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We combine experiment and theory to investigate the diffusive and subdiffusive dynamics of para-
magnetic colloids driven above a two-state flashing potential. The magnetic potential was realized
by periodically modulating the stray field of a magnetic bubble lattice in a uniaxial ferrite garnet
film. At large amplitudes H0 of the driving field, the dynamics of particles resembles an ordinary
random walk with a frequency-dependent diffusion coefficient. However, subdiffusive and oscilla-
tory dynamics at short time scales is observed when decreasing H0. We present a persistent random
walk model to elucidate the underlying mechanism of motion, and perform numerical simulations
to demonstrate that the anomalous motion originates from the dynamic disorder in the structure of
the magnetic lattice, induced by slightly irregular shape of bubbles.

I. INTRODUCTION

Transport and diffusion of microscopic particles
through periodic potentials is a rich field of research from
both fundamental and technological points of view [1, 2].
Investigation of the particle motion along ordered [1] or
disordered [3, 4] energy landscapes helps to better un-
derstand the dynamics in more complex situations, such
as Abrikosov [5, 6] and Josephson vortices in supercon-
ductors [7, 8], cell migration [9], or transport of molec-
ular motors [10]. Moreover, a periodic potential can be
used to perform precise particle sorting and fractiona-
tion [11–15], thus, being of significant impact in diverse
fields in analytical science and engineering which make
use of microfluidic devices. Colloidal systems provide
an ideal opportunity to investigate different transport
scenarios, because of having particle sizes in the visi-
ble wavelength range and dynamical time scales which
are experimentally accessible. In order to force colloidal
particles to move along periodic or random trajectories,
static potentials can be readily realized by using opti-
cal [16], magnetic [17], or electric fields [18]. Dynamic
landscapes (obtained by periodically or randomly mod-
ulating the potential) are a subject of growing interest
since a rich dynamics can be induced due to the presence
of competing time scales. Moreover, flashing potentials
where static landscapes are modulated in time, are usu-
ally employed to study molecular systems [19–21] or as
an efficient way to transport and fractionate Brownian
species [22, 23].
Here we present a combined experimental and theoret-

ical study focused on the dynamics of microscale particles
driven above a flashing magnetic potential. This poten-
tial is generated by periodically modulating the energy
landscape created by an array of magnetic bubbles. As
it was previously reported [24], this experimental system
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is able to generate different dynamical states depending
on the applied field parameters, such as frequency or am-
plitude of the external field. In particular we report the
observation of enhanced diffusive dynamics at high field
strength H0, while the motion at lower H0 is subdiffusive
with a crossover to normal diffusion at long times. At low
values of H0, the lattice structure is slightly disordered
during the switching of the magnetic field direction. The
resulting randomness is dynamic, i.e. not reproducible af-
ter a cycle of external drive, and enhances with decreas-
ing H0. By means of numerical simulations we verify
that in the presence of lattice disorder, the particles fre-
quently experience oscillatory motion in local traps. The
back and forth motion of particle in local traps happens
more frequently as the dynamic disorder in the structure
of the magnetic lattice increases. The trapping events
change the statistics of the turning angles of the particle
from an isotropic distribution (limited to the directions
allowed by the lattice structure) to an anisotropic one
with a tendency towards backward directions. Using a
persistent random walk model, we show that anomalous
diffusion arises when the turning-angle distribution of a
random walker is asymmetric along the arrival direction.
When the walker has the tendency towards backward
directions, the resulting antipersistent motion is subd-
iffusive or even strongly oscillatory at short time scales.
However, the walker has a finite range memory of the
successive step orientations, i.e. the direction gets ran-
domized after long times and the asymptotic behavior is
ordinary diffusion with a smaller long-term diffusion co-
efficient compared to an ordinary random walk. We ob-
tain good agreement between the analytical predictions,
simulations, and experiments.

The paper is organized in the following manner: First
we introduce the setup in Sec. II. Section III contains
the experimental results obtained at different field pa-
rameters. In Sec. IV, the results of numerical simula-
tions for transport in the presence of dynamic disorder
are discussed and compared with the corresponding ex-
perimental data. The motion of particles is modeled at
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FIG. 1. (a) Schematic showing a paramagnetic particle driven above a magnetic bubble lattice by a square wave magnetic field
H. One Wigner-Seitz cell is shaded in blue. (b) Microscope image of a bubble lattice with a superimposed trajectory of one
particle (blue lines) for ω=12.6 rad s−1 and H0=0.14Ms. (c) Contour plots of the normalized magnetostatic energy E/kBT of
one particle above the bubble lattice at two different times separated by half a period. Energy maxima (minima) are colored in
white (blue). The blue arrows indicate the possible paths the particle can undertake in the next jump. The red arrows show the
path undertaken by the particle to reach the energy minimum. (d) Time evolution of the x−coordinate of one paramagnetic
particle subjected to an external square wave field with H0=0.14Ms and ω=15.7 rad s−1. The red inset zooms in one piece of
the trajectory.

the level of individual steps via an antipersistent random
walk approach in Sec. V, and finally Sec. VI concludes
the paper.

II. EXPERIMENTAL SETUP

A schematic illustrating the experimental system is
shown in Fig. 1(a). The colloidal particles used are
polystyrene paramagnetic microspheres (Dynabeads M-
270, Invitrogen) having diameter d=2.8µm and mag-
netic volume susceptibility χ∼0.4. The particles are di-
luted in high-deionized water and let sediment above the
periodic potential generated by a bismuth-substituted
ferrite garnet film (FGF). The FGF has composition
Y2.5Bi0.5Fe5−qGaqO12 (q∈[0.5, 1]) and was previously
grown by dipping liquid phase epithaxy on a 0.5mm
thick gadolinium gallium garnet substrate [24]. The
film has thickness ∼ 4µm and saturation magnetization

Ms=1.7×104Am−1. In the absence of external field, this
FGF is characterized by a labyrinth of stripe domains
with alternating magnetization and a spatial periodicity
of λ = 9.8µm. This pattern is converted into a periodic
lattice of cylindrical magnetic domains by using high fre-
quency magnetic field pulses applied perpendicular to the
film, with amplitude H0 and oscillating at angular fre-
quency ω. As shown in Fig. 1, the cylindrical domains,
also known as “magnetic bubbles” [25], are ferromagnetic
domains with radius R=4.2µm, having the same magne-
tization direction and arranged into a triangular lattice
with lattice constant a=11.6µm. We can visualize both
the magnetic domains in the film and the particles using
polarization microscopy, due to the polar Faraday effect.
The external oscillating field is obtained by connect-

ing a coil perpendicular to the film plane (z-direction)
with a wave generator (TTi - TGA1244) feeding a power
amplifier (IMG STA-800). The custom-made coil was
mounted on the stage of a polarization light microscope
(Nikon, E400) equipped with a 100×, 1.3NA objective
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(a) (b)

FIG. 2. (a) Mean squared displacement versus time for a paramagnetic colloid above a glass substrate (open squares) and above
a two-state flashing potential (solid squares), under a field with amplitude H0=0.37Ms and angular frequency ω=6.3 rad s−1.
(b) Effective diffusion coefficient D vs angular frequency ω for a colloidal particle driven by an applied field with H0=0.37Ms.

The solid line denotes the relationship D= a
2
ω

16π
. The inset shows D vs H0, at a constant angular frequency of ω=6.3 rad s−1.

and a 0.45 TV lens. The movements of the particles are
recorded at 60 fps for ∼ 30 min with a b/w CCD cam-
era inside an observation area of 179×231µm2. We then
use particle tracking routines [26] to extract the particle
trajectories and later calculate correlation functions.

III. PARTICLE DYNAMICS IN A FLASHING

POTENTIAL

Once deposited above the garnet film, the paramag-
netic particles pin to the Bloch walls, which are located
at the boundary of the magnetic bubbles. To generate a
two-state flashing potential we apply to the FGF film a
square-wave modulation of type

H = H0 sgn
(

sin (ωt)
)

ez , (1)

where H0 is the field amplitude, ω the angular frequency,
and sgn(x) denotes the sign function. The applied field
periodically changes the radii of the bubbles in the FGF,
increasing (decreasing) the size of the bubbles when it is
parallel (resp. antiparallel) to their magnetization direc-
tion, thus alternating between two distinct states. One
can understand the effect of the applied field on the en-
ergy landscape by calculating the magnetostatic poten-
tial at the particle elevation [27] see Fig. 1(c). In partic-
ular, when the field expands the bubbles (state 1), the
energy displays a paraboloid-like minimum within the
magnetic domains. Thus, the magnetic colloids are at-
tracted towards the center of the bubble domains. When
the field has opposite polarity, it shrinks the size of the
bubbles and enlarges the interstitial region (state 2). In
this situation, the magnetostatic potential features six

regions of energy minima with triangular shape at the
vertices of the Wigner-Seitz cell around each bubble.

As a consequence, during the transition 1→2, a parti-
cle can jump to 6 possible places [Fig. 1(c), left], while in
the transition 2→1 the possibilities reduce to 3 [Fig. 1(c),
right]. Since we apply a field perpendicular to the sam-
ple plane (no tilt), the potential preserves its spatial
symmetry, i.e. there is no net drift motion as it was
induced in Ref. [17] by using a precessing field. We
analyze the particle dynamics by measuring the mean
squared displacement via a temporal moving average

MSD(t)=〈
(

x(t+t′)−x(t′)
)2
〉∼tα. Here, x denotes the po-

sition of the particle projected along one of the crystallo-
graphic axes and α the exponent of the power-law which
is used to distinguish the diffusive (α=1) from subdif-
fusive (α<1) dynamics. In our system we observe both
types of dynamics, which are discussed in the following
subsections.

A. Diffusive dynamics

In Fig. 2(a) we compare the MSD for a paramagnetic
colloid freely diffusing on a glass plane in the absence of
FGF film and the one which is strongly driven by the
flashing potential. Both cases exhibit a normal diffusion
but with different diffusion coefficients. From the experi-
mental data of the MSD, the effective diffusion coefficient
of the particle can be estimated as D= lim

t→∞
MSD(t)/2dt,

with d being the spatial dimension (Here d=1 since the
data is projected along one of the crystallographic axes).
We find that D in the presence of the flashing poten-
tial (D=14.6µm2 s−1) is enhanced by nearly two orders
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of magnitude with respect to the one on a glass plate
(D=0.14µm2 s−1). In this regime of motion, which is
observed for field amplitudes H0 ∈ [0.28, 0.42]Ms and
frequency ω<35 rad s−1, the particle moves from one do-
main to the next without performing continuous oscilla-
tion around a single site, thus, it performs an ordinary
random walk on a triangular lattice. The step length l
of the walker can be estimated to be given by one side
of the Wigner-Seitz cell, i.e. ℓ=a

2=5.8µm, and the com-
ponent of the MSD along a crystallographic axis equals

〈x2〉=( ℓ√
2
)2= ℓ2

2 . Each step takes a half-period of the

magnetic field pulse, thus, the duration of each step is
given by ts=

T
2=

π
ω
. One thus obtain the diffusion coeffi-

cient as [28, 29] D= 〈x2〉
2ts

= l2

4ts
=a2ω

16π . We confirm this rela-

tion in Fig. 2(b) by measuringD versus the frequency and
amplitude of the applied field. While D increases linearly
with frequency, it decrease rapidly beyond ω∼30 rad s−1

since the overdamped particle is unable to follow the fast
vibrations of the potential, and reduces significantly its
diffusive dynamics. In contrast to frequency, D is almost
independent of the amplitude of the applied field, since
the lattice constant of the magnetic bubble array does
not change significantly for amplitude H0<0.5Ms [17].
Beyond this value, however, the magnetic bubble lattice
starts melting and transport of the particles is not pos-
sible anymore.

B. Subdiffusive dynamics

Our experimental setup allows us to independently
vary both the amplitude H0 and the frequency ω of the
driving field. At strong fields (H0>0.28Ms), the parti-
cle jumps between nearest bubbles with an equal prob-
ability to choose any of the possible movements, thus,
performs a normal random walk on a triangular lattice
(α≃1 on all time scales). In contrast, when the field is
weak (H0<0.09Ms), the landscape deformations induced
by the applied field are small and the particle is unable
to leave the magnetic bubble. The corresponding parti-
cle trajectory is composed of simple oscillations between
the center of one bubble and one of its six surrounding
energy minima. In such a pure localization the MSD
saturates rapidly, leading to an exponent α≃0. In the in-
termediate regime of amplitudes, i.e. H0∈[0.09, 0.28]Ms,
we observe a subdiffusive dynamics at short time scales
with a crossover to normal diffusion at long times. Fig-
ure 3 shows several examples of the temporal evolution
of MSD for different values of H0 and ω. The initial
anomalous exponent varies between 0 and 1 depending
on the strength H0 of the applied magnetic field. While
in a previous work [24] it was found a stable subdiffu-
sive exponent α=0.5 for H0 = 0.13Ms and at different
frequencies, the value of α may vary by changing the am-
plitude of the switching field. To see this more clearly,
we rescale both axes in such a way that the asymptotic
diffusive regimes of the curves collapse on a master curve
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FIG. 3. Mean squared displacement versus time for a param-
agnetic colloid subjected to a two-state flashing potential for
different values of amplitude H0 and frequency ω of the ap-
plied magnetic field. Inset: The dimensionless mean squared

displacement M̃SD = MSD/( 4ℓ
v
Dasymp) versus the scaled time

tω/π.

(see inset). This can be achieved if the MSD is scaled
by 4ℓ

v
Dasymp (Dasymp being the long-term diffusion coef-

ficient, ℓ the step size, and v the velocity of the particle),
and the time axis is scaled by π

ω
to synchronize the os-

cillations. Only the samples which reach the long-term
diffusion limit within our experimental time window are
considered. With increasing H0, the curves are initially
more steep and converge faster to the asymptotic limit.

Indeed, the lattice structure is slightly disordered at
weak fields, because of the non-uniform deformations
of the magnetic bubbles during their periodic expan-
sion/contraction. These deformations arise from the
presence of pinning sites in the film and other inho-
mogeneities (such as dislocations or magnetic and non-
magnetic inclusions present in the FGF crystal). These
defects exert an influence on the Bloch walls analogous
to the action of a frictional force against the motion of
the walls [30]. Furthermore, when the field is applied, the
magnetic bubbles interact via long range dipolar forces
[31] and small deviations from the 2D projected circular
shape induce a slight distortion on the triangular lattice.
For the fields used in our experiments, these distortions
are not strong enough to create permanent defects in the
film (such as disclinations or dislocations), but slightly
vary the lattice spacing from place to place. Thus, the
spatial structure of the lattice is not perfectly symmetric
in practice. In the presence of disorder, the particle may
oscillate around each site before it moves to the next do-
main (see Fig. 1(d) for an example of such movements),
which leads to subdiffusive dynamics at short time scales.
However, this bias decays with time and the directions of
the particle motion become asymptotically randomized,
leading to diffusive dynamics at long times. With de-
creasing H0, the lattice disorder and thus the frequency
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of trapping events enhances, which further decreases the
initial anomalous exponent from one (ordinary random
walk) towards zero (pure localization).
The frequency ω of the driving field does not affect the

MDS behavior; it only rescales the time because the time
step is given by ts=

π
ω
. Thus, it can be understood why

the crossover time to asymptotic diffusion was found to
follow a power-law τc∼ω−1 with ω [24].

IV. SIMULATION RESULTS

In the previous section we explained the origin of the
disorder in the lattice structure during switching of the
magnetic field. As a result, the particle spends part of
the time in local traps, where it experiences an oscilla-
tory movement. In a back and forth motion, the particle
chooses nearly backward directions when it turns. There-
fore, the turning-angle distribution f(φ) changes from
an isotropic one for ordinary random walk on the lattice
(limited to the allowed directions by the lattice structure)
to an anisotropic one with a tendency towards backward
directions with respect to the current direction of motion.
In the extreme limit of pure localization (remaining per-
manently in a trap), f(φ) is a delta function at φ=π.
Such anisotropic turning-angle distributions slow down
the spread of colloids on the lattice and cause subdiffu-
sion at short times. The structural irregularities in the
magnetic bubble lattice are more pronounced at smaller
values of H0. Hence, with decreasing H0 the chance of
trapping events increases and the resulting f(φ) becomes
more anisotropic, which decreases the initial anomalous
exponent.
In order to ensure that the lattice disorder causes

asymmetric turning-angle distribution f(φ) and subdif-
fusive dynamics, we perform Molecular Dynamics sim-
ulations of motion on a dynamic disordered triangular
lattice of synchronous flashing magnetic poles. To obtain
smooth particle trajectories and a detailed time evolution
of the MSD, in particular to monitor the oscillatory dy-
namics at short times, MD simulations are advantageous
compared to other possible methods such as Monte Carlo
simulations. The simulation cell consists of nearly 3000
magnetic poles and a colloidal particle which is initially
released near the center of the system to avoid boundary
effects. We impose periodic boundary conditions, and
consider in-plane magnetic interactions between the im-
mobile poles and the magnetic colloid. The time step of
our in-house code is chosen to be ∆ t=1×10−4s, so that
the time ts=

π
ω

between two successive switching of the
field direction is resolved into more than 1000 time steps.
An explicit Euler update scheme is used for integration
and the simulations run until the crossover to asymptotic
diffusion occurs or the total number of time steps exceeds
5×105.
The structural disorder is effectively introduced by ran-

dom displacements of magnetic poles from their ordered
lattice positions. The strength of disorder can be quanti-
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FIG. 4. (left) Schematic drawing of the disordered lattice and
(right) a polar representation of the corresponding turning-
angle distribution f(φ) after 10000 steps in simulations for
different values of the lattice disorder δ.

fied by the parameter δ, denoting the maximum possible
displacement of each magnetic pole from its ordered lat-
tice position. We randomly choose the position of each
node within a circle of radius L·δ around the correspond-
ing node of the ordered triangular lattice, where L de-
notes the size of the Wigner-Seitz cell. The dynamic dis-
order is generated by instantaneous random rearrange-
ments of the poles at each switching event. Thus, the
poles move to new positions where they stay immobile
until the next switching event. The new random position
of each pole remains within the allowed range around
the original position of the corresponding ordered lat-
tice node. This way we keep the deviations dynamic but
smaller than δ·L in all cases.

We analyze the particle trajectory for different values
of δ. As shown in Fig. 4, with increasing δ the distortion
of the lattice is more pronounced, thus, the particle ex-
periences oscillatory movements in traps more frequently
and for longer times, which increases the asymmetry of
the turning-angle distribution f(φ). By tunning δ, as a
single free parameter in our simulations, a remarkable
agreement with the experimental MSD data is achieved
(see Fig. 5). Moreover, by smoothening the MSD curves
obtained from simulations, we fit the initial slope of the
curves to MSD(t)∼tα to get the anomalous exponent at
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FIG. 5. MSD versus time, obtained from experiments (green
symbols), simulations (red dashed lines), and the persistent
random walk model via Eq. (7) (black solid lines). The ex-
perimental data at ω=15.7 rad s−1 and various amplitudes H0

are compared to the best fits obtained by tunning a single fit-
ting parameter (i.e. the lattice disorder δ in simulations, or
the turning-angle anisotropy η in the analytical model). The
best-fitting parameters for each value of H0 are given.

short times. The results shown in Fig. 6 reveal that
with increasing the amount of structural disorder, the
slope gradually decreases from α=1 for normal diffusion
towards α=0 corresponding to pure localization. The
growth of MSD is extremely slow for δ≥25%, in accord
with the experimental data at weak fields H0<0.09Ms.

V. PERSISTENT RANDOM WALK MODEL

So far, we have shown that for small amplitudes of
the external field the turning-angle distribution f(φ) is
asymmetric, which is accompanied by a subdiffusive dy-
namics at short times. In this section, we theoretically
consider the particle motion at the level of individual
steps and show how the asymmetry of f(φ) with a ten-
dency towards backward directions leads to subdiffusion.
It was demonstrated in a previous work [24] that the
statistical properties of the subdiffusive motion could be
captured by the “random walk on random walk” model
[32] (RWRW), which is a simple example of stochastic
motion in a complex environment. In the RWRW model,
the walker performs an ordinary random walk on an en-
vironment which is constructed by an ordinary random
walk process as well. While this model showed a quan-
titative agreement with the experiments for certain field
parameters [24], the randomness of the environment in-
deed varies depending on the choice of H0. Thus a more
general theoretical framework is needed in order to cap-
ture the particle dynamics in the subdiffusive regime for
all field parameters. Here, we look at the individual steps

0.0
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0 5 10 15 20 25 30 35 40
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FIG. 6. The anomalous exponent α at short times (after
smoothening the MSD curves) in terms of the structural dis-
order δ of the lattice.

of the random walker and present an antipersistent model
which enables us to reproduce fine details of motion such
as the oscillatory dynamics observed at smaller values of
H0. Persistent random walk models [33–36] have been
used to describe e.g. stochastic transport on cytoskeletal
filaments [37, 38], self-propulsion subject to fluctuations
[39, 40], or diffusive transport of light in foams and gran-
ular media [41, 42]. In the following, the asymmetry of
f(φ) is quantified with η≡〈cosφ〉, which varies from 0 for
an isotropic distribution f(φ)= 1

2π to −1 for an extremely
asymmetric distribution f(φ)=δ(φ−π). We obtain ana-
lytical expressions for the time evolution of the MSD, the
crossover time to asymptotic diffusion, and the long-term
diffusion coefficient in terms of the control parameter η
and compare the analytical predictions with the experi-
mental data.
We consider a random walk in 2D, with uncorrelated

step sizes ℓ which are obtained from an arbitrary distri-
bution g(ℓ). The successive step orientations are however
correlated such that a new orientation is obtained from
a turning-angle distribution f(φ) along the previous di-
rection of motion (see Fig. 7). While an isotropic f(φ)
leads to a normal diffusion, introducing anisotropy along
the arrival direction induces persistency and results in an
anomalous transport on short time scales. The choices
of f(φ) which encourage the walker towards backward
(forward) directions lead to subdiffusion (superdiffusion).
Such an approach had been used e.g. in the context of cell
migration along surfaces [43], animal movement [44], and
dynamics of polymer chains [45, 46]. Starting from the
origin, let us assume that the first direction of motion is
chosen randomly, i.e. the initial condition is P (α1)=

1
2π .

The x-coordinate of walker after n steps can be obtained
by projecting each step along the x-axis

x =

n
∑

i=1

xi =

n
∑

i=1

ℓi cosαi, (2)

where αi=α1+φ2+···+φi. For simplicity, in the following
we consider a constant step length g(ℓ)=δ(ℓ−〈ℓ〉) and
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FIG. 7. (a) Trajectory of the walker during a few successive
steps. (b) Examples of the turning-angle distribution f(φ) for
different values of the asymmetry measure η.

f(φ) distributions with left-right symmetry. The first
moment of displacement 〈x〉 then reads

〈x〉 =〈ℓ〉〈

n
∑

i=1

cosαi〉 = 〈ℓ〉

n
∑

i=1

∫ π

−π

dφif(φi) · · ·

∫ π

−π

dφ2f(φ2)

×

∫ π

−π

dα1P (α1) cos(α1+φ2+ · · · φi) = 0,

(3)
since the integral over α1 vanishes. Here 〈· · ·〉 denotes an
ensemble average. The second moment of displacement
is given by [43–46]

〈x2〉 = 〈

n
∑

i=1

n
∑

j=1

xixj〉 = 〈

n
∑

i=1

x2
i + 2

∑

i>j

xixj〉

=

n
∑

i=1

〈x2
i 〉+ 2

n
∑

i=1

i−1
∑

j=1

〈xixj〉.

(4)

Similar to Eq. (3), the first term can be obtained as

〈x2
i 〉 =〈ℓ2〉

∫ π

−π

dφif(φi) · · ·

∫ π

−π

dφ2f(φ2)×

∫ π

−π

dα1P (α1) cos
2(α1+φ2+ · · · φi) =

〈ℓ2〉

2
.

(5)

the second term on the right hand side of Eq. (4) can be

FIG. 8. The normalized auto-correlation function 〈φiφi+τ 〉
versus time for different values of η. Positive (negative) η cor-
responds to persistent (antipersistent) motion. η=1 denotes
a ballistic motion without any turning.

evaluated in the following way

〈xixj〉 = 〈ℓ〉2
∫ π

−π

dφif(φi) · · ·

∫ π

−π

dφ2f(φ2)×

∫ π

−π

dα1P (α1) cos(α1+φ2+ · · · φi) cos(α1+φ2+ · · · φj)

=
〈ℓ〉2

2

∫ π

−π

dφif(φi) · · · dφ2f(φ2) cos(φj+1+ · · · φi)

=
〈ℓ〉2

2

(

∫ π

−π

dφf(φ)Re[eiφ]

)i−j

=
〈ℓ〉2

2
ηi−j ,

(6)
where η=

∫ π

−π
dφf(φ) cos φ = 〈cosφ〉. A few examples of

the turning-angle distribution f(φ) and the correspond-
ing values of the asymmetry parameter η are shown in
Fig. 7(b). From Eqs. (4) to (6) one can obtain the sec-
ond moment 〈x2〉. Similar conclusions for the moments of
the y-coordinate can be drawn due to symmetry. Thus,
one gets the following expression for the mean squared
displacement

〈r2〉 =
(

〈ℓ2〉+〈ℓ〉2
2η

1−η

)

n+ 〈ℓ〉2
2η

(1−η)2
(ηn−1). (7)

The case η=0 corresponds to an isotropic distribution
f(φ), for which Eq. (7) reduces to 〈r2〉=〈ℓ2〉n, i.e. a nor-
mal diffusion. Negative (positive) values of η denote an
increased probability for motion in the near backward
(forward) directions, thus, leading to antipersistent (per-
sistent) motion. For η>0 one obtains a superdiffusive
short-time dynamics, while η<0 leads to subdiffusion or
oscillatory dynamics. In Fig. 5, the theoretical predic-
tions for the MSD via Eq. (7) are compared with the
experimental and simulation results. It can be seen that
our theoretical approach remarkably reproduces the ob-
served behavior by fitting the single free parameter of
the model, i.e. η. Notably, the overall behavior of the
MSD, the frequency of oscillations, the crossover time,
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and even the asymptotic diffusion coefficient are all cap-
tured by the theory.

The persistent random walker has a finite-range mem-
ory, beyond which the direction of motion gets completely
randomized. According to Eq. (6), the auto-correlation
between step orientations is given by

〈φiφi+τ 〉 = 〈cosφ〉τ , (8)

which vanishes in the limit of τ→∞ since |〈cosφ〉|≤1.
Some examples are shown in Fig. 8 for various val-
ues of η. One can estimate the crossover time
nc to asymptotic diffusion by numerically solving
(

〈ℓ2〉+〈ℓ〉2 2η
1−η

)

nc∼〈ℓ〉2 2η
(1−η)2 η

nc . Moreover, it can be

seen from Eq. (7) that the asymptotic diffusion coeffi-
cient also depends on η as

Dasymp =
1

4
v
(〈ℓ2〉

〈ℓ〉
+〈ℓ〉

2η

1−η

)

, (9)

with v being the average particle velocity. For a constant
step size, Dasymp ranges from 0 for η= − 1 to 1

4v〈ℓ〉 for
η=0.

VI. CONCLUSIONS

We combined experiment and theory to investigate the
dynamics of paramagnetic colloids driven above a two-
state flashing potential. This potential was realized by
periodically modulating the stray field generated at the
surface of a magnetic bubble lattice in an uniaxial garnet
film. The particles experience either enhanced diffusive
or anomalous sub-diffusive dynamics, depending on the
strength of the external drive. Applying a strong field
leads to an ordinary random walk on the magnetic bubble
lattice, while weaker fields result in structural disorder in
the lattice which slows the particle dynamics. By means
of a persistent random walk approach and numerical sim-
ulations we verified that increasing lattice disorder sharp-
ens the turning-angle distribution of the particle towards
backward directions, which decreases the anomalous ex-
ponent, postpones the crossover time to asymptotic dif-
fusion, and modifies the long-term diffusion coefficient.
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