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Abstract

Chronic diseases (CD) are generating a dramatic societal burden worldwide that is expected to persist over the next
decades. The challenges posed by the epidemics of CD have triggered a novel health paradigm with major
consequences on the traditional concept of disease and with a profound impact on key aspects of healthcare systems.
We hypothesized that the development of a systems approach to understand CD together with the generation of
an ecosystem to transfer the acquired knowledge into the novel healthcare scenario may contribute to a cost-
effective enhancement of health outcomes. To this end, we designed the Synergy-COPD project wherein the
heterogeneity of chronic obstructive pulmonary disease (COPD) was addressed as a use case representative of CD.
The current manuscript describes main features of the project design and the strategies put in place for its
development, as well the expected outcomes during the project life-span. Moreover, the manuscript serves as
introductory and unifying chapter of the different papers associated to the Supplement describing the
characteristics, tools and the objectives of Synergy-COPD

Introduction
The challenge of chronic diseases
Population ageing and changes in life-style are the two
major factors explaining the dramatic increase in the pre-
valence of chronic diseases (CD) over the second half of
the 20th Century [1,2], as well as the prospects for the
next decades [3]. It is widely accepted that CD represent
77% of the total disease burden on healthcare with rele-
vant deleterious consequences on both disability and
mortality [1-3]. The high societal impact of the epidemics
of CD triggered the 2011 General Assembly of the United
Nations convened to generate policies aiming at facing
the challenges imposed by the phenomenon [4].
Chronic diseases are defined by the World Health Orga-

nization (WHO) [5] as disorders of “long duration and
generally slow progression“. The five major CD prioritized
within the WHO program [5]: are cardiovascular disorders
(CVD), cancer, chronic respiratory diseases, diabetes melli-
tus (DM) and mental disorders.

Over the last decade, increasing awareness on the nat-
ure of CD has triggered a new health paradigm that
involves profound emerging changes both in healthcare
practice and in the generation of biomedical knowledge.
Three major distinctive traits, as compared with the tra-
ditional 20th Century approaches, can be depicted:

• Individual variability of disease expression is being
taken into account prompting a subject-centered
approach both for disease characterization and patient
management. It is acknowledged that identical causal
factors may generate marked differences in disease
expression at individual level. Those differences are
only partly explained by the individual genetic back-
ground. It is increasingly accepted that the most
important factors to explain differences among indivi-
duals are variations in pre- and post-translational bio-
logical regulation, as well as variability of the impact of
life-style, environmental and behavioral factors on bio-
logical disease mechanisms.
• Role of co-morbid conditions - The occurrence of
different chronic disorders in a given patient is com-
mon and co-morbidity has a well-recognized influence
on high use of healthcare resources and poor prog-
nosis. In this regard, the Charlson index [6] is clinically

* Correspondence: david.gomezcabrero@ki.se
1Unit of Computational Medicine, Department of Medicine, Center for
Molecular Medicine, Karolinska Institutet, Karolinska University Hospital,
Stockholm, Sweden
Full list of author information is available at the end of the article

Gomez-Cabrero et al. Journal of Translational Medicine 2014, 12(Suppl 2):S2
http://www.translational-medicine.com/content/12/S2/S2

© 2014 Gomez-Cabrero et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:david.gomezcabrero@ki.se
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


used in ICD-9 and ICD-10 administrative data as a
marker of the impact of co-morbidity on prognosis;
but other indexes do exist (e.g. Elixhauser Comorbidity
Index) [7]. Moreover, patterns of highly prevalent CD
(comorbidity clusters) [8], namely: cardiovascular dis-
orders (CVD), chronic obstructive pulmonary disease
(COPD) and type 2 diabetes mellitus (T2DM), hardly
explained only by shared risk factors, are often
observed [9]. Consequently, a better understanding
and management of co-morbidity clusters constitutes
a priority.
• Integrated care with focus on preventive interven-
tions. Conventional reactive care strategies focusing
on management of episodic crisis has shown to be
inefficient in chronic care management [10-12].
Instead, prevention of exacerbations and cost-effective
modulation of disease progress with a patient-oriented
approach are two main drivers of the changes that are
facing healthcare systems.

The Innovative Care for Chronic Conditions (ICCC)
initiative [10-12], launched by the WHO in 2002, repre-
sented a major breakthrough in healthcare. Its merit
was the formulation of the basic principles and strate-
gies to improve management of patients with CD under
the conceptual framework of the Chronic Care Model
(CCM) promoting integrated care for chronic patients.
However, the practicalities of its implementation and
extensive adoption still remain a challenge.
Regarding the emerging changes in biomedical knowl-

edge, on-going developments within the frame of network
medicine [13,14] are setting the basis for a better under-
standing of CD mechanisms and co-morbidity clustering
that will have a twofold impact. On the one hand, they will
contribute to re-assessment of traditional disease taxo-
nomies and to the formulation of a novel vision based on
underlying patho-biological mechanisms of CD that will
likely result in therapeutic innovations. On the other hand,
these changes will foster Predictive Medicine [15,16] for
chronic patients with relevant implications on management.
This scenario will result in enhanced subject-specific

health-risk assessment providing the rationale for patient
dynamic stratification that will support the design of
cost-effective preventive strategies aiming at modulation
of disease progress. The need for efficient and intensive
use of Information and Communication Technologies
(ICT) appears as a common requirement for deployment
of integrated care, as well as to support further develop-
ments in biomedical knowledge of chronic disorders.

Chronic obstructive pulmonary disease as a use case
Chronic obstructive pulmonary disease (COPD) is a pre-
valent chronic disorder included into the CD groups
prioritized by the WHO that affects approximately 9%

of adult population above 45 years [17]. The disease
imposes a high burden on healthcare systems and it is
currently the fourth cause of mortality worldwide [3,17].
COPD is caused by the inhalation of irritants, mainly

tobacco smoking, in susceptible subjects: approximately
15 to 20% of all tobacco smokers. Pulmonary injury
consist of inflammation, remodeling and destruction of
lung parenchyma (emphysema) leading to progressive,
only partially reversible, airflow limitation and, even-
tually, reduced arterial blood oxygenation.
Clinical manifestations of COPD begin in the adult-

hood, above 45 years, showing substantial individual
variability of both clinical manifestations and pulmonary
disease progression [18]. Patients may present acute epi-
sodes of severe exacerbations with a well demonstrated
negative impact on prognosis [18]. COPD patients may
also show systemic effects and co-morbid conditions
both associated with poor prognosis [18,19].
Several reasons seem to support the selection of COPD

as a use case to explore novel strategies to enhance knowl-
edge on CD and to improve chronic patient management
with an integrated care approach. First among these fac-
tors favoring the selection of COPD is its high prevalence
and burden on health systems. A second reason is that the
long-term COPD evolution may facilitate the assessment
of the effects of preventive strategies on disease progres-
sion. Moreover, COPD heterogeneity, both in terms of dis-
ease manifestations and rate of disease progression [18]
may pose specific challenges for subject-specific health
risk assessment and healthcare stratification. As analyzed
below, there is evidence indicating that COPD heterogene-
ity may follow a particular pattern with relevant implica-
tions on healthcare strategies for these patients. A final
pragmatic reason for selecting COPD as a use case in the
Synergy-COPD project is that recent deployment experi-
ences of integrated care services in COPD patients [20,21]
show high potential for generating effectiveness and cost-
containment.

The Synergy-COPD project
The general aim of Synergy-COPD was to explore the
potential of using a computer-based systems medicine
approach to improve knowledge on underlying mechan-
isms of COPD that should lead to better understanding
of disease heterogeneity. The transfer of the biomedical
knowledge generated during the project into healthcare
aiming at enhancing chronic patient management was
an intrinsic component of Synergy-COPD.
The classical approach to disease assumes that one or

more causal factors trigger disease initiation often affect-
ing one target organ or system. The individual variability
of disease manifestations usually depends on: i) the inten-
sity of exposure to the causal factor; and, ii) the interplay
between a myriad of internal biological regulatory events
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and external factors (life style, environmental and beha-
vioral elements) modulating disease manifestations. In
this disease model, the rate of impairment of the target
organ or system drives disease progression such that the
systemic effects of the disease are explained the conse-
quences of dysfunction of the target organ or system on
the loss of whole-body homeostasis.
In COPD, the classical approach is illustrated by the “spill

over” hypothesis [19,22] supporting a rather simplistic dis-
ease model that is far from explaining the complexities of
COPD heterogeneity. According to the “spill over” hypoth-
esis, pulmonary inflammation and remodeling caused by
tobacco smoking generates inflammatory cytokines that
leak into the blood stream being responsible for the low-
grade systemic inflammation observed in some COPD
patients [18,23,24] ultimately leading to systemic effects of
the disease associated to poor patient prognosis [18]. This
disease model only explains co-morbidity clustering
through shared risk factors among concomitant disorders.
The current project was based on an alternative hypoth-

esis relying on the assumption that COPD heterogeneity
may not driven by the events occurring in the central
organ, that is, the lung, as claimed by the classical “spill
over” hypothesis [19,22]. Instead, COPD heterogeneity
should be explained by the interplay of events occurring at
three different levels: i) Pulmonary disease - determined
by the effects of lung injury and local remodeling pro-
cesses; ii) Systemic effects of the disease with different
manifestations, being skeletal muscle dysfunction/wasting
one of the most representative [25,26]; and, iii) Co-mor-
bidity clusters (patterns) that refers to observed common
associations of different chronic disorders.
The project used a systems approach to explore under-

lying mechanisms of COPD heterogeneity focusing on
the systemic effects of the disease and the co-morbidity
clustering. The research on pulmonary events was rather
marginal in Synergy-COPD. The central hypothesis of
the project was that systemic effects of COPD and co-
morbidity clustering may share abnormal regulation of
pivotal pathways leading to a progressive loss of integra-
tive functions of the whole-body system as disease pro-
gresses [27]. In this scenario, it is hypothesized that
nitroso-redox disequilibrium plays a relevant role in
COPD progression [28,29].
As indicated above, the aims of Synergy-COPD were not

only to generate biomedical knowledge, but also, to exam-
ine applicable strategies for a quick transfer of biomedical
research novelties into the clinical practice. To this end, dif-
ferent modeling approaches were used as supporting tools
aiming at covering three different aspects: i) to conceptua-
lize and better understand underlying biological mechan-
isms of the phenomena targeted for study; ii) to identify
(and possibly combined) biomarkers with potential

predictive power; and, iii) to elaborate subject-specific pre-
dictive modeling for patient stratification in the clinical
arena.

Objectives and structure of the current manuscript
This first chapter of the Supplement describes the aims,
the overall design (Figure 1) and the different dimensions
tackled in Synergy-COPD emphasizing its multidisciplin-
ary nature. The entire Supplement has been conceived to
reflect in detail the process of generation of the project
and the complexities of its development. We hope that
the different chapters will serve as a guide for other
researchers aiming at generating novel biomedical knowl-
edge using the potential of a systems approach, but also
willing to transfer knowledge into innovative practices
generating an iterative process between systems-oriented
biomedical research and healthcare ultimately leading to
enhanced cost-effective health outcomes. It is our pur-
pose to drive the interested reader through the different
papers associated to the Supplement aiming at providing
insight into the different (but highly linked) aspects of
the project and its outcomes. For these purposes, the
Supplement is structured in four well-defined sections:

• Section 1 - Presentation and overview of the pro-
ject (Chapters 1 and 2 ([30] and this article)
• Section 2 - Addressing heterogeneity of chronic
diseases (Chapters 3 to 5 [31-33])
• Section 3 - Tools and resources (Chapters 6 to 8
[34-36])
• Section 4 - Translation into the Clinical Field
(Chapters 9 to 11 [37-39])

The first two sections together with the last chapter (Chap-
ter 12 - Challenges and opportunities [40]) provide general
information on the outcomes of the project and identified
gaps and perspectives for further developments beyond the
project life-span. Section 3 covers the description of the tools
through which the models have been made accessible, the
resources required for their development, and the overall
digital health framework where those tools and resources fit.
Finally, Section 4 gives the details on the deployment of the
research and tools made available to both the scientific and
medical community and addresses three basic elements
needed to ensure a successful deployment and adoption of
4P Medicine [41-43], that is Predictive, Preventive, Persona-
lized and Participatory. Models for Systems Medicine
require handling with specific data repositories covering a
wide range of data types. For this, data exchange and data
integration becomes crucial for a proper analysis, and the
development of accurate models. In this fourth Section,
Chapter 9 [36] depicts practical developments of Clinical
Decision Support Systems (CDSS) embedded into clinical
processes with the twofold purpose of bringing novel
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knowledge into clinical practice and supporting health
professionals in the clinical decision making process.
Chapter 10 includes the case study of a system to support
distributed data management and data exchange for a
Digital Health Framework [37] wherein a systems
approach for interoperability among informal care, formal
healthcare and biomedical research is provided. Finally,
Chapter 11 describes a specific example of preparation of
the workforce as a key element for building-up 4P Medi-
cine [38]. The Chapter also indicates the current trends
and strategies for workforce preparation at EU level.

Project design and main components
Figure 1 depicts the overall project design covering the
three main dimensions of Synergy-COPD, that is: i) Gen-
eration and validation of novel biomedical knowledge to
better understand disease heterogeneity using a systems
approach; ii) Development of novel technological support-
ing tools needed for the purposes of the project; and, iii)
Design and validation of strategies to transfer biomedical
knowledge into integrated care for chronic patients.

Generation of novel biomedical knowledge on COPD
heterogeneity
The basic descriptive features of the input datasets used
to explore the different biomedical dimensions of the
project, as well as those used for validation purposes, are
displayed in Table 1. Both analyses and main outcomes
of the biomedical aspects of the project are reported in
detail in Chapter 3 on COPD heterogeneity [31]. Briefly,
the project performed studies in three main areas:
Skeletal muscle dysfunction - A network medicine

approach was used to assess underlying mechanisms of
skeletal muscle dysfunction and muscle wasting [44] by

exploring the interactions among pathways modulating
protein balance and tissue remodeling; cellular oxygena-
tion & bioenergetics; insulin-resistance; with particular
emphasis on the role of nitroso-redox disequilibrium.
Moreover, the determinants of abnormal training-
induced adaptations reported in COPD patients, as well
as their potential impact on training protocols and
recommendations of physical activity were addressed.
Co-morbidity analyses - An initial data driven approach

aiming at assessing the relative risk for co-morbidity clus-
tering in COPD patients was done. The research also iden-
tified genes and pathways associated with clusters of co-
morbidities. The outcomes were compared with the analy-
sis of targeted co-morbidities often seen in COPD patients:
cardiovascular disorders (CVD) and Type 2 Diabetes Melli-
tus-Metabolic syndrome (T2DM-MS) that were identified
through different reports [45-48]. The relevant pathways
identified in the analysis of the systemic effects of COPD
were compared with those seen in the co-morbidity cluster-
ing to explore commonalities.
Pulmonary events - The project addressed the analysis

of the dissociation between low central airways resistance
and high emphysema score seen in approximately one
third of the patients from the PAC_COPD study [23]. To
this end, we used the lung modeling techniques described
in detail in Chapter 5 generated in collaboration with the
AirPROM project [49].

Development of novel technological supporting tools
needed for the purposes of the project
Several ICT-supporting tools were developed to cover the
requirements throughout the project life-span. A detailed
description of these technological components is carried
out through Chapters 4 to 10. Each of the items described

Figure 1 The Synergy-COPD translational research design.
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in this subheading, and subheading 2.3, plays a relevant
role and their articulation was pivotal for the project devel-
opment and the generation of the expected outcomes.
Synergy-COPD Knowledge-Base A first version of the

COPD Knowledge Base (COPD-KB) was developed as
part of the Biobridge project to answer specific queries on
COPD mechanisms [50]. The COPD-KB consists of an
object-oriented semantic data integration approach to
allow researchers - by a user-friendly query wizard - to
create complex semantic networks of relationships. Briefly
the COPD-KB stores elements (e.g. genes, disease, proteins
among many others) and it connects a pair of elements if
they are found associated by direct evidence (e.g. protein-
protein interactions) or indirect evidence (e.g. two genes
that have been associated to the same pathway) that can
be generated by semantic mapping. The initial COPD-KB
was used as a backbone to create a new version which: (1)
updates the existing data-bases and ontologies; (2) it incor-
porates novel ones (e.g. disease ontologies such as ICD9);
and, (3) it includes the different network models obtained
during the lifetime of Synergy-COPD from data of COPD
projects. All-in-all the COPD-KB, described in detail in
Chapter 6 [34] represents the status of the art in COPD
knowledge management and has been widely used as a
required resource in the development of novels tools for
System Medicine [32], and to provide support to the
Simulation Environment (by storing all information on
models in a easily accessible manner) [35].
Computer modeling approaches. We define a model

as the description of a system by describing its elements
and their interactions. These descriptions can be qualita-
tive and/or quantitative. A classical example of a qualita-
tive model is a protein-to-protein interaction network
which are, frequently used in network medicine; the links
of those networks are gathered through experimental
observations or predicted by computational methods [51].
A typical example for a quantitative model is the descrip-
tion of a chemical reaction system via ordinary differential
equations. The two types of models offer different —and
often complementary— insights into a system, each
requiring its own set of mathematical tools [13,52-55]; see
Chapter 4 [32] for more detailed examples.

The Synergy-COPD project integrated existing physio-
logical quantitative modeling of O2 transport and utiliza-
tion [56-58] with biochemical modeling of mitochondrial
reactive oxygen species (ROS) generation [59] providing a
quantitative estimation of the relationships between cellu-
lar oxygenation and ROS levels, as explained in detail in
Chapters 3 [31] and 4 [32]. The project also aimed at
exploring the functional impact of spatial pulmonary het-
erogeneity, as reported in Chapter 5 [33].
Synergy-COPD also produced different modalities of

network modeling aiming at exploring targeted biomedical
questions. Moreover, the project generated interoperability
tools between deterministic modeling and different modal-
ities of network analysis, as extensively described in Chap-
ter 4 [32]. Synergy-COPD has evidenced the potential of
the current modeling tools, but also their limitations and
the directions for further developments [39].
Specific project outcomes were generated using model-

ing to better understand biological mechanisms of the dis-
ease. However, due to different factors, the validation of
combined biomarkers and the generation of subject-speci-
fic predictive modeling could not be addressed during the
project lifetime, as initially planned. Despite of these lim-
itations, one of the main outcomes of the project was the
design and validation of pragmatic strategies for transfer-
ring novel biomedical knowledge into the clinical arena.
To this end, the results of the biomedical research carried
out in the project, together with existing knowledge, were
used to generate rules feeding clinical decision support
systems (CDSS) for early disease detection, for patient
health risk assessment and stratification, and for commu-
nity-based enhanced patient management, as reported in
Chapter 9 [36]. The CDSS produced in the project were
embedded into clinical processes supported by an Inte-
grated Care Shared Knowledge Platform [20,60] and speci-
fic validation strategies were defined and executed.
COPD Simulation Environment. The use of modeling

in basic research has been growing in the last decades.
Tools, such as COPASI [61] or Chaste [62], and standards,
such as SBML [63] or CellML [64], have allowed model
sharing and simulation reproducibility fostered by model
repositories such as Biomodels [65] or CellML model

Table 1 Data sources used to explore the different biomedical dimensions of the project and for validation purposes.

Data-sets Data-types Reference Brief Description.

BioBridge Metabolomics, Proteomics, Transcriptomics,
Physiological and Clinical Measurements

[27], [83], [84], COPD patients with low and normal fat free mass index and
healthy subjects studied before and after training.

PAC-COPD Clinical Measurements and Co-morbidity data. [75] COPD patients studied after the first hospitalization because
of an episode of exacerbation.

Medicare ICD9 codes from hospital registries. [85], [85] Health Insurance Program

Animal
experiments

Muscle Transcriptomics and muscle & blood
Cytokines. Role of eiF6 in energy metabolism

Synergy-COPD-FP7-
ICT-270086:2010-13.

Guinea Pig and mice models, C2C12 cell culture. Normoxic
and hypoxic conditions

Public
datasets

SNOMED-CT, MeSH, angiogenesis-related
expression data, etc.

See Table 1 in
COPDKB [35]

Public resources integrated into the Synergy-COPD
Knowledge Base.
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repositories [66]. Despite the increasing number of tools,
the resources are not yet being used in clinical research
due majorly to complexity of their management. There-
fore, the Synergy-COPD project prioritized to develop
environments where clinicians may make use of models
and may start running simulations on their own. To this
end a Simulation Environment (SE) was developed to host
a set of preselected mechanistic and probabilistic (Bayesian
networks) models ([35,32]) that are associated to COPD-
related physiological processes; models were coded in dif-
ferent programming languages (e.g. C++ and Fortran). The
SE is composed of a web interface (graphical visualization
environment) and a simulation workflow management,
allowing the user to run and store simulations. Further-
more the SE allows running simulation of several models
consecutively by feeding the output of model A as input of
model B. The SE connects to the Synergy-COPD KB [34]
in order to gather information of the quantitative models
such as parameter values, ranges and names.

Design and validation of strategies to transfer biomedical
knowledge into integrated care for chronic patients
Computer modeling approaches as described above refer
to their use to explore biological disease mechanisms aim-
ing at understanding CD, as well as to identify combined
biomarkers with potential for characterizing subject varia-
bility and/or with predictive value. It is of note, however,
that subject-specific computer-based modeling including
different categories of covariates (biological, physiological,
clinical, behavioral, etc.) can be also useful as predictive
tools for clinical purposes. De facto, rules derived from
such modeling approaches should be expected to feed
CDSS embedded into clinical processes.
The reality, however, is that current modeling tools

for health risk assessment [31] rely on population-based
analyses of past use of healthcare resources. These pre-
dictive tools are useful to support interventions and/or
to define health policies at group level, but they show
limitations for clinical applicability at patient level.
One of the Synergy-COPD goals was to facilitate ela-

boration of refined subject-specific health risk assessment
with a holistic patient-oriented approach. Such modeling
approach constitutes the basis for 4P medicine facilitating
the design of early interventions with a preventive orien-
tation. Moreover, the prediction of health risk should
contribute to patient-based stratification in the health-
care arena, as indicated in Figure 2 wherein the logical
sequence for chronic care management is displayed
[20,21].
The project hypothesizes that a systems analysis of

COPD heterogeneity may facilitate the identification of
combined biomarkers with predictive power of disease
progress. The elaboration of subject-specific predictive
modeling as initially addressed in the project only relied

on the analysis of biological phenomena, but further
enrichment with other types of input data, namely:
patient adherence profile, life-style, clinical and social
factors involving frailty risk, etc...) must be considered,
as shown in Figure 3. Efforts on personalized modeling,
such as the integrated use of bayesian and mechanistic
models, are described in Chapter 4 [32].
The project adopted a pragmatic approach to the chal-

lenge by identifying the following major steps in the
process of knowledge transfer into the clinical scenario:
i) validation of the biomedical findings using indepen-
dent datasets from human and animal studies, as
described in detail in Chapter 3 [31]; ii) formulation of
CDSS based on knowledge generated within the project
and enriched with existing knowledge, see Chapter 9
[36] for further details, iii) qualitative evaluation of the
CDSS using a focus group strategy that includes differ-
ent profiles of healthcare professionals, and, iv) Integra-
tion of the CDSS into an Integrated Care Shared
Knowledge Platform [20,21,60] supporting the clinical
processes. The clinical impact of the CDSS shall be
assessed beyond the project lifetime.
In Synergy-COPD, we aligned the development of a

CDSS with the following goals: (1) early detection and
diagnosis of COPD coordinating informal care (phar-
macy offices) and primary care, (2) spirometry quality
control support, (3) patient health risk assessment and
stratification and (4) therapy recommendation, as
described in detail in Chapter 9 [36].

Systems medicine and expected contributions of
Synergy-COPD
It is extensively accepted that the complexity of life can-
not be untangled by investigating it from a reductionist
point of view. Indeed, biological systems tend to show
emergent behaviors, i.e. the whole system is more com-
plex than the sum of its individual parts. Systems biology
(SB) explores these emergent phenomena by studying
not only the elements of a system, but more importantly
their interactions. The origins of SB in 2001 [67] and its
posterior developments in different areas, namely: bio-
chemistry (e.g. quantitative modeling of enzyme kinetics)
[68], mathematics (e.g. control theory) [69], and neu-
roscience (e.g. Huxley-model) [70] have generated the
basis of the discipline during the last decade. From this
diverse background a very rich and heterogeneous field
has evolved for which a single, universal definition is
difficult. Perhaps it is this very ability to defy traditional
boundaries that enabled SB to successfully apply trans-
versal methods from physics to biology [53,54]. The use
of a systems approach in medical research constitutes
Systems Medicine (SM) [71] and its application into the
healthcare conforms Predictive Medicine [41,72], one of
the components of 4P Medicine.
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As indicated above, COPD is certainly a target for a
systems approach. The classical definition of COPD -
poorly reversible airflow obstruction [17] - is being
questioned from a systems perspective [73]. It is not
operational to properly address COPD heterogeneity
[24,45,74] and the boundaries with other obstructive air-
way diseases [75] are poorly defined prompting the need
for new disease taxonomies based on underlying
mechanisms with impact on clinical management [31].
Recent state-of-the-art SB/SM research on COPD has
provided exciting results indicating a high potential for
the approach. For example, a systems re-analysis of lung
gene expression data comparing COPD and healthy
individuals [76] identified several affected pathways
pointing toward potential novel drug targets [77,78]. A
second example is given by a new approach combining
gene expression and clinical data to identify subgroups
of COPD patients [79]. In a third example relations
between COPD phenotypes are described by networks;
the approach allowed the identification of novel pheno-
type-phenotype associations [80]. Last, but not least, the

Biobridge project provided pivotal results to substantiate
the central hypothesis of the current project.
In Synergy-COPD, we aim to develop models that may

have an impact on both biomedical research and clinical
management of chronic patients. The later is expected
to be achieved by generating model-derived rules feed-
ing the CDSS embedded into the clinical processes. To
this end we considered to approach systems medicine in
COPD as a two-stage process. Stage 1 aims at identify-
ing of mechanisms and relevant markers of systemic
effects of COPD and COPD co-morbidity clustering
combining the use of deterministic modeling and net-
work medicine approaches. Within this first stage, the
CDSS were developed combining existing knowledge
with knowledge acquired during the project, but ICT
tools supporting the linkage between subject-specific
predictive modeling and CDSS generation could not be
developed. In Stage 2, to be developed beyond the pro-
ject life span, refined subject-specific predictive model-
ing combining different categories of covariates, as
described above, should be developed and properly

Figure 2 Workflow for an Integrated Care Service (ICS) management and execution. The patient is allocated into an ICS defined as a set of
well standardized tasks to be carried out on the basis of his/her health condition and social circumstances to achieve target objectives aligned
with the comprehensive treatment plan. Two differential ICS characteristics, as compared to usual care, are the patient-centered approach and
the longitudinal nature of the interventions which length depends on the type of ICS. The corresponding ICS template is used as a library of
resources for the correct customization and execution of the ICS workflow. Integration with corporate Electronic Health Record (EHR) allows
instant access to required patient information for case identification and evaluation, avoid data duplicity and preserve the current corporate
clinical data chain of custody. Follow-up and discharge reports can also be sent to the corporate EHR to keep trace of the ICS execution as part
of the patient clinical episodes.
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validated. Interestingly, this approach can be considered
a case study of networks for advanced Decision support
[81].

Summary
The current manuscript acknowledges the dramatic
societal impact and the challenges posed by the epi-
demics of CD. The selection of COPD as a use case
representing the complexities of different chronic disor-
ders is justified. Moreover, the basics of the Synergy-
COPD project design are presented. We highlight the
potential of a systems approach to address the COPD
challenges and we define strategies for transferring bio-
medical knowledge into the healthcare scenario propos-
ing an ecosystem able to support productive iterations
between biomedical research and healthcare. One of the
purposes of the chapter is to introduce the reader into
the description of goals, resources and methodologies
generated by Synergy-COPD, and to provide a guide for
the reading of all them as reported in the different
manuscripts associated to the Supplement.
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