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We derive the constitutive equations of an active polar gel from a model for the dynamics of elastic
molecules that link polar elements. Molecular binding kinetics induces the fluidization of the material,
giving rise to Maxwell viscoelasticity and, provided that detailed balance is broken, to the generation of
active stresses. We give explicit expressions for the transport coefficients of active gels in terms of
molecular properties, including nonlinear contributions on the departure from equilibrium. In particular,
when activity favors linker unbinding, we predict a decrease of viscosity with activity—active thinning—of
kinetic origin, which could explain some experimental results on the cell cortex. By bridging the molecular
and hydrodynamic scales, our results could help understand the interplay between molecular perturbations
and the mechanics of cells and tissues.
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Active polar gels are viscoelastic media made out of
orientable constituents endowed with an internal source
of energy under nonequilibrium conditions [1,2]. These
materials are common in cell and tissue biology, with a
prominent example being the actomyosin cortex of eukary-
otic cells, which generates forces that enable cell shape
changes and motility. This dynamic structure is a cross-
linked network of actin polar filaments and myosin
molecular motors that generates forces by transducing
the chemical energy of adenosine triphosphate (ATP)
hydrolysis. Other biological active gels include the mitotic
spindle, bacterial suspensions and tissues.
The coarse-grained dynamics of such systems can be

captured by the hydrodynamic equations of active polar
gels [2–4]. Generic derivations of such equations are based
on symmetry arguments [4–6] and/or on the formalism of
linear irreversible thermodynamics [4,7]. These phenom-
enological approaches introduce a number of transport
coefficients whose dependence on molecular quantities
is not predicted. Such relations have been obtained in
derivations of the hydrodynamic equations from micro-
scopic models [4] consisting of active filaments [8] or
swimmers [9], inspired by the cytoskeleton and bacterial
suspensions, respectively. However, these microscopic
descriptions may not be appropriate for other media such
as epithelia, where cells rearrange while keeping conflu-
ence, thereby allowing for tissue remodeling yet preserving
mechanical integrity [10]. Not only in tissues [11], but
also in actomyosin gels [12], in the actin cytoskeleton [13],
and in the metaphase spindle [14], flows are regulated by
the binding dynamics of linker molecules. Although they
crucially affect the properties and dynamics of these media,
a connection between molecular kinetics and the transport
coefficients of continuum theories remains elusive.

Here, we consider a collection of polar elements linked
by elastic molecules, and derive the constitutive equations
of an active polar gel from the nonequilibrium dynamics of
the linkers. Hence, explicit expressions for the transport
coefficients of active gels are given in terms of molecular
parameters, including the deviation from detailed balance.
In particular, our results unveil a dependence of viscosity
on molecular activity, which could explain some exper-
imental observations. This phenomenon, which we term
active thinning, is different from the activity-dependent
apparent viscosity of active fluids, which has a hydro-
dynamic origin [4,6,15,16]. More generally, our approach
provides a connection between macroscopic properties and
underlying molecular processes in cells and tissues.
Bulk constitutive equations.—First, we derive the con-

stitutive equations in the bulk of an active polar gel, e.g.,
in the cell cortex or in tissues [Figs. 1(a) and 1(b)]. To this
end, we consider a d-dimensional polar assembly (the
actin network or the cell colony, respectively, in red) with
an orientation characterized by the coarse-grained nematic
order parameter field qαβ ¼ pαpβ − p2δαβ=d, where pα is
the coarse-grained polarity vector. The polar elements
are cross-linked by a density ρ of elastic molecules
[e.g., myosin motors or cadherins in Figs. 1(a) and 1(b),
respectively, in green], so that the composite is an
elastonematic material. Assuming an isotropic linear
elastic response of the molecules, the free energy
density of small shear deformations [17] reads f ¼
μ=2 uαβuαβ þDuαβqαβ þ χ=2 qαβqαβ to lowest order in
uαβ and qαβ, being uαβ the (symmetric and traceless)
strain tensor, μ the shear elastic modulus, D the elasto-
nematic coefficient, and χ the inverse nematic suscep-
tibility [19]. Thermodynamic stability, namely convexity
of the free energy, imposes μχ > D2.
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Assuming spatial uniformity, we define nðu;q; tÞdudq
as the fraction of bound molecules with strain ½u;uþ du�
and nematic order ½q;qþ dq� at time t. Then, the stochastic
linker dynamics is captured by the following equation for
the distribution of bound linkers [20]

∂n
∂t þ vαβ

∂n
∂uαβ þ

_Qαβ
∂n
∂qαβ ¼ ð1 − ϕbÞka − nkd: ð1Þ

Here, vαβ ¼ h _uαβi and Qαβ ¼ hqαβi are the strain rate
and order parameter tensors, respectively. Brackets denote
ensemble averages, so that vαβ and Qαβ are the hydro-
dynamic variables. We assume rigid polar elements [actin
fibers or cell cortices in Figs. 1(a) and 1(b), respectively]
that do not deform [21], so that all the linkers shear and
reorient at the same rate, consistently with vαβ and _Qαβ

being spatially uniform. In turn, ϕb ≡ R
Rm ndudq is the

total fraction of bound molecules, with m ¼ dðdþ 1Þ − 2
being the total number of independent components of the
strain and order parameter tensors. Finally, ka and kd are the
attachment and detachment rates of the linker molecules,
respectively.

In active systems, detailed balance is locally broken.
This can be generically expressed as [21]

ka
kd

¼ e−βε − Ω; ð2Þ

with β≡ ðkBTÞ−1. Here, ε ¼ ε0 þ f=ρ is the free energy
difference between the bound and unbound states per
molecule, including its chemical part ε0. In turn, Ω
characterizes the departure from detailed balance, hereafter
referred to as “activity.” It is an a priori unknown function
of the parameters, scalar combinations of uαβ and qαβ, and
the chemical potential difference Δμ of ATP hydrolysis,
with Ω ∝ Δμ close to equilibrium.
At this point, for each particular system, it is necessary to

introduce the appropriate force dependence of the molecu-
lar unbinding rate kd. For simplicity, and to obtain explicit
expressions of the transport coefficients, we now choose
a force-independent unbinding rate. This corresponds to
assuming the barrier of the binding energy landscape of
the molecules to be very close to the bound state [22].
Under this assumption, the stationary fraction of bound
linkers ϕb is obtained by introducing Eq. (2) in Eq. (1) and
integrating over u and q, giving

ϕb ¼
α − Ω0

1þ α −Ω0

; ð3Þ

where α≡R
Rm e−βεdudq¼ð2πρkBT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μχ−D2

p
Þm=2e−βε0

and Ω0 ≡ R
Rm Ωdudq, respectively, characterize the equi-

librium and active parts of the molecular kinetics,
with Ω0 < α.
The stress σαβ of the composite network [20] and its

nematic field Hαβ can be defined as

σαβ ¼
Z

Rm
nσelαβdudq; ð4aÞ

Hαβ ¼
Z

Rm
nhαβdudq; ð4bÞ

where σelαβ ¼ ∂f=∂uαβ is the elastic stress sustained by the
linkers and hαβ ¼ ∂f=∂qαβ is the coarse-grained nematic
field [23]. Then, computing the time derivative of Eqs. (4a)
and (4b) and using Eqs. (1)–(3), we obtain the constitutive
equations of the active polar gel (see details in [18]), which
read

�

1þ τ
d
dt

�

σαβ ¼ 2ηvαβ − ν _Qαβ − ζQαβ; ð5aÞ
�

1þ τ
d
dt

�

Hαβ ¼ γ _Qαβ þ νvαβ − ωQαβ; ð5bÞ

where τ ¼ k−1d is the viscoelastic relaxation time. The
viscoelastic behavior stems from the linker kinetics, which
fluidizes the initially elastic network, leading to a viscous

FIG. 1. Applications of our model to biological active gels. The
elastic kinetic elements are depicted in green while the polar
structures are shown in red. (a) Cell cortex: myosin motors are
the active elastic kinetic elements within the actin network.
(b) Tissues: cell-cell adhesion molecules, such as cadherins,
are the elastic kinetic elements connecting cell cortices into a
multicellular active polar gel. (c) Lamellipodium: cell adhesion
molecules, such as integrins, are the elastic kinetic elements at
the interface of the actomyosin gel layer.
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response at times longer than τ [20], with shear viscosity η
and rotational viscosity γ. In addition, Eqs. (5a) and (5b)
feature flow alignment terms coupling flow to orientation
by the coefficient ν. Finally, the equations have terms
corresponding to an active stress and an active alignment,
with coefficients ζ and ω, respectively. These coefficients
are obtained in terms of the mechanical and kinetic
molecular parameters

η ¼ μϕb=ð2kdÞ; γ ¼ χϕb=kd; ν ¼ −Dϕb=kd;

ζ ¼ ðDΩq þ μΩuÞð1 − ϕbÞ;
ω ¼ ðDΩu þ χΩqÞð1 − ϕbÞ; ð6Þ

with ϕbðα;Ω0Þ given by Eq. (3). In turn, Ωu and Ωq are
scalars defined by

Z

Rm
Ωuαβdudq≡ ΩuQαβ; ð7aÞ

Z

Rm
Ωqαβdudq≡ ΩqQαβ; ð7bÞ

where the integrals must be proportional to the only
symmetry-breaking tensor available, Qαβ. Physically,
Ωu and Ωq correspond to an active strain and an active
orientation, induced by the departure from detailed balance,
which are ultimately responsible for the shear active stress
and alignment, respectively.
Eqs. (5a) and (5b) are the constitutive equations of an

active polar gel [24]. Here, the passive transport coeffi-
cients η, ν, γ emerge from the mechanical parameters in the
free energy, μ, D, χ, respectively, via the fluidization
induced by linker kinetics. In turn, the active coefficients
ζ, ω are constructed by coupling scalars derived from Ω to
the mechanical parameters. This clearly denotes that the
generation of shear active forces requires breaking rota-
tional invariance (Qαβ ≠ 0) and detailed balance (nonzero
Ωu and/or Ωq), which is a fundamental feature of active gels
[2]. Finally, as in the fluidization of tissues by cell prolif-
eration [25], the Maxwell operator ð1þ τd=dtÞ affects σαβ
and Hαβ but not the nematic terms in Eqs. (5a) and (5b),
differing from the form often adopted for active gels [7].
Active thinning by molecular kinetics.—Equation (6)

unveils the dependence of the transport coefficients on
activity at the molecular level, characterized by Ω0, Ωu,
and Ωq, which can be experimentally modified by tuning
the ATP concentration. In the Onsager approach to the
equations of active gels, such dependencies are absent at
the linear level and could only arise from nonlinear flux-
force couplings [2]. In our derivation, in contrast, while
the constitutive equations are still linear due to having
restricted the free energy to lowest order, the coefficients
include contributions of all orders in the activity.
Figure 2 shows the dependence of the transport coef-

ficients on the departure from equilibrium, Ω0, for the

simple case Ωu ¼ 0 and Ωq ¼ Ω0 (i.e., neglecting fluctua-
tions of qαβ). In general, the sign of Ω0 is not determined.
For instance, for myosin, ATP binding directly causes its
dissociation from actin filaments [26], suggesting that
Ω0 > 0. For adhesion molecules such as integrins [27]
or cadherins [28], the same behavior may stem from the fact
that activity (ATP consumption) generates cortical con-
tractile forces that pull on them, hence, favoring their
detachment. However, more complex responses such as
catch-bond behavior [29] might yield Ω0 < 0.
For Ω0 > 0, the viscosity decreases with activity, as

shown in Fig. 2, which we call active thinning. This
predicted modification of viscosity with activity has a
kinetic origin. Thus, it must be distinguished from the
activity-dependent effective viscosity of active nematic
fluids, ηeff ¼ η − ζτqν=2, with τq the orientational relaxa-
tion time, which is a hydrodynamic effect due to flow
alignment [4,6,15,16]. Whereas the effective viscosity
depends on (the sign of) other coefficients, such as the
active stress and the flow alignment, our nonequilibrium
kinetic correction to viscosity is intrinsic and does not.
Consequently, activity modifies the viscosity of active

gels through two different mechanisms: one based on
molecular kinetics and one on flow alignment. The latter
was associated to the reduction (increase) of the apparent
viscosity measured in active extensile (contractile) suspen-
sions of microswimmers [4,30]. However, in some bio-
logical active gels, to which our linker-based model applies,
the opposite effect was observed. For instance, myosin
activity was shown to fluidize and soften actin gels [12] or
even cells in suspension (lacking adhesions and stress
fibers) [31] and the cell cortex in mitosis [32], decreasing
both their stiffness and viscosity. Since actomyosin gels
and, hence, the cortex, are contractile (ζ < 0), the flow
alignment effect would render an increased effective
viscosity ηeff, which seems inconsistent with the measure-
ments. Hence, we propose that the measured active

FIG. 2. Transport coefficients of Eqs. (5)–(6) as a function of
the activity Ω0, tuned by the ATP concentration, for Ωu ¼ 0 and
Ωq ¼ Ω0. For Ω0 > 0 (see text), the viscosity η ¼ μϕb=ð2kdÞ
decreases with activity (active thinning) due to the reduced
fraction of bound molecules ϕb ¼ ðα − Ω0Þ=ð1þ α − Ω0Þ.
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softening could be partially due to the predicted kinetic
effect (red line in Fig. 2), which is independent of the
contractile or extensile nature of the system. ATP binding to
myosin would promote its dissociation from actin and,
thus, decrease the viscosity. Combined with increased
active stress (blue line in Fig. 2), this would allow a
network remodeling resulting in the observed fluidization.
Similar considerations might hold for suspensions of

nucleic acids and proteins. Indeed, rheological measure-
ments [33] and the observation of collective flows [34]
suggest that chromatin behaves as a gel with active polar
processes associated to chromatin remodeling enzymes
[35]. In this line, ATP was shown to lower the apparent
viscosity of nucleoli [36], consistently with our prediction.
Similarly, the metaphase spindle behaves as an active polar
fluid [37], with an increased viscosity when the ATP
hydrolysis rate is reduced [14], also in line with our result.
Interfacial constitutive equations.—Finally, we derive

the constitutive equations at the boundary of an active polar
gel, such as to account for traction forces exerted by
lamellipodia on substrates via focal adhesions [Fig. 1(c)].
With this purpose, we consider a polar surface (lamellipo-
dium, red) coated with a density ρ of elastic molecules (e.g.,
integrins, green) that transiently bind to an apolar surface
(substrate, black). Now, taking the ẑ axis perpendicular
to the surface, the strain is effectively a vector uα ≡ uαz
that can directly couple to the polarity pα. Hence, the free
energy density reads f ¼ μ=2 uαuα þDuαpα þ χ=2pαpα,
where μ is the shear elastic modulus, D is the elastopolar
coefficient, and χ is the inverse orientational susceptibility.
Parallel to the bulk case, the force Fα exerted by the

bound molecules on the substrate [38] and the average
molecular field Hα are defined as

Fα ¼
Z

Rk
nFel

αdudp; ð8aÞ

Hα ¼
Z

Rk
nhαdudp; ð8bÞ

with k ¼ 2ðd − 1Þ, Fel
α ¼ ρ−1∂f=∂uα being the elastic

force sustained by the linkers, and hα ¼ ρ−1∂f=∂pα the
molecular field. Then, we find the constitutive equations at
the interface of an active polar gel (see details in [18]),
which read

�

1þ τ
d
dt

�

Fα ¼ ξivα − νi _Pα − ζiPα; ð9aÞ
�

1þ τ
d
dt

�

Hα ¼ γi _Pα þ νivα − ωiPα; ð9bÞ

where Pα ¼ hpαi, and vα ¼ h _uαiL is the gel-substrate
relative velocity, with L the gel-substrate distance
[Fig. 1(c)]. As for the bulk case, molecular kinetics entails
the fluidization of the ensemble of elastic linkers, thereby

leading to friction with coefficient ξi ¼ μϕb=ð2kdρLÞ and
to an interfacial rotational viscosity γi ¼ χϕb=ðkdρÞ. In
turn, νi ¼ −Dϕb=ðkdρÞ is the interfacial flow alignment
coefficient, and ζi ¼ ðDΩp þ μΩuÞð1 − ϕbÞ=ρ, ωi ¼
ðDΩu þ χΩpÞð1 − ϕbÞ=ρ are the interfacial active force
and active alignment coefficients, respectively, withR
Rk Ωuαdudp≡ΩuPα and

R
Rk Ωpαdudp≡ΩpPα.

Equations (9a) and (9b) correspond to the constitutive
equations at the interface of an active polar fluid
[Eqs. (20)–(22) in [39], omitting chemical potential gra-
dients], thus, giving their coefficients in terms of molecular
parameters. A key point is that the interfacial active force
ζiPα is polar, whereas the bulk active stress ζQαβ features
apolar symmetry.
Discussion.—We have derived the constitutive equations

for the active polar gel that emerges from the nonequilibrium
dynamics of a single species of elastic molecules that link
polar elements. Thisminimal bottom-up approach is inspired
by biological materials such as lamellipodia, the cell cortex,
or tissues (Fig. 1). Assuming a constant unbinding rate of the
linker molecules yields simple explicit expressions of the
transport coefficients in terms of molecular parameters. In
particular, the coefficients include nonlinear dependencies
on activity, by means of three unknowns (Ω0, Ωu, Ωq) that
characterize the departure from detailed balance. For general
linker kinetics kd, the approach is still valid, but explicit
expressions may not be obtained. Although spatial uniform-
ity is assumed, the ensuing constitutive equations and
transport coefficients can be used in the hydrodynamic limit,
i.e., including small gradients.
Whereas the mechanical response of active solids had

been derived from microscopic models [40], the viscoelas-
tic relaxation of active fluids remained only included at
the hydrodynamic level [41], thus, unrelated to underlying
molecular processes. In our derivation, the binding kinetics
of linker molecules fluidizes the material, giving rise to a
viscoelastic fluid response typically postulated in active gel
theory. In general, other fluidization mechanisms may be at
play, such as actin depolymerization in the cortex [31],
cell division and apoptosis [25], or topological transitions
and cell shape changes [42] in tissues. We expect the
fluidization mechanism associated to molecular kinetics to
be generic in cells and tissues, and to combine with others
in the corresponding time scales.
Building on previous works on transiently cross-linked

networks [20,43], our model accounts for orientational
degrees of freedom of the gel, and explicitly includes a
nonequilibrium contribution to the binding kinetics of the
linkers. Active stresses and torques naturally emerge from
this contribution, which also modifies the passive transport
coefficients of the system. Finally, bulk and interfacial
active forces are shown to exhibit different symmetries,
yet depend on common parameters. Thus, in tissues, our
unified treatment of intercellular (bulk) and traction (inter-
facial) forces may help understand their interdependence
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[44]. Hence, our results could shed light on active-gel
models of epithelial dynamics.
More generally, our work contributes to bridging the gap

between the hydrodynamics of active gels and the underlying
molecular dynamics. Often, whereas macroscopic quantities
such as stress and shear are measured, molecular concen-
trations and kinetic parameters are under experimental
control [45]. Therefore, our results may help interpret the
effects of molecular perturbations on the mechanical proper-
ties of biological active gels, from subcellular structures such
as the actomyosin cortex or the mitotic spindle to multicel-
lular tissues. In this line, we have unveiled a dependence
of viscosity on ATP consumption that could explain some
experimental findings.
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