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We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely thin,
concentric spherical shells of matter. We include only gravitational interaction between the two shells, but
we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole,
delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or
their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.
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I. INTRODUCTION

Gravitational physics in anti-de Sitter (AdS) space has
staged many efforts over the past two decades, mainly
driven by the celebrated AdS/CFT correspondence [1–3].
However, the first serious study of AdS physics dates back
to 1978, when the quantization of scalar fields in such a
spacetime was considered [4]. In the early 1980s, research
on AdS gravity was propelled mainly by investigations of
gauged supergravity, where AdS often arises as a super-
symmetric vacuum [5]; studies of thermodynamics and
phase transitions exhibited by black holes (BHs) in AdS
[6]; and the development of a Hamiltonian formalism for
asymptotically AdS spacetimes [7].
The chief feature of asymptotically AdS spacetimes is

their confining nature: fields propagating in AdS feel a
potential that diverges asymptotically, and light rays reach
infinity in finite time. This is of course related to the fact
that AdS is not globally hyperbolic, and therefore, a well-
posed initial value problem requires that boundary con-
ditions for fields at infinity must be provided [8,9]. This
particularity of AdS is at the heart of several interesting
recently uncovered phenomena: the so-called turbulent
instability of AdS [10–30], asymptotically AdS solutions
such as boson stars, geons and hairy BHs [12,13,31–35],
and holographic studies of the equilibration of strongly
coupled plasmas [36–44] and of quantum revivals
[45,46]. Most, if not all, of these investigations rely either
on intense numerical work or on cumbersome perturbative
calculations.
It has been pointed out very recently [47] that a system

comprised of multiple spherically symmetric (and concen-
tric) pressurized thin shells in a flat space cavity displays
extremely rich—yet easily solvable—dynamics. For exam-
ple, depending on initial conditions, it is possible to obtain
perpetually oscillating configurations or delayed collapse

into a BH, in addition to prompt collapse. Moreover, this
setting also exhibited critical behavior as present in the
original studies of gravitational collapse [48,49]—in par-
ticular, sharing striking similarities with the most recent
analyses in Refs. [50,51]. For each shell, the problem
simply amounts to integrating the motion of a particle in a
one-dimensional potential. The shells were assumed to
cross without any further interaction besides their gravita-
tional attraction; in other words, they are “transparent.”
In fact, the dynamics of two or more spherical thin shells

have been studied for more than 30 years, albeit in different
contexts [52–54]. For example, Miller and Youngkins [54]
studied the chaotic behavior of two concentric, spherical
thin shells enclosed by an inner and an outer barrier in the
Newtonian regime. Evidence for chaotic motion was also
found in Ref. [55], for a Newtonian system with two shells
surrounding a central massive body. A general-relativistic
description of this system was given in Ref. [56], while a
quantitative description of the chaotic motion was given in
Ref. [57], for a particular regime in which the shells have a
large hierarchy of mass scales. More recently, long-term
evolutions of multiple shells have been presented in
Ref. [58]. We should stress that none of those works
considered BH formation and critical phenomena in con-
fining spaces. Confinement is crucial in our setup to force
the shells to collide repeatedly, thus allowing small effects
to build up in time.
In this work we extend the analysis of [47] to the AdS

case, therefore removing the—now unnecessary—artificial
reflecting surface that provided confinement. As expected,
our results are in full qualitative agreement with Ref. [47].
In addition, we observe that this system of multiple shells in
a confining ambient displays strikingly chaotic behavior.
We highlight the fact that the dynamics of such systems
require only solving two decoupled ODEs.

PHYSICAL REVIEW D 94, 024003 (2016)

2470-0010=2016=94(2)=024003(8) 024003-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.024003
http://dx.doi.org/10.1103/PhysRevD.94.024003
http://dx.doi.org/10.1103/PhysRevD.94.024003
http://dx.doi.org/10.1103/PhysRevD.94.024003


II. DOUBLE-SHELL SYSTEM

We consider the evolution of a spherically symmetric,
asymptotically AdS spacetime with two concentric thin
shells interacting only gravitationally (see Fig. 1). An exact
(i.e., nonperturbative) description of the spacetime is
obtained by gluing three Schwarzschild-AdS geometries
along two timelike hypersurfaces.

A. Evolving shells individually

The time evolution of each shell can be followed
individually up to the point that the two shells collide.1

The interior and exterior spacetimes are determined by
Birkhoff’s theorem to be described by AdS-Schwarzschild
geometries,

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð1Þ

fðrÞ ¼
�
1 −

2M
r

þ r2

l2

�
: ð2Þ

Here, l is the (constant) AdS curvature. Once this is fixed,
the only input needed is the gravitational mass of the
interior and exterior regions. The induced metric on a shell
of radius r ¼ RðτÞ is then

dσ2 ¼ −dτ2 þ RðτÞ2dΩ2; ð3Þ

where τ denotes the shell’s proper time and dΩ2 is the line
element on the unit two-sphere. We denote derivatives with
respect to τ by an overdot.
The nonvanishing components of the extrinsic curvature

are straightforwardly computed,

K�
ττ ¼ −

_β�
_R
; K�

θθ ¼ Rβ� ¼ K�
ϕϕ=sin

2θ; ð4Þ

β� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ f�ðRÞ

q
; ð5Þ

where � applies to exterior and interior quantities,
respectively.
Applying the Israel-Darmois junction conditions

[59,60], a discontinuity of the extrinsic curvature signals
the presence of a nonvanishing stress-energy tensor on the
hypersurface given by

Sij ¼ −ð8πGÞ−1ð½Kij� − gij½K�Þ; ð6Þ

where ½X�≡ Xþ − X− denotes the jump of any quantity X
across the shell’s surface and K� ¼ _βþ= _Rþ 2β�=R is the
trace of the extrinsic curvature.
We take the matter on the shell to be described by a

perfect fluid,

Sij ¼ ðρþ PÞuiuj þ Pgij; ð7Þ

where ui ¼ δτi represents the fluid’s 3-velocity, ρ its energy
density, and P its pressure. By equating (6) to (7) we thus
find

ρ ¼ −
1

4πGR
½β�;

P ¼ 1

8πG

�
d½β�
dR

þ ½β�
R

�
: ð8Þ

To close the system one must provide an equation of
state relating the fluid’s energy density and pressure. We
adopt, for simplicity, a linear equation of state P ¼ wρ,
with w a constant. Consequently, integration of (8) yields

ρ ¼ ml2w

4πGR2þ2w ; ð9Þ

with m a constant, corresponding to the shell’s invariant
mass and G denoting Newton’s constant. The inclusion of
the factor l2w is a matter of convenience, preserving the
mass dimension of m for any choice of equation-of-state
parameter w.
Inserting the above solution in Eq. (8) one can obtain—

after some massaging—a neat expression for the exterior
gravitational mass, which for the pressureless case (w ¼ 0)
reduces to a sum of the interior gravitational mass, the
shell’s kinetic energy and the shell’s binding energy,

Mþ ¼ M− þml2w

R2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ 1þ R2

l2
−
2M−

R

s
−

m2l4w

2R1þ4w :

ð10Þ

However, for the purpose of studying the time evolution
of the shell’s radius, it is more convenient to invert Eq. (10),
thus finding

_R2 þ V ¼ 0; ð11Þ

FIG. 1. Illustration of our setup: two concentric, spherically
symmetric thin shells in an asymptotically AdS spacetime, shown
above as two hemispherical domes for clarity.

1At such events we have to make a choice for the subsequent
evolution, and this will be discussed below.
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where the radial effective potential is

V ¼ 1þR2

l2
−
Mþ þM−

R
−
ðMþ −M−Þ2

m2

�
R
l

�
4w

−
m2l4w

4R2þ4w :

ð12Þ

As long as the energy density is positive and the
equation-of-state parameter is in the range −1=3≤w≤1,
all the standard energy conditions [61] are obeyed, namely,
the null (ρþ P ≥ 0), the weak (ρ ≥ 0, ρþ P ≥ 0), the
strong (ρþ P ≥ 0, ρþ 3P ≥ 0), and the dominant
(ρ ≥ P ≥ −ρ) energy conditions.
For the two-shell system that we are interested in, we can

use Eq. (11) to follow the radius R1;2 of the outermost and
innermost shells. For the innermost shell we set M− ¼ 0
and Mþ ¼ M2, while the outermost will be described by
M− ¼ M2 and Mþ ¼ M1. Because the proper time for the
two shells will not coincide, in general, it is convenient to
follow the evolution with respect to the Schwarzschild time
coordinate t for the region between the two shells. By
considering Eqs. (1) and (3), the Schwarzschild time t is
directly related to the proper time τ1;2 of the shell at
radius R1;2,

dt
dτ1;2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðR1;2Þ þ ð _R1;2Þ2

q
fðR1;2Þ

: ð13Þ

From this it immediately follows that the Schwarzschild
time evolution of each shell is governed by

�
dR
dt

�
2

¼ −V̂ ≡ −
fðRÞ2V
fðRÞ − V

: ð14Þ

The system of ODEs (14) is simple enough to be
integrated using MATHEMATICA’s built-in routine
NDSolve. To integrate the equations we use the default
settings of the routine, namely, a typical accuracy and a
precision goal of 1 part in 108. We checked that larger
precisions do not change our results.

B. Boundary conditions and shell crossing

Due to the timelike asymptotic boundary of AdS, the
shells can reach the boundary R → ∞ within a finite time
as measured by a static observer in the bulk. Due to the
effective potential (12) this can happen whenever w > 1=2.
To have a well-defined problem, we then impose perfectly
reflecting boundary conditions ( _R → − _R) when R → ∞.
On the other hand, for −1=3 ≤ w < 1=22 the effective
potential (12) has a maximum turning point after which the
potential becomes positive, forbidding classical motion up
to R → ∞.3 Thus, as long as perfectly reflecting boundary
conditions are imposed at the AdS boundary, the system
will behave as a confined system for any value of w.
Following Ref. [47], when the shells collide we consider

them to be “transparent,” by keeping their 4-velocity
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FIG. 2. Evolution of the two-shell system in AdS for M1=l ¼ 0.05, M2=l ¼ 0.025, m1=l ¼ m2=l ¼ 0.0136 and an initial shell radius
Ri=l ¼ 1.5. Left panels: We consider w1 ¼ w2 ¼ 0.2. The upper panel shows the position of the shells as a function of the
Schwarzschild-like coordinate time tmeasured between the shells. The solid (red) curve describes the motion of the outermost shell and
the dashed (blue) curve the innermost. The lower panel shows the value of gtt ¼ 1 − 2M2=R2 þ R2

2=l
2 computed at the surface of the

innermost shell. For this case, the innermost shell collapses after three crossings (meaning that it is the initially outermost shell that
actually collapses). Right panels: Same as the left but for w1 ¼ w2 ¼ 1 and m1=l ¼ m2=l ¼ 0.0001125, for which the outermost shell
can reach R → ∞ in a finite time.

2For the case w ¼ 1=2, the sign of the potential at R → ∞
depends on the sign of the combination m2 − ðMþ −M−Þ2.

3For some choices of the parameters, it was shown that for
w ≤ 1=2, even a single shell can oscillate between two finite radii
[62]. Oscillating single-shell solutions can also be shown to exist
even for w > 1=2 if perfectly reflecting boundary conditions
( _R → − _R) are imposed at R → ∞.
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continuous at the collision point and their invariant mass
unchanged. However, there will still be an exchange of
gravitational energy between the shells, such that the
gravitational mass M2, exterior to the innermost shell
(and interior to the outermost shell), will change after each
crossing. The gravitational mass M2 after each collision
has previously been computed from conservation of energy
and momentum and can be found in Ref. [63] [see
their Eq. (3.18)].

III. RESULTS

A. Initial conditions

The dynamics of the two-shell system in AdS shows a
very rich structure akin to what was found in Ref. [47] for
shells inside a spherical box. Depending on the parameters
and initial conditions, the system can collapse promptly,
bounce at the AdS boundary or at some finite radius, and
collapse after some crossings between the two shells, or it
can oscillate forever. The outcome of the evolution
depends, in general, sensitively on the parameters and
initial conditions. As noted in the previous section, for
example, only shells with w > 1=2 will reach the AdS
boundary at R → ∞. However, the qualitative behavior of
our results does not depend on the equation-of-state
parameter w as long as perfectly reflecting boundary
conditions are imposed at R → ∞. This is illustrated in
Fig. 2, where we compare the dynamics of double shells
with w smaller and larger than 1=2. In the figure, the shell’s
radius is shown as a function of the coordinate time
measured by a static observer located between the shells.

In this example the shells collapse after three crossings. For
the case with w > 1=2 the outermost shell reaches R → ∞
in a finite time and bounces back, while for w < 1=2 the
shell bounces back at a finite radius.
We thus fix w in our study. For concreteness, and to

compare with the results of Ref. [47] we focus on shells that
initially start at the same location Rðt ¼ 0Þ ¼ Ri, with one
shell expanding and the other contracting. We also consider
similar sets of initial conditions, namely,

(i) M1=l ¼ 0.05, M2=l ¼ 0.025, m1=l ¼ m2=l ¼
0.9 × 20−1−2w ¼ 0.0136, w1 ¼ w2 ¼ 0.2, keeping
free the initial location of the shells, Ri;

(ii) M1=l ¼ δ, M2=l ¼ 0.5δ, m1=l ¼ m2=l ¼
0.9 × 20−2wδ ¼ 0.2715δ, w1¼w2¼0.2, Ri=l ¼ 1.5,
keeping free the parameter δ that quantifies the
energy content in the spacetime.

Formation of a horizon can be signaled by the function
1 − 2M1;2=R1;2 þ R2

1;2=l
2 approaching zero or by checking

that, when the shells are contracting, the shell’s radius is
smaller than the innermost turning point of the effective
potential (12), since in this case the shell is not able to
bounce back and avoid collapse.

B. Delayed collapse and critical behavior

The number of times the shells cross before collapsing
depends sensitively on the parameters and the initial
conditions. In Fig. 3 we show how the number of crossings
before collapse changes when using type (i) initial con-
ditions, i.e., varying the initial location Ri of the shells.
Between each transition there is a fractal-like structure:
zooming-in between two plateaus, one finds that the
structure resembles the top panel of Fig. 3 itself, as shown
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FIG. 3. Number of crossings between the two shells before
collapse as a function of Ri=l, for type (i) initial conditions. We
find regions where no collapse occurs, and around each critical
point (i.e., when the number of crossings change) we observe a
fractal-like structure where an arbitrarily large number of
crossings occur, as shown in the center and bottom panels
(cf. Fig. 3 in [47]).
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FIG. 4. The upper panel shows the BH mass as a function of the
initial energy content δ for type (ii) initial data. In the lower panel
we show the number of shell crossings, before each peak in the
BH mass, which corresponds, from right to left, to
1,3,5,7,9,11,13. Between each transition we find that, by fine-
tuning δ, an arbitrarily large number of crossings are, in principle,
possible (see Fig. 3 in [47]). For δ≲ 0.0370 we find no collapse
(cf. Fig. 4 in [47]).
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in the center and bottom panels. We also find a large region
of Ri for which there is no collapse.

4 Odd-odd or even-even
transitions are associated with critical points [47], while
parity transitions correspond to a mass gap in the mass of
the formed BH. This behavior is completely analogous to
what was found for the double-shell system inside a
spherical box [47] (cf. Fig. 3 in [47]) and is similar to
features found in the collapse of scalar fields in AdS. Our
results, together with the ones reported in [47], confirm that
collapse and critical behavior are triggered by the energy
exchange between the two shells. The effect of the AdS
boundary is to provide a natural confinement mechanism,
allowing for the shells to cross multiple times.
The critical behavior between odd-odd transitions

(although not shown here, even-even transitions behave
similarly) can be seen in Fig. 4, where we plot the BH mass
when a BH is formed as a function of δ for type (ii) initial
data. The BH mass shows a typical critical behavior: it is a
continuous function of δ to the left of the critical point,
while its left derivative blows up at this point.5 In the left
neighborhood of these critical points, the BH mass is
characterized by

MBH −M0 ∝ jδ − δ�jγ; ð15Þ

where M0 is the BH mass at the critical point and γ is a
critical exponent. We find γ ≃ 0.95� 0.05 for the 1 → 3
transition. The value obtained for the 3 → 5 transition is
consistent with this, but we do not have sufficient accuracy

in all the branches to claim that the critical exponent is
independent of the branch considered. We expect that the
value of γ depends on the type of matter, which in our case
is encoded in the parameter w [64]. For example, for w ¼ 1
we obtain a slightly smaller value γ ∼ 0.9. It would be
interesting to see if there are values of w for which the
exponent is closer to the one found in Ref. [50].
The critical exponent we obtain in this double-shell-AdS

system is significantly larger than what was found for the
case of two shells in a reflecting cavity. Namely, Ref. [47]
found γ ∼ 0.2 for the exponent of the corresponding
branch. This fact suggests that the cosmological constant
plays an important role in the determination of the critical
exponent for solutions that form a horizon with finite size.
This result is consistent with the findings of Ref. [51],
which noted a similar suppression of the critical exponent
in the collapse of massless scalar fields when the cosmo-
logical constant is turned off.

C. Chaotic behavior

So far, we have confirmed that the overall picture
suggested by the study of two shells confined to a reflecting
box in an otherwise flat space [47] still holds when one
removes the mirror and places the system in AdS space-
time. One quantitative difference is the location of the outer
turning point, which in the former case is fixed and in the
latter is energy dependent. Now we analyze the chaotic
nature of this system. This is manifest not only in the
sensitivity of the number of crossings before collapse close
to the critical points (see Figs. 3 and 4) but also in the
evolution of noncollapsing configurations.
Our results also show that there are “islands of stability”

which are associated with oscillatory solutions. Performing
a scan of these solutions, we find strong indications that
some of these solutions display a mildly chaotic behavior.

FIG. 5. Phase space of a noncollapsing solution forM1=l ¼ 0.03,M2=l ¼ 0.015,m1=l ¼ m2=l ¼ 0.00815, w1 ¼ w2 ¼ 0.2, Ri=l ¼ 1.
Left: Phase space in the ðR1; R2Þ plane with R1 the radius of the outermost shell and R2 the innermost shell’s radius. The region covered
by the orbits is thus obviously restricted to lie below the straight line R2 ¼ R1. Right: Phase space in the ðR; dR=dtÞ plane. In red we
show the innermost shell’s orbits and in the blue the outermost. The inset plots show a zoom-in of the phase space.

4Or, more precisely, for which there is no collapse up to
t ∼ 103l.

5Although we do find a power-law scaling at the critical point,
for the case shown in Fig. 4, and within the accuracy of our
results, we cannot actually rule out the possibility that the left
derivative is finite at the critical point.
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Plotting the orbits in the phase space of stable solutions, we
find that some of them show typical characteristics of
chaotic systems. This is shown in Fig. 5 where we plot the
orbits of the double-shell system in the ðR1; R2Þ plane and
ðR; dR=dtÞ plane for one of these solutions. It is apparent
that a large area in phase space is covered by these orbits.
These configurations also show high sensitivity to initial

conditions, typical of a chaotic system. This is illustrated in
Fig. 6. For two initial conditions for Ri that initially differ
by ΔRi=l ¼ 5 × 10−5, the orbits in the phase space diverge
exponentially from each other but always remain inside the
same “attractor.” Since the rate of divergence is small
(jΔR1=lj ∼ eλt=l with a Lyapunov exponent λ≃ 0.04 for the
case shown in Fig. 6), the chaotic nature is rather mild, and
no distinction from a quasiperiodic motion is evident at
early times.6

Another indication of chaotic behavior can also be found
by constructing a bifurcation diagram when continuously
varying some parameter of the system. To do so we
consider initial conditions of type (ii) and scan the
parameter space of noncollapsing solutions, i.e., for
δ≲ 0.0370. In the limit δ → 0, the solutions are nearly
periodic, but while increasing δ, we find evidence that there
is a transition to a chaotic motion. This is shown in Fig. 7
where we consider the line R1=l ¼ 2 in the ðR1; dR1=dtÞ
plane and plot the points where the orbit of a solution for a
given δ intersects this line. The transition from (quasi)
periodic to nonperiodic motion when continuously varying
a parameter of the system is a typical feature of chaotic
systems. Evidence for a similar behavior was in fact also

found for scalar fields in AdS [65,66] (cf. Fig. 2 in Ref. [65]
and Fig. 3 in Ref. [66]).
We thus suggest the following picture. Our double-shell

setup configures a chaotic system, at least for certain
regimes of the parameter space. This typically occurs for
noncollapsing configurations. The fractal-like structure
observed around critical points with same-parity transitions
is also likely because of chaotic behavior. As we have just
demonstrated, two nearby initial configurations—call them
Di;1 and Di;2—can diverge exponentially during the evo-
lution. For certain choices of Di;1 we will see collapse after
just a few orbits, but at that point the system starting from
initial data Di;2 may be quite separated in phase space and
thus continue evolving for a very long time before
collapsing. This would explain the presence of the isolated
points mentioned in Fig. 3.

IV. CONCLUSION

We have presented a study of a clean, physically
appealing system composed of two concentric spherical
thin shells in AdS spacetime, confirming that the overall
picture inferred from the recent investigations of double
shells in a reflecting box [47] faithfully represents this
asymptotically AdS setting. Moreover, we uncovered
interesting dynamics akin to chaotic systems and per-
formed a first exploration of its main characteristics.
While the double-shell system may present some simi-

larities with critical collapse of scalar fields in AdS (for
instance, the existence of critical points and noncollapsing
configurations), there certainly are marked differences. In
the latter case, it is the nonlinearities, which are strongly felt

FIG. 6. Difference between the orbits of the outermost shell’s
radius for the parameters of Fig. 5, but with two initial conditions
for Ri that initially differ by ΔRi=l ¼ 5 × 10−5. There is some
evidence that the difference grows exponentially, indicating the
presence of chaotic behavior.

FIG. 7. Bifurcation diagram, illustrating the transition from
(quasi)periodic to chaotic behavior of the double-shell system.
We consider noncollapsing solutions obtained using initial data of
type (ii) and plot the points where the orbit of a solution for a
given δ intersects the line R1=l ¼ 2 in the ðR1; dR1=dtÞ-plane.
For very small δ the solutions are nearly periodic. Increasing δ the
system becomes “increasingly” chaotic, which is translated in a
random and almost continuous distribution of points along a line
of constant δ.

6Although quasiperiodic and weak chaotic motion can be
difficult to distinguish in phase space, the fact that we find
evidence for a positive Lyapunov exponent for some of these
solutions is a clear signal of chaos.
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when the field accumulates around the origin, that transfer
energy to higher frequency modes and eventually lead to
BH formation. On the other hand, shells (of finite mass)
cannot shrink to arbitrarily small radius without collapsing
into a BH. In multiple shell systems the transfer of energy
instead comes from the shell-crossing events, which for
“transparent” shells always flows from the outgoing shell to
the ingoing shell [67].
It would be interesting to determine whether some of the

nonperiodic stable solutions for a scalar field in AdS, found
in Ref. [32], display any kind of chaotic behavior, similar to
the one found in this paper. It would also be desirable to
extract the Lyapunov exponent from an analytic treatment
to compare with our numerical results. This would certainly
add to a deeper understanding of the physics at play.
However, it is not immediately clear how this can be
achieved because one would have to analytically follow the
evolution of the system over a time scale many times larger
than the AdS light-crossing time, which must then incor-
porate many shell crossings.
The combination of simplicity and richness afforded by

this setup provides an ideal test bed for explorations of
gravitational collapse in confining geometries and its
holographic dual interpretations. Further investigation is
needed to determine if the physics at play in other problems
of interest, e.g., collapse of scalar fields in AdS, is correctly
captured by this elementary setting. At any rate, we hope
the present study will shed new light on such problems,

simultaneously serving as a powerful aid to a deeper
understanding.
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