (control) 

and HD mice were analysed by C18-SPE-CE-MS in order to preconcentrate, separate, 

detect and identify low molecular mass compounds and establish significant differences 

between the global metabolite profiles from different groups of samples. In order to 

evaluate HD progression in individuals at the premanifest motor stage of the disease, 

plasma samples from wt and HD mice were analysed at 8, 12 and 30 weeks of age. In 



HD mice, these samples corresponded to early (asymptomatic), middle (symptomatic) 

and late (terminal) disease stage mice, respectively, although this classification is only 

based on motor coordination deficiencies [52].  

  

The applied C18-SPE-CE-MS method in positive ESI mode was developed for the 

analysis of peptides in human plasma in previous works [22,37], but preliminary 

experiments showed that it was also useful to obtain a rich fingerprint of low molecular 

mass compounds in mouse plasma. As shown in those studies, all the plasma samples 

were subjected to an off-line sample pretreatment before C18-SPE-CE-MS in order to 

prevent microcartridge saturation due to the limited selectivity of the C18 sorbent. A 

double step pretreatment based on solvent precipitation and centrifugal filtration with 

Mr cut-off filters was applied to eliminate salts and high molecular mass compounds 

(i.e. proteins). This pretreatment allowed excellent recoveries for low molecular mass 

opioid peptides (>70%) [37]. Furthermore, LODs were improved by C18-SPE-CE-MS 

between 1000 and 10000 times compared to CE-MS, depending on the peptides and the 

sample [39]. Figure 2 shows the total ion electropherograms (TIEs) obtained for the 

mice plasma samples by C18-SPE-CE-MS. As can be observed, separation resolution is 

not high because of the complexity of the sample. All the electropherograms present a 

characteristic profile with two time regions with the most intense peaks (approximately 

at 10-25 min and 30-40 min, respectively), and advanced chemometrics methods are 

necessary for high throughput and reliable comparison between the different sets of 

plasma samples.  

 

3.2 MCR-ALS analysis and detection of the most relevant metabolites 

 



MCR-ALS was applied using a column-wise augmented data matrix containing 

simultaneously the information of the 15 samples (wt and HD, both at 8, 12 and 30 

weeks) and allowed the resolution of the electropherogram profiles and corresponding 

mass spectra of the plasma metabolites. 

 

MCR-ALS analysis was performed separately on column-wise augmented data matrices 

of different m/z ranges (at the resolution of 0.01 Da/e), corresponding to the two 

selected time windows. A total number of 60 column-wise augmented matrices (two 

time windows x 30 m/z intervals) were separately analysed. The number of components 

selected was related to the number of electrophoretic peaks, despite the fact that some of 

these resolved components could be due to contributions such as solvent background or 

instrumental noise. In most of the cases, MCR-ALS models showed an explained 

variance (R2) of almost 100%. The electropherogram profiles for the resolved MCR-

ALS components in the six sample sets (i.e. 8wt, 12wt, 30wt and 8HD, 12HD and 

30HD) were compared and only resolved components of Caug that showed S/N ratios 

higher than 10% of the abundance of the most intense component were finally selected 

(in order to remove contributions such as solvent background or instrumental noise). 

The mass spectra of these components (from ST) were used to identify the m/z values 

causing the discrimination between samples. After the resolution and analysis of the 60 

augmented data matrices, a total number of 74 features were detected. Finally, peak 

areas of these candidate m/z values were recovered from the full scan raw C18-SPE-CE-

MS data using the MassHunter workstation software, taking as a reference the m/z 

value and the migration time of features obtained from the MCR-ALS resolved 

components. 

 



PLS-DA was then applied to identify the most important metabolites responsible for the 

sample discrimination considering the raw peak areas for the selected 74 candidate 

metabolites. In order to identify potential Huntington biomarkers which could be useful 

to discriminate between wt and HD samples, as well as to follow-up the HD 

progression, three different PLS-DA models were built. Figure 3 shows the PLS-DA 

scores plot for the mice plasma samples taking into account the three mentioned 

models. As can be observed in Figure 3A, the first PLS-DA model was applied to 

discriminate between control and HD samples. This model permitted us to propose 

possible biomarkers involved in HD. Two latent variables (LVs) explained 34% and 

89% of the X and Y variances, respectively. The second PLS-DA model was applied to 

differentiate between wt samples of different ages and identify metabolites involved in 

aging of healthy controls. In order to improve the reliability of the PLS-DA model due 

to the limited amount of samples, a two-class model was used, which presented at least 

3 samples in each class (8 weeks and 12-30 weeks). These two sets of samples were 

also the best option to differentiate later between aging and early HD progression. A 

PLS-DA model with two latent variables (LVs) explained 47% of the X-variance and 

the 99% of the Y-variance (Figure 3B). Finally, the third PLS-DA model was applied to 

distinguish between HD samples of different ages and identify possible biomarkers 

which could be useful to follow-up the disease progression. Again, the same two sets of 

samples were defined (8 weeks and 12-30 weeks). In this case, two latent variables 

(LVs) explained 52% and 98% of the X and Y variances, respectively (see Figure 3C). 

All PLS-DA models allowed class discrimination and the detection of the most relevant 

components for the differentiation of the samples. It is worth mentioning that HD 

samples of 12 and 30 weeks were slightly separated in the scores plot (Figure 3C), 

whereas this separation was not observed for wt samples (Figure 3B). Anyway, a 3 class 



PLS-DA model was not recommended because of the limited amount of samples. VIP 

scores values higher than 1 were used as a feature selection tool in order to choose only 

the most relevant candidate metabolites for each PLS-DA model (33 out of 74).  

 

3.3. Tentative metabolite identification and biological meaning 

 

The most contributing metabolites to sample discrimination (33) were tentatively 

identified, taking advantage of the highly accurate experimental molecular mass values 

provided by the oa-TOF mass spectrometer. Only 29 features of the total of 33 were 

tentatively identified with an error lower or equal to 20 ppm (Table 1) (the 4 non-

identified features were discarded for further discussion). As can be observed in Table 

1, there were some ambiguities on the metabolite identities because this tentative 

identification was solely based on the agreement between the experimental and the 

theoretical molecular mass values. For example, in some cases several isobaric 

metabolites were proposed for a certain molecular formula and experimental molecular 

mass value (i.e. ID 2, 3, 4, 6, 7, 9, 13, 15, 16, 17, 18, 19, 29). In other cases, it was not 

possible to differentiate between metabolites with very close theoretical molecular mass 

values because Er≤ 20 ppm (i.e. ID 6 (Er=7 and 14 ppm), ID 8 (Er=16 and 18 ppm), ID 9 

(Er=2 and 15 ppm), ID 10 (Er=13 and 17 ppm), and ID 25 (Er=7 and 16 ppm)). In the 

future, analysis of standard samples and MS/MS measurements for structure 

characterisation would be necessary to improve reliability of these identity assignments.  

The Venn diagrams that appear as insets in Figures 4A and 4B show the relations 

between the identified metabolites that explain HD progression and aging of healthy 

controls. As can be observed, 7 metabolites (4+3) were useful to specifically explain 

HD progression (HD set, ID 1, 10, 28, 3, 13, 15 and 24 in Table 1 and Figure 4). 



Similarly, 8 metabolites (8+0, ID 5, 6, 14, 16, 20, 21, 22 and 23 in Table 1 and Figure 4) 

were useful to specifically explain aging of healthy controls (wt set). The concentration 

trends of these specific metabolites were varied (Figures 4A and 4B), some of them 

decrease, while others increase after 12 weeks of birth. Finally, there were 8 metabolites 

(7+1, ID 29, 4, 11, 26, 7, 8, 9 and 19 in Table 1 and Figure 4) that were explaining both 

progression of HD and aging. 4 of them showed a clear different concentration trend in 

HD and wt plasma samples, but for the other 4 metabolites the trend was similar, 

indicating that differences were found on their absolute concentration (e.g., ID 8 

normalised areas in HD and wt plasma samples were 466.4072 and 431.2187, 

respectively). With regard to differentiation in general of wt and HD samples (wt/HD 

set), there were 6 metabolites that were useful to specifically distinguish between 

control and HD samples, 4 downregulated and 2 upregulated in HD samples, as shown 

in Figure 4C (ID 2, 12, 18, 25, 17 and 27 in Table 1). For metabolites explaining also 

HD progression and/or aging (ID 10, 15, 1 and 11 in Table 1 and Figure 4C), the 

concentration trends were varied (2 were downregulated and 2 upregulated).    

 

The identified metabolites were searched against different on-line databases to identify 

the potential metabolic pathways that could be involved in HD pathology. Different 

metabolic pathways were found to be related to 13 of the 29 identified metabolites (see 

Table 2). It is well-known that HD could affect different metabolic pathways. 

Huntingtin is ubiquitously expressed and, in addition to neurological features, the 

peripheral phenotype of HD could include weight loss, energy disturbances and 

alteration of endocrine function.  

 



As it is shown in Figure 4A, concentrations of phenylalanyl-arginine and arginyl-

phenylalanine (ID 13, Table 1) were found increased in HD mice after 12 weeks of birth 

(Figure 4A). These metabolites, which were specific to explain HD progression, are 

incomplete breakdown products of protein digestion or protein catabolism known to 

have physiological or cell-signalling effects (Table 2) [53]. Similarly, prostaglandins, 

thromboxanes, lipoxins and leukotrienes (ID 15, Table 1) were found upregulated after 

12 weeks (Figure 4A), but downregulated when all HD samples were compared to all 

controls (Figure 4C), thus indicating a change of trend after 12 weeks. These 

metabolites are related with regulation of inflammatory processes and signalling 

pathways, mainly the arachidonic acid metabolism, the neuroactive ligand-receptor 

interaction, the serotonergic synapse, the cAMP signalling pathway and the oxytocin 

signalling pathway (see Table 2). The arachidonic acid metabolism has been also related 

with the synthesis of cytochromes involved in the mitochondrial oxidative 

phosphorylation, and altered mitochondrial function has been associated to HD [54,55]. 

Furthermore, cAMP levels have been found reduced in the striatum of several HD 

mouse models [56], while the oxytocin signalling pathway has been related with 

changes in the hypothalamic and limbic systems that take place at HD early stages [57]. 

Concentration of L-urobilinogen (ID 24, Table 1), which is related with the porphyrin 

metabolism (Table 2), was also found increased after 12 weeks of birth (Figure 4A). All 

these changes in 12 weeks-old HD mice suggest an onset on specific neuronal 

dysfunction, altered expression of several types of receptors and changed expression of 

neurotransmitters and key proteins. Unbalanced activity within these pathways provides 

a potential mechanism for many of the pathological phenotypes associated with HD, 

such us transcriptional dysregulation, inflammation and ultimately neurodegeneration 

[58–60]. 



 

With regard to metabolites explaining both progression of HD and aging (Figure 4A and 

4B), gangliosides (ID 29, Table 1), which are cell plasma membrane components that 

modulate cell signal transduction events, showed a different concentration trend on HD 

progression compared to aging. Gangliosides levels decreased after 12 weeks of birth in 

HD progression (Figure 4A), while increased in controls (Figure 4 B). Decreased 

ganglioside concentration has been also found in the cerebellum of R6/1 (HD) mice at 

35-40 weeks [61], and in fibroblasts, cortex and striatum of YAC128 mice [62]. 

Similarly, L-hexanoylcarnitine levels (ID 11, Table 1), which decreased with aging in 

healthy controls (Figure 4B), were found to increase with HD progression (Figure 4A), 

and also when all HD samples were compared to all controls (Figure 4C), suggesting 

that the disease involves disturbances in energy production, which are characterised by 

production and excretion of unusual acylcarnitines [63]. Concentration of 

PC(14:1(9Z)/14:1(9Z)) (ID 26, Table 1), which is related with signalling pathways (the 

arachidonic acid metabolism and the retrograde endocannabinoid signalling), the 

glycerophospholipid metabolism and the linoleic acid metabolism, was also found 

increased with HD progression and decreased with wt aging (Table 2, Figure 4A and 

4B). In contrast, changes on the concentration trend with HD progression or aging of (-

)-epinephrine and normetanephrine (ID 7, Table 1), which are metabolites related with 

tyrosine metabolism and signalling pathways (cAMP signalling pathway, adrenergic 

signalling in cardiomyocytes and neuroactive ligand-receptor interaction) (Table 2) 

were not observed (Figure 4A and 4B). These metabolites were found decreased after 

12 weeks in HD progression and aging (Figure 4A and 4B). The same trend was 

observed for vanylglycol and phosphorylcholine (ID 8, Table 1, Figures 4A and 4B), 

which are related with the tyrosine and the glycerophospholipid metabolisms, 



respectively (Table 2). Finally, metabolites with ID 9 (Table 1), presented again a 

decreasing trend in both HD progression and wt aging (Figures 4A and 4B). In this case, 

3-indolebutyric acid is related with the tryptophan metabolism, while the other 

metabolites are incomplete products of protein digestion or protein catabolism 

associated with cell signalling effects (Table 2) [64].  

 

With regard to metabolites explaining only wt aging, dimethylbenzimidazole (ID 5, 

Table 1), which is related with the riboflavin and porphyrin metabolisms (Table 2), was 

found reduced after 12 weeks of birth (Figure 4B). The same concentration trend was 

observed for 18-hydroxycorticosterone and cortisol (ID 16, Table 1, Figure 4B), which 

are metabolites associated with the steroid hormone biosynthesis (Table 2).  

 

Comparing all HD samples with all controls, concentration levels of m-cresol and p-

cresol (ID 2, Table 1), which are involved in protein digestion and absorption, as well as 

in degradation of aromatic compounds, were found downregulated in HD samples 

(Figure 4C). The same concentration trend was observed for histidinyl-histidine (ID 12, 

Table 1, Figure 4C), an incomplete breakdown product of protein digestion or 

catabolism with cell signalling effects [65,66]. 

 

4. Concluding remarks 

 

An optimised sample pretreatment was applied to wild type and R6/1 mice plasma 

samples (of 8, 12 and 30 weeks) prior to the analysis by C18-SPE-CE-MS. The proposed 

methodology demonstrated to be suitable to ensure a reliable and comprehensive 

metabolite profiling of the plasma samples. The combination of MCR-ALS with other 



chemometric tools, such as PLS-DA, allowed the comprehensive analysis of the C18-

SPE-CE-MS metabolomic data, resolving electrophoretic peaks and mass spectra of a 

large number of metabolites. Finally, a list of potential metabolites useful to 

discriminate between control and HD plasma samples, as well as to follow-up the HD 

progression, were tentatively identified, and the most affected metabolic pathways were 

discussed. Although different pathways were found altered in HD, the intracellular 

signalling was observed to be the most affected, especially after 12 weeks of birth, thus 

suggesting that the pathology involves dysfunction of specific neurons, altered 

expression of several types of receptors and changed expression of neuro-transmitters. 

In addition, although some of the identified metabolites have been previously described 

in the striatum of R6/1 (HD) mice or other rat models, attempts to find such biomarkers 

in plasma have hitherto been unsuccessful. In the present work, we propose direct brain-

striatal metabolites as good biomarkers that can be found in periphery (plasma samples). 

Therefore, we provide a window of opportunity for prediction of disease onset, 

evaluation of HD early progression or response to treatment.  
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Figure legends 

 

Figure 1. Workflow of C18-SPE-CE-MS data analysis: (A) Pre-processing of data set, 

(B) data arrangement and MCR-ALS analysis in order to detect metabolites, and (C) 

tentative identification of relevant metabolites and metabolic pathways. 

 

Figure 2. Total ion electropherograms (TIEs) obtained by C18-SPE-CE-MS for (i) wt 

and (ii) HD plasma samples at (A) 8, (B) 12 and (C) 30 weeks. 

 

Figure 3. PLS-DA scores plot for the mice samples in order to differentiate between 

(A) all wt and HD plasma samples, (B) wt samples at 8, and from 12 to 30 weeks, and 

(C) HD samples at 8, and from 12 to 30 weeks. Every sample was analysed in triplicate 

(with the exception of 12wt, 12HD and 30HD, for which only two replicates were 

analysed due to the small volume of plasma sample provided). 

 

Figure 4. Bar graphs with the folding trends for the identified metabolites (Table 1) that 

were used to explain (A) HD progression (set HD), (B) aging of healthy controls (set 

wt) and (C) differences between wt and HD plasma samples (set wt/HD). The % of 

Abundance of each metabolite was calculated normalising to the metabolite presenting 

the highest abundance. (*See Table 2 for the related metabolic pathways). 



 

  



 

  



 

  



 

 

 



 

 

 


