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Abstract

The cross-match (XM) is a sophisticated process that provides a link between every

Gaia observation and the corresponding source in the catalogue. In this work, we describe

a generalized method based on clustering analysis for a clustering stage of the Gaia XM,

including additional parameters such as magnitude and proper motion. The performance

of the implemented algorithm is assessed through real-case examples using Gaia data,

and the successful results that were obtained demonstrates that the system behaves as

expected.

Resum

El cross-match (XM) és un procés sofisticat que assigna cada observació de Gaia amb la

font de llum del catàleg corresponent. En aquest treball, descrivim un mètode generalitzat

basat en l’anàlisi de clústers pel XM, incloent paràmetres adicionals com la magnitud i

el moviment propi. El rendiment de l’algoritme implementat s’ha avaluat en casos reals

usant dades de Gaia, i els resultats satisfactoris obtinguts demostren que el sistema es

comporta com s’esperava.
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fins aqúı. En especial, als meus pares que m’han donat les facilitats per dur a terme aquest

treball.

iii



Contents

Introduction 1

1 The Gaia Mission 3

1.1 Ground-segment processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Cross-matching Gaia objects . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Generalized cross-matching based on clustering analysis 10

2.1 Source model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Zeroth-order model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Proper motion model . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Magnitude criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.4 Generalized source model . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Nearest Neighbor criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Nearest neighbor chain . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Modified nearest neighbor chain for IDU XM resolver . . . . . . . . 31

2.3 Post-processing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Explorative tests of the clustering-based cross-matching using Gaia data 36

3.1 Selected source cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 HIP 87937 (Barnard’s Star) . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 HIP 24186 (Kapteyn’s Star) . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 HIP 70890 (α Cen C) . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 HIP 36208 (Luyten’s Star) . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.5 HIP 74234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.6 HIP 3829 (Van Maanen 2) . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Tests in other selected areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Conclusions 46

Bibliography 48

iv



Introduction

Motivation

Gaia is a mission by the European Space Agency (ESA) designed to make the largest,

most precise three-dimensional map of our Galaxy by surveying a billion stars with an

unprecedented precision in position and motion. A large european team of scientists

and engineers known as DPAC (Data Processing and Analysis Consortium) is responsible

for the processing of Gaia’s data with the final aim of producing the Gaia Catalogue. A

fundamental system of the Gaia data reduction process is the Intermediate Data Updating

(IDU), a massive data processing system running at the Barcelona Supercomputing Center

(BSC) which calibrates the instrument response and refines image parameters and cross-

matching (XM) for all Gaia detections.

The IDU-XM process must provide a link between every observation and the corre-

sponding source in the catalogue, resolving the conflicting situations. The current IDU-XM

algorithm has an observation clustering stage which precedes the resolution against the

catalogue. The current version of the algorithm only uses the position to cluster the obser-

vations. The main objective of this project is to study, describe and perform a comparative

analysis of the clustering results when including additional dimensions in the algorithm

such as the magnitude or proper motion.

Structure

This work is organized in three different parts.

First, we present an overview of the Gaia Mission and the data processing. Specifically,

all the stages of the IDU-XM task are described and the purposed parameters to include

are defined, as well.

Second, we develop the clustering stage of the XM task based on clustering analysis.

In this chapter, we analyze the source model and get an algorithm which is consistent with

this model.

Finally, we show the results obtained with our algorithm on realistic Gaia data.
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2 Introduction

Acronyms

The following table is a list of acronyms used in this document.

Acronym Description

ESA European Space Agency

HPM High Proper Motion

IDU Intermediate Data Update

MC Match Candidate

MCG Match Candidate Group

NN Nearest Neighbor

NNC Nearest Neighbor Chain

RNN Reciprocal Nearest Neighbor

SSR Sum of Squared Residuals

XM Cross-Match



Chapter 1

The Gaia Mission

Gaia is a global astrometry mission of the European Space Agency (ESA) adopted by

ESA’s Science Programme Committee in October 2000 and was launched on 19 December

2013. This ambitious mission will accurately measure the positions and motions of a huge

number of stars and galactic objects down to magnitude 20 with a precision of the angular

measurements about 20 µas at magnitude 15. Therefore, Gaia will obtain a precise three-

dimensional map of more than 1 billion stars of our Galaxy (approximately 1% of the

stars populating the Milky Way) which will be a crucial tool to reveal the composition,

formation and evolution of the Galaxy.

Figure 1.1: Overview of Gaia’s launch and its operational orbit. Credit: ESA.
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4 The Gaia Mission

Gaia orbits around the L2 Lagrangian Point and scans the full sky because it is spinning

on its own axis, which itself precesses at a fixed angle of 45 degrees with respect to the

Sun-Satellite line as shown in Fig. 1.1. Thus, Gaia will observe each of the point-like

sources from our Galaxy and beyond about 75 times over a five-year period recording the

brightness, colour and position of each observation.

To fulfill its objectives, the Gaia spacecraft is composed of two main parts: the payload

module and the service module.

• The service module contains electronic units to run the instruments, as well as

the propulsion system, communication units and other essential components like

monitoring systems.

• The payload module contains two telescopes which are combined onto a single focal

plane with a total of almost 1 Gigapixels and physical dimensions of 0.5m× 1m.

The focal plane (see Fig. 1.2) is composed of 106 state-of-the-art Charge Coupled Devices

(CCDs) which are served for the wave-front sensor (used to measure the optical quality

of each telescope), the basic-angle monitor (used to measure fluctuations in the angle

between the two telescopes), the Sky Mapper (which detects the incoming objects) and

used for the three science instruments: the astrometric field (devoted to measuring stellar

positions), the photometric (which obtains the colour information) and the radial velocity

spectrometer (which measures the Doppler shift of absorption lines).

Figure 1.2: Schematic of the Gaia focal plane. Credit: ESA.

The data generated in the focal plane is transmited by low gain antena to one of

Gaia’s ground stations located in Cebreros (Spain), New Norcia (Australia) and Malargüe

(Argentina) in order to process these data.
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The Gaia mission will produce more than 100 Tb of raw data and it is estimated that it

will consume a processing power of over 1021 flops (Floating-point Operations), therefore

the efficient processing of the data generated by Gaia is a true challenge.

1.1 Ground-segment processing

The task of the data reduction is entrusted to a multidisciplinary team of more than

400 scientists and software engineers organised themselves in the Gaia Data Processing

and Analysis Consortium (DPAC). This large pan-European team develops the data pro-

cessing algorithms with the final objective of producing the Gaia Catalogue around 2021.

The consortium is structured around nine specialist units known as Coordination Units

(CUs) with each unit being responsible of a particular sub-system of the overall Gaia data

processing system. In addition, each CU is supported by Data Processing Centers (DPCs)

where the actual computer hardware for processing is available.

Figure 1.3: Overview of the structure of DPAC showing the data reduction process and

its organization in CUs and DPCs (locations of the latter in red). Credit: ESA.

In particular, CU3 (core processing) covers the data processing chain all the way from

the raw telemetry to the astrometric core solution. More specifically, CU3-UB group

manages and develops the following software:

• The Initial Data Treatment (IDT), which processes all the raw telemetry coming from
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Gaia in a real-time manner, transforming it to a ligher-level set of data including a

satellite attitude, image parameters and a preliminary Cross-Match (XM).

• The Intermediate Data Updating (IDU) aims to refine intermediate astrometric data

and the XM in a cyclic maner using the latest and most accurate calibrations and

source catalogues. Moreover, some of the major Gaia calibrations tasks are included

in IDU. Finally, it is involved in the main iterative process within the Gaia data

reduction which also involves other cyclic systems like AGIS and PhotPipe.

Specifically, IDU is deployed in the Data Processing Center of Barcelona (DPCB) which

uses Barcelona Supercomputing Center (BSC) resources and concretely the MareNostrum

supercomputer, one of the most powerful supercomputers in Europe.

1.2 Cross-matching Gaia objects

Apart from the position coordinates, the gaia objects have other interesting quantities

which may be used in the XM, such as the magnitude or the movement of the source.

Magnitude is a measure of brightness of a source or an observation and it is available

from the Gaia data. The magnitude system uses a logarithmic scale where brighter objects

have smaller magnitude than fainter ones.

Figure 1.4: Illustration of the motion of a star. Credit:

ESA.

In addition, since the stars

are moving (see Fig. 1.4), the

sources have to include quanti-

ties related with this motion.

More specifically, there is

the proper motion which is an

angular velocity of a star across

the sky and it is generally mea-

sured in seconds of arc per year.

Note that the proper motion

is not entirely intrinsic to the

star because it includes the mo-

tion of the Sun. Despite of that,

the name comes from that it is

not the observed motion due to

Earth’s movement.

Proper motion provides two

of the three components of a star’s velocity. The other one is the radial velocity which

is the component in the direction of the radius between the star and the Sun, and it is

measured with the radial velocity spectrometer.
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Figure 1.5: Illustration of the parallax between two ob-

servations which are separated by six months. Credit:

ESA.

In addition, the star’s mo-

tion includes the parallax which

is the displacement in the appar-

ent position of a star created by

the relative motion between the

Earth and the star.

Its measurement permits to

determine the distance to the

stars aplying trigonometry with

the distance Sun-Earth as shown

in Fig. 1.5.

Focusing on the IDU-XM task, the purpose of the XM is to provide the links of the

individual observations with the corresponding source from the catalogue.

As mentioned above, during IDT a preliminary XM is carried out but the scientific

quality of this XM may be deficient. Thus, the iterative task in IDU is necessary to get a

consistent XM.

The inputs to the XM task are the following:

• Gaia Observations.

• Source catalogue.

• Calibrations and ephemeris.

• Spacecraft attitude.

And the outputs of the XM task are:

• Match Table: table with exactly one source for each detection.

• Ambiguous Match: table with all the possible source candidates for each detection.

• New Source Table: this table contains the new sources that have been created during

the XM.



8 The Gaia Mission

• Track Table: table describing the action updates applied to the sources including

source deletion and new source creation from scratch or as a result of a splitting or

merging process, represented in Fig 1.6.

Figure 1.6: Representation of a splitting process (existing source split into split sources)

at the top and a merging process (merged sources into a new one) at the bottom.

At the end of the mission, the number of detections will reach ∼ 1011. According to

this huge number of detections, handling all this data in a single process is not a feasible

approach. Therefore, the adopted solution in IDU-XM consists in the splitting of the task

in three different stages (see Fig. 1.7):

• Obs-Src Match: this is a time ordered match stage where we identify all the

possible matching sources for each individual detection. In this stage, we use the

latest calibrations to compute the observation coordinates and then the sources

are propagated to the observation epoch. Thus, all candidates sources are selected

according to a pure distance criteria. Finally, the output of this task is a set of

objects, which contains the basic detection parameters and all the candidates sources,

the so-called Match Candidates (MCs). In other words, a MC is an observation with

all the possible sources which it could be matched to.

• Sky Partitioner: the objective of this second stage is to create self contained

groups of MC, the so-called Match Candidate Groups (MCGs). This is a spatial-

based stage which provides an efficient spatial data arrangement because it avoids

boundary effects. This stage acts as a bridge between the core time-based and the

final XM resolution stage.

• XM resolver: this is the final stage which is a spatially based stage where all

detections from a MCG are solved together, thus it takes into account all observations

and sources of that region. Therefore, the XM is resolved and the final data are

produced.
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Figure 1.7: XM task overview.

More specifically, the XM resolver task is divided into three stages:

• Clustering stage: the purpose of this stage is to divide the observations in the

MCG into smaller sets of observations (the so-called clusters1). The main of this

stage is to produce clusters with all the observations that may correspond to the

same source.

• Cluster linking stage: this task matches the generated clusters to candidate

sources. Therefore, it creates a list of sources which might be assigned to the cluster,

similar to the Obs-Src Match process but with clusters instead of single observations.

• Conflict resolution stage: this final step is intended to remove all conflicts be-

tween cluster-source links (see Fig. 1.6) and provide the final optimal resolution

through an ad-hoc decision tree algorithm providing all the outputs mentioned above.

The following chapter describes the clustering stage algorithm given the requirements

and restrictions. It provides an algorithm description that is suitable to be implemented

as the clustering stage. Particularly, the match criteria in the proposed algorithm includes

the magnitude and the movement of the source.

1A cluster is a set of objects tentatively associated with same label, in our case group of MCs.



Chapter 2

Generalized cross-matching based

on clustering analysis

Cluster analysis aims to divide data into groups (the so-called clusters), where the

objects in each cluster are similar between them and different from objects within other

clusters.

First of all, we have to introduce a definition for the dissimilarity in accordance with

the source model and promising for the cross-matching problem.

After that, we have to consider an algorithm to solve efficiently the XM task according

to the source model which will have been explained.

Moreover, the XM should include methods to correct some possible conflictive cases

as part of the post-process.

2.1 Source model

The aim of the cross-match is to link one source to each observation, so it first of all

builds the clusters by the agglomeration of observations, and then it gets a one-to-one

assignation between clusters and sources.

According to that, it is important to know the source model because it will establish

how to make the cluster agglomeration; in other words, which agglomerative method has

to be used and, accordingly, how is the proximity of each pair of objects defined.

The model pretends to be independent from other catalogues, so the input only consists

of a set of observations and, therefore, the source model has to be interpreted as the number

of observations in the cluster is increased. Following this premise, the agglomerative

method has to be adapted to our type of data and it should be generalized to any linear

model of arbitrary order.

In any case, in all methods of cluster analysis, the proximity between clusters has to

be defined but, due to the hierarchical clustering procedures, it does not have to use a

10



2.1 Source model 11

distance, a less restrictive measure is enough.

Definition 2.1. Let C be the set of all clusters, a dissimilarity on C is a function

∆ : C × C −→ R,

and the following conditions are satisfied for all Ci, Cj ∈ C,

1. ∆(Ci, Cj) ≥ 0 and ∆(Ci, Ci) = 0,

2. ∆(Ci, Cj) = ∆(Cj , Ci).

Note that a dissimilarity may not satisfy the triangle inequality.

Some hierarchical clustering methods use different types of dissimilarities,

• Single link: shortest distance between two individual members of the clusters,

∆(Ci, Cj) = min {d(Oi, Oj) | Oi ∈ Ci, Oj ∈ Cj} .

• Complete link: farthest distance between two individual members of the clusters,

∆(Ci, Cj) = max {d(Oi, Oj) | Oi ∈ Ci, Oj ∈ Cj} .

• Group average: average of the distances between all the individual members of the

clusters,

∆(Ci, Cj) =
1

ninj

∑
Oi∈Ci

∑
Oj∈Cj

d(Oi, Oj),

where ni (resp. nj) is the number of observations in the cluster Ci (resp. Cj).

• Centroid: the dissimilarity is defined in terms of the distance between the cluster

centers.

• Median: the dissimilarity is defined in the same idea as the centroid method but

assuming that the clusters to be agglomerate are of equal size using the median.

• Ward’s method: the dissimilarity is defined to minimize the increase of internal

variance.

After comprehensive analysis of multiple clustering techniques a customised Nearest

Neighbour Chain (NNC) algorithm using Ward’s method was selected which builds upon

a preliminary study conducted in [7].

Moreover, this method can be generalized to any linear model of arbitrary order such

as the proper motion model.
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2.1.1 Zeroth-order model

In this model, we consider that the coordinates of the observations do not depend on

time. Therefore, our interest is on agglomerate the obseravtions with coordinates values

more similar.

In addition, using Ward’s method, the objective is to agglomerate the clusters with the

minimum increase in information loss, which is defined by the sum of squared residuals

(SSR)

In this assumption, the dissimilarity measure is defined as follow,

Definition 2.2. Let Ci and Cj be two disjoint clusters, the dissimilarity between them is

∆(Ci, Cj) = R(Ci ∪ Cj)−R(Ci)−R(Cj), (2.1)

where R(C) is the sum of squared residuals in the cluster C ∈ C.

This dissimilarity is clearly symmetric but to show that it is non-negative definite is

suitable to express it in terms of the coordinates of the observations.

Therefore, let n be the number of components of the observed data and we denote O

as a observation and C as a cluster (set of observations). Thus, we consider an n−vector

called observed coordinates x(O) = (x1(O), . . . , xn(O)) ∈ Rn which components are the

observed data and the n−vector x(C) = (x1(C), . . . , xn(C)) ∈ Rn as the corresponding

coordinates of the cluster center.

Accordingly, the sum of squared residuals is

R(C) =
∑
O∈C

n∑
k=1

wk(xk(O)− xk(C))2, (2.2)

where wk are the weight factors which permit to include some coordinates that are not

space coordinates as, for example, the magnitude.

In terms of these weights, we can define a dot product and a norm as follow,

Definition 2.3. Let xi ∈ R (i = 1, . . . , n) be the components of the observed data and wi
(i = 1, . . . , n) their weight factors. The weighted matrix

W =

 w1 . . . 0
...

. . .
...

0 . . . wn

 (2.3)

defines a dot product by

x · y = xWy, x,y ∈ Rn. (2.4)

In addition, this product allows us to define a norm,

‖x‖ =
√
x · x. (2.5)
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Note that the properties of a dot product and a norm are satisfied because the matrix

W is diagonal.

Therefore, (2.2) can be written,

R(C) =
∑
O∈C
‖x(O)− x(C)‖2 . (2.6)

In this expression, the coordinates of the cluster center, x(C), are chosen to minimize the

SSR.

Since the coordinates are independent, the minimum of the SSR corresponds to the

minimum of all components. It is thus clear that, for each coordinate, the center corre-

sponds to the mean value,

xk(C) =
1

n

∑
O∈C

xk(O), (2.7)

where n is the number of observations in the cluster C.

Therefore, the cluster center is given by

x(C) =
1

n

∑
O∈C

x(O). (2.8)

Since our interest is in the clusters agglomeration, we also write the cluster center in

terms of two disjoint clusters Ci and Cj such that C = Ci ∪ Cj ,

x(C) =
nix(Ci) + njx(Cj)

ni + nj
(2.9)

where ni and nj are the number of observations in the clusters Ci and Cj respectively.

Using these expressions of the coordinates, we rewrite the SSR as

R(C) =
∑
O∈C
‖x(O)− x(C)‖2 = (2.10)

=
∑
Oi∈Ci

‖x(Oi)− x(C)‖2 +
∑
Oj∈Cj

‖x(Oj)− x(C)‖2 = (2.11)

=
∑
Oi∈Ci

‖x(Oi)− x(Ci) + x(Ci)− x(C)‖2 +

+
∑
Oj∈Cj

‖x(Oj)− x(Cj) + x(Cj)− x(C)‖2 = (2.12)

=
∑
Oi∈Ci

‖x(Oi)− x(Ci)‖2 + 2
∑
Oi∈Ci

(x(Oi)− x(Ci)) · (x(Ci)− x(C)) +

+
∑
Oi∈Ci

‖x(Ci)− x(C)‖2 +
∑
Oj∈Cj

‖x(Oj)− x(Cj)‖2 +

+2
∑
Oj∈Cj

(x(Oj)− x(Cj))·(x(Cj)− x(C)) +
∑
Oj∈Cj

‖x(Cj)− x(C)‖2 .(2.13)
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Note that the second and fifth term of (2.13) are equal to zero due to

∑
O∈C

(x(O)− x(C)) =
∑
O∈C

x(O)− nx(C) = 0. (2.14)

Moreover, using the following expression,∑
Oi∈Ci

‖x(Ci)− x(C)‖2 =
∑
Oi∈Ci

∥∥∥∥x(Ci)−
nix(Ci) + njx(Cj)

ni + nj

∥∥∥∥2 = (2.15)

=
n2j

(ni + nj)2
‖x(Ci)− x(Cj)‖2 , (2.16)

the SSR can be expressed in terms of the clusters Ci and Cj ,

R(C) = R(Ci) +R(Cj) +
n2jni

(ni + nj)2
‖x(Ci)− x(Cj)‖2 +

+
n2inj

(ni + nj)2
‖x(Ci)− x(Cj)‖2 = (2.17)

= R(Ci) +R(Cj) +
ninj
ni + nj

‖x(Ci)− x(Cj)‖2 . (2.18)

Therefore, the dissimilarity is non-negative definite,

∆(Ci, Cj) =
ninj
ni + nj

‖x(Ci)− x(Cj)‖2 . (2.19)

However, this is not a distance because the triangle inequality is not satisfied.

Moreover, it may happen that two disjoint clusters have dissimilarity zero and these

are not equal since the cluster center could be the same.

This method, in the same way as other methods, satisfies the Lance and Williams’

recurrence formula,

Proposition 2.4. Let Ci, Cj and Ck be three disjoint clusters, then the dissimilarity

between the cluster Ck and the cluster Ci ∪ Cj formed by the aglomeration of clusters Ci
and Cj is

∆(Ci ∪ Cj , Ck) = ai∆(Ci, Ck) + aj∆(Cj , Ck) + b∆(Ci, Cj) + c|∆(Ci, Ck)−∆(Cj , Ck)|,

where the parameters ai, aj, b and c depend on the method used.

In Ward’s method, the parameter values are

al =
nl + nk

ni + nj + nk
, l = i, j, (2.20)

b = − nk
ni + nj + nk

, c = 0. (2.21)
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Proof. On the one hand, using (2.9),

∆(Ci ∪ Cj , Ck) =
nk(ni + nj)

ni + nj + nk
‖x(Ci ∪ Cj)− x(Ck)‖2 = (2.22)

=
nkn

2
i

(ni + nj + nk)(ni + nj)
‖x(Ci)‖2 +

+
nkn

2
j

(ni + nj + nk)(ni + nj)
‖x(Cj)‖2 +

+
nk

ni + nj + nk
‖x(Ck)‖2 −

−2
nkni

ni + nj + nk
x(Ci) · x(Ck)−

−2
nknj

ni + nj + nk
x(Cj) · x(Ck) +

+2
nkninj

(ni + nj + nk)(ni + nj)
x(Ci) · x(Cj). (2.23)

On the other hand,

ni + nk
ni + nj + nk

∆(Ci, Ck) =
nink

ni + nj + nk
‖x(Ci)− x(Ck)‖2 = (2.24)

=
nkni

ni + nj + nk
‖x(Ci)‖2 +

+
nkni

ni + nj + nk
‖x(Ck)‖2 −

−2
nkni

ni + nj + nk
x(Ci) · x(Ck), (2.25)

nj + nk
ni + nj + nk

∆(Cj , Ck) =
njnk

ni + nj + nk
‖x(Cj)− x(Ck)‖2 = (2.26)

=
nknj

ni + nj + nk
‖x(Cj)‖2 +

+
nknj

ni + nj + nk
‖x(Ck)‖2 −

−2
nknj

ni + nj + nk
x(Cj) · x(Ck), (2.27)

− nk
ni + nj + nk

∆(Ci, Cj) = − ninjnk
(ni + nj + nk)(ni + nj)

‖x(Ci)− x(Cj)‖2 = (2.28)

= − ninjnk
(ni + nj + nk)(ni + nj)

‖x(Ci)‖2 −

− ninjnk
(ni + nj + nk)(ni + nj)

‖x(Cj)‖2 +

+2
ninjnk

(ni + nj + nk)(ni + nj)
x(Ci) · x(Cj). (2.29)

Now, it is clear that the sum of terms in (2.25), (2.27) and (2.29) is equal to the six
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terms in (2.23). Therefore, we get the equality,

∆(Ci∪Cj , Ck) =
ni + nk

ni + nj + nk
∆(Ci, Ck)+

nj + nk
ni + nj + nk

∆(Cj , Ck)−
nk

ni + nj + nk
∆(Ci, Cj).

(2.30)

2.1.2 Proper motion model

So far, we have supposed that the stars are fixed but they are moving relative to the

Sun, so we should include the proper motion in the cluster analysis.

The motion of a source on the sky may be described by the coordinates on the unit

sphere in three-dimensional space or by a two-dimensional model in the tangent plane

of the unit sphere since each cross-matching area covers only a very small part of the

sky. Thus, without loss of generality, we consider a single independent component of the

coordinates and for any other direction the approach would be the same.

Accordingly, let u(t) be any of the coordinate functions. A source model is linear if

u(t) =
∑
k

akfk(t) where fk(t) has the time information and ak are the source astrometric

parameters.

Observe that this model allows us to include more parameters than the proper motion

such as the parallax.

For the inclusion of the proper motion, we define the following linear model

u(t) = u0 + u1t (2.31)

where, in this case, the source parameters ak are u0, the mean position, and u1, the proper

motion. The time functions are 1 and t respectively.

Therefore, in our case, the linear system in matricial form is

b = Au + e (2.32)

where b = (b1, . . . , bn)T is a n−vector of observations, u = (u0, u1)
T is a 2−vector of

the source parameters, e = (e1, . . . , en)T is a n−vector of observation errors, and A is a

2× n−matrix with the time functions,
1 t1
1 t2
...

...

1 tn

 .
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The least-squares formalism

The least-squares method is used for the estimation of the source parameters in the

linear regression model. The procedure is based on minimizing the sum of squared resid-

uals,

Ru(C) =
n∑
i=1

e2i = eTe = (b−Au)T (b−Au). (2.33)

First of all, we write Ru(C) as follow

Ru(C) = bTb− bTAu− uTATb + uTATAu = (2.34)

= bTb + uTATAu− 2uTATb. (2.35)

Since this expression is in terms of matrices, we need some results of differentiation of

scalar matrices.

Definition 2.5. If f(X) is a real function of an m×n−matrix X = (xij), then the partial

differential of f with respect to X is defined as the m × n−matrix of partial differentials

∂f/∂xij:

∂f(X)

∂X
=


∂f(X)
∂x11

· · · ∂f(X)
∂x1n

...
...

∂f(X)
∂xm1

· · · ∂f(X)
∂xmn

 (2.36)

Lemma 2.6. Let x be an n−vector, y be an m−vector and A be an n×m−matrix, then

∂

∂x

(
xTAy

)
= Ay.

Proof.

xTAy =
n∑
i=1

m∑
j=1

aijxiyj , (2.37)

∂

∂xk

(
xTAy

)
=

m∑
j=1

akjyj = aTky, (2.38)

where ak is the kth row vector of A.

According to the definition,

∂

∂x

(
xTAy

)
=


∂
∂x1
...
∂
∂xn

xTAy =

 aT1
...

aTn

y = Ay. (2.39)
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Lemma 2.7. Let x be an n−vector, and let A be a symmetric n× n−matrix, then

∂

∂x

(
xTAa

)
= 2Ax.

Proof.

xTAy =

n∑
i=1

n∑
j=1

aijxixj , (2.40)

∂

∂xk

(
xTAx

)
=

n∑
j=1
(j 6=k)

akjxj +

n∑
i=1
(i 6=k)

aikxi + 2aiixi = 2

n∑
j=1

akjxj = 2aTkx, (2.41)

where ak is the kth row vector of A.

According to the definition,

∂

∂x
xTAx =


∂
∂x1
...
∂
∂xn

xTAx = 2

 aT1
...

aTn

x = 2Ax. (2.42)

Using now the differentiation of matrices we obtain the following result.

Proposition 2.8. The least-squares estimator satisfies the normal equations,

ATAû = ATb. (2.43)

Proof.

∂Ru(C)

∂u
= 2ATAu− 2ATb, (2.44)

∂2Ru(C)

∂u2
= 2ATA. (2.45)

A condition for minimisation is that the first derivative must be equal to zero, which gives

the following equation (the so-called normal equation)

ATAû = ATb. (2.46)

Note that if there is only one observation in the cluster, this method is not necessary,

so we only be taken into account the other cases.
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Lemma 2.9. If there is more than one observation in the cluster C (n ≥ 2), then ATA

is positive definite and nonsingular.

Proof. It suffices to show that rankA = rankATA because rankA = 2.

Thus,

x ∈ kerA⇒ Ax = 0⇒ ATAx = 0⇒ x ∈ kerATA,

x ∈ kerATA⇒ ATAx = 0⇒ xTATAx = (Ax)T (Ax) = 0⇒ Ax = 0⇒ x ∈ kerA.

This gives kerA = kerATA and, of course, this implies rankA = rankATA, which is what

had to be shown.

In addition, ATA is positive definite since xTATAx = (Ax)T (Ax) > 0.

Corollary 2.10. The normal equation (2.46) has an unique solution which minimizes the

sum of squared residuals,

û = N−1h, (2.47)

where N = ATA is the normal matrix and h = ATb.

Proof. Since ATA is positive definite, the second-order condition is satisfied. In addition,

the inverse matrix exists, so we can isolate the estimator û.

Finally, the minimum of the sum of squared residuals can be written as,

Ru(C) = bTb + ûTNû− 2ûTh = bTb + ûTNû− 2ûTNû = bTb− ûTNû. (2.48)

Clusters agglomeration

Our interest is to agglomerate two different clusters. Therefore, we consider hereafter

the terms in (2.32) according to the terms of the two disjoint clusters Ci and Cj ,

A =

(
Ai

Aj

)
, b =

(
bi
bj

)
, e =

(
ei
ej

)
. (2.49)

In consequence, the normal matrix for the agglomerated cluster is

N = ATA = Ni + Nj , (2.50)

and therefore, we rewrite the normal equation (2.46) as follow

Nû = (Ni + Nj)û = hi + hj = Niûi + Njûj . (2.51)

This gives the solution

û = (Ni + Nj)
−1(Niûi + Njûj), (2.52)
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and its SSR is

Ru(C) = bTi bi + bTj bj − ûTNû. (2.53)

In our case, we define a dissimilarity measure in u−direction similar as Definition 2.2.

Definition 2.11. Let Ci and Cj be two disjoint clusters, the dissimilarity in u−direction

between them is

∆u(Ci, Cj) = Ru(Ci ∪ Cj)−Ru(Ci)−Ru(Cj). (2.54)

From this definition, it is clear that the dissimilarity is the penalty in the SSR when

agglomerating two clusters. Moreover, if there is only one observation in cluster Ci or Cj ,

its SSR is equal to zero and it simplifies the expression (2.54). Therefore,

∆u(Ci, Cj) = Ru(Ci ∪ Cj)−Ru(Ci)−Ru(Cj) = (2.55)

= ûTi Niûi + ûTj Njûj − ûTNû = (2.56)

= ûTi Niûi + ûTj Njûj − (ûTi Ni + ûTj Nj)N
−1(Niûi + Njûj) =(2.57)

= ûTi (Ni −NiN
−1Ni)ûi − ûTi NiN

−1Njûj −
−ûTj NjN

−1Niûi + ûTj (Nj −NjN
−1Nj)ûj = (2.58)

= ûTi NiN
−1Nj(ûi − ûj)− ûTj NjN

−1Ni(ûi − ûj). (2.59)

where from (2.58) to (2.59) the following expression has been used,

Ni −NiN
−1Ni = NiN

−1(N −Ni) = NiN
−1Nj . (2.60)

From this, using

NiN
−1Nj = NiN

−1(N −Nj) = Ni −NiN
−1Ni = (2.61)

= Ni − (N −Nj)N
−1Ni = NjN

−1Ni, (2.62)

the dissimilarity can be expressed as

∆u(Ci, Cj) = (ûi − ûj)
TNi(Ni + Nj)

−1Nj(ûi − ûj). (2.63)

From this expression, the two conditions of the definition 2.1 are verified using some

results of positive definite matrices.

Lemma 2.12. A symmetric real matrix A is positive definite if and only if all the eigen-

values are positive.

Proof. Suppose x ∈ Rn \ {0} is an eigenvector of A with corresponding eigenvalue λ ∈ R
such that Ax = λx. Then,

xTAx = λxTx > 0⇒ λ > 0. (2.64)
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Hence, all the eigenvalues are positive.

Reciprocally, since A is symmetric, there exists an orthogonal matrix Q such that

A = QTΛQ where Λ is a diagonal matrix with the eigenvalues. Therefore, for all

x ∈ Rn \ {0},
xTAx = xTQTΛQx = (Qx)TΛ(Qx) > 0. (2.65)

Lemma 2.13. Let A and B be two real n × n positive definite matrices. The following

properties hold:

(i) Every positive definite matrix is invertible and its inverse is also positive definite.

(ii) There exists a unique positive definite matrix A1/2 such that
(
A1/2

)2
= A.

(iii) The sum A + B is a positive definite matrix.

(iv) The product ABA is a positive definite matrix.

(v) All the eigenvalues of AB are positive.

(vi) Let C be an other real n × n positive definite matrix, all the eigenvalues of ABC

are positive.

Proof. (i) Since xTAx > 0 for all x ∈ Rn \ {0}, then Ax 6= 0 for all x ∈ Rn \ {0}.
Hence, kerA = {0} and the matrix A is invertible.

In addition, if we define y = Ax, then

yTA−1y = xTATA−1Ax = xTAx > 0, ∀y ∈ Rn. (2.66)

(ii) Consider the decomposition A = QΛQT , where Λ is a diagonal matrix (having the

eigenvalues of A on the diagonal) and Q is an orthogonal matrix.

The positive definite square root of A is the matrix A1/2 = QΛ1/2QT where Λ1/2

is the square root of the diagonal matrix (i.e. having the positive square root of the

eigenvalues on the diagonal). Indeed,

A1/2A1/2 =
(
QΛ1/2QT

)(
QΛ1/2QT

)
= QΛQT = A. (2.67)

The uniqueness comes from the uniqueness of the positive square root of the eigen-

values.
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(iii) The sum is symmetric since (A + B)T = AT + BT = A + B. In addition,

xT (A + B)x = xTAx + xTBx > 0, ∀x ∈ Rn. (2.68)

(iv) The product ABA is symmetric, (ABA)T = ATBTAT = ABA and

xTABAx = (Ax)TB(Ax) > 0, ∀x ∈ Rn. (2.69)

(v) Suppose AB has eigenvalue λ, thus there exists a eigenvector x ∈ Rn \{0} such that

ABx = λx.

Then, xTBABx = λxTBx, and, using (iv), the product BAB is positive definite.

Hence, aplying Lemma 2.12, λ = xTBABx
xTBx

> 0.

(vi) Let Ā = B
1
2AB

1
2 and C̄ = B

1
2CB

1
2 , which are positive definite matrices by (iv).

Moreover, ĀC̄ = B
1
2ABCB

1
2 . Thus, by (v), B

1
2ABCB

1
2 has positive eigenvalues

and, in consequence, ABC as well.

Corollary 2.14. The dissimilarity ∆u is non-negative.

Proof. The normal matrices in (2.63) are positive definite as we had shown in Lemma

2.9. Therefore, using the properties in Lemma 2.13, all the eigenvalues of the matrix

Ni(Ni + Nj)
−1Nj are positive. Therefore, since this matrix is symmetric (from (2.61)

and (2.62)) and using Lemma 2.12, it is also a positive definite matix.

Hence, ∆u(Ci, Cj) ≥ 0 for all Ci, Cj ∈ C.

Note that this dissimilarity does not satisfy the Lance and Williams’ recurrence for-

mula. A similar proof of Proposition 2.4 gets a relation where the parameters depends on

the determinants. Nevertheless, since the sum of determinants is not the determinant of

the sum, then there appear some extra terms.

Prior information

We wish to add prior knowledge of proper motion corresponding to an observation

with proper motion equal to zero with a fairly large error (i.e, u1 = 0+σ1). If we multiply

the last equation by a parameter L, it can be expressed as Lu1 = 0 + Lσ1. Thus, we can

interpret this prior information as an additional observation and we rewrite the terms in

(2.32) as

b∗ =


0

b1
...

bn

 , A∗ =


0 L

1 t1
...

...

1 tn

 .
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The parameter L must have dimension of time and it corresponds to an error, thus

the proposal is to compute it as L = σu/σ1, where σu is the precision of an observation.

Note that the prior allows to analyze clusters with only one observation because

rankA∗ = 2 in all cases.

The resolution using the least-squares formalism must be the same as explained above,

so the solution will be such that (2.47):

û∗ = (N∗)−1h∗, (2.70)

where N∗ = (A∗)TA∗ is the normal matrix and h∗ = (A∗)Tb∗.

In addition, we can express the terms in (2.70) as a function of the terms without prior

information as

N∗ = N + Λ, h∗ = h. (2.71)

where Λ is the prior information matrix,

Λ =

(
0 0

0 L2

)
.

It is also important to mention that when we agglomerate two clusters, we construct

a cluster with the observations of the two clusters and the prior information (but only

once). Therefore,

A∗ =

 0 L

Ai

Aj

 , b∗ =

 0

bi
bj

 , e∗ =

 Lσ1
ei
ej

 . (2.72)

In the same way as (2.50), the normal matrix for the agglomerated cluster is

N∗ = (A∗)TA∗ = N + Λ = Ni + Nj + Λ = N∗
i + N∗

j −Λ, (2.73)

and the solution is

û∗ = (N∗
i + N∗

j −Λ)−1(N∗
i û

∗
i + N∗

j û
∗
j ). (2.74)

From now on, we will omit the symbol ∗ and, unless otherwise indicated, we will

consider the case with the prior knowledge.

About the dissimilarity, we may observe that the agglomerated cluster is not really

the agglomeration of the clusters Ci and Cj because we only have prior information once.

Thus, the dissimilarity will not be strictly the penalty in the SSR and we have to add new

terms related to the prior information.

Definition 2.15. Let Ci and Cj be two disjoint clusters, the dissimilarity including the

prior in u−direction between them is

∆(L)
u (Ci, Cj) = Ru(Ci ∪ Cj)−Ru(Ci)−Ru(Cj) + uTi NiN

−1Λui +

+uTj NjN
−1Λuj + ûTj (NiN

−1Nj −NjN
−1Ni)ûi. (2.75)
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From this definition, the dissimilarity is the penalty in the SSR plus three terms caused

by the prior.

More specifically, the first term is interpreted as the correction in Ru(Ci), the second

corresponds to the correction in Ru(Cj), and the third is the cross correlation in the

agglomeration.

In addition, if we develop this expression, we will recover the same expression as (2.63),

∆(L)
u (Ci, Cj) = Ru(Ci ∪ Cj)−Ru(Ci)−Ru(Cj) + uTi NiN

−1Λui +

+uTj NjN
−1Λuj + ûTj (NiN

−1Nj −NjN
−1Ni)ûi = (2.76)

= ûTi Niûi + ûTj Njûj − ûTNû + uTi NiN
−1Λui +

+uTj ΛN−1Njuj + ûTj (NiN
−1Nj −NjN

−1Ni)ûi = (2.77)

= ûTi Niûi + ûTj Njûj + uTi NiN
−1Λui +

+uTj NjN
−1Λuj − (ûTi Ni + ûTj Nj)N

−1(Niûi + Njûj) +

+ûTj (NiN
−1Nj −NjN

−1Ni)ûi = (2.78)

= ûTi (Ni −NiN
−1Ni + NiN

−1Λ)ûi − ûTi NiN
−1Njûj −

−ûTj NiN
−1Njûi + ûTj (Nj −NjN

−1Nj + NjN
−1Λ)ûj =(2.79)

= ûTi NiN
−1Nj(ûi − ûj)− ûTj NiN

−1Nj(ûi − ûj). (2.80)

where from (2.76) to (2.77) the following expression has been used,

uTj NjN
−1Λuj = (uTj NjN

−1Λuj)
T = uTj ΛN−1Njuj . (2.81)

In addition, from (2.79) to (2.80),

Ni −NiN
−1Ni + NiN

−1Λ = NiN
−1(N −Ni + Λ) = NiN

−1Nj , (2.82)

Nj −NjN
−1Nj + ΛN−1Nj = (N −Nj + Λ)N−1Nj = NiN

−1Nj . (2.83)

And finally, dissimilarity can be expressed as

∆(L)
u (Ci, Cj) = (ûi − ûj)

TNi(Ni + Nj −Λ)−1Nj(ûi − ûj). (2.84)

Therefore, we have defined a new dissimilarity, adapted to the new agglomeration form,

in complete analogy with (2.54).

Moreover, it also introduces a small variation in the SSR,

RCi∪Cj (û) = Ru(Ci) +Ru(Cj)−∆(L)
u (Ci, Cj)− uTi NiN

−1Λui −
−uTj NjN

−1Λuj − ûTj (NiN
−1Nj −NjN

−1Ni)ûi. (2.85)
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2.1.3 Magnitude criterion

The magnitude should be taken into account because in crowded areas may be ambi-

guity on the proximity in the position coordinates, thus the cross-match could significantly

improve by adding this parameter.

As we have seen above, the norm from Definition 2.3 includes weight factors. If we

only use the position coordinates, these weights are equal and the norm will be Euclidean.

But since the inclusion of the magnitude requires a factor to make a magnitude error

comparable with an error in position, we have to introduce a weight factor.

Hence, we consider the weight factor wm =
σ2
pos

σ2
m

.

These errors may change according to the source magnitude, but since our input is

only the observed data, the weight factor has to be initialized on wm = 0.36arcsecmag , which

is calibrated properly using the assumptions of σpos ∼ 0.3arcsec and σm ∼ 0.5mag. These

values are the 90th percentile from the source match diagnostic obtained from scientific

validation and statistical analysis performed on operational Gaia data.

Despite that, the inclusion of the magnitude can create several clusters in the same

position for variable stars. The first solution that comes to mind is to apply a linear

model as we do for the inclusion of the proper motion but the magnitudes may change

in an unpredictable way whereas the position of a source changes slowly and predictably.

Therefore such cases should be detected and corrected in a post-processing.

2.1.4 Generalized source model

The zeroth-order model analyzed above in Section 2.1.1 includes all the coordinates

but the proper motion model (Section 2.1.2) only includes a single independent coordinate.

Therefore, using the same argument as the zeroth-order model, the SSR is

R(C) =
n∑
k=1

wkRk(C). (2.86)

where Rk(C) is the SSR according to the k-coordinate model.

Since the coordinates are independent, the minimum of the SSR corresponds to the

minimum of all components. In consequence, the total dissimilarity is the sum of the

dissimilarities in each coordinate.

Definition 2.16. Let Ci and Cj be two disjoint clusters, the global dissimilarity between

them is

∆(Ci, Cj) =

n∑
k=1

wk∆k(Ci, Cj). (2.87)

The proper motion model in the cluster analysis contains a problem in the computation

of the dissimilarity between two observations because the dissimilarity is always zero and

therefore it will be possible to match any two observations perfectly.
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Hence, we have discussed the specification of a prior knowledge which could solve

this problem. Despite that, the inclusion of the prior introduces an error (especially in

high proper motion sources) caused by the assumption u1 = 0 and the definition of the

dissimilarity is more complicated due to prevent the weight of the prior information to

increase during agglomeration.

Note that, using the prior information method, initially the observations with less dis-

similarity are the closest ones. Therefore, applying this reasoning, the solution proposed

consists to use the zeroth-order model for the agglomeration of clusters with few observa-

tions and, when the estimation of the proper motion is good enough, to use the proper

motion model in the position coordinates.

In our case, the used coordinates are the right ascension α and the declination δ.

Therefore, the global dissimilarity that we use is the following:

Definition 2.17. Let Ci and Cj be two disjoint clusters, the global dissimilarity between

them is

∆(Ci, Cj) =

{
ninj

ni+nj
‖x(Ci)− x(Cj)‖2 , ni + nj ≤ 3,

∆α(Ci, Cj) + ∆δ(Ci, Cj) + wm
ninj

ni+nj
(m(Ci)−m(Cj))

2 , ni + nj > 3,

(2.88)

where ∆α and ∆δ are considered using the proper motion model.

The reason that we consider the zeroth-order model until the agglomeration of 3 ob-

servations is due to that it has to be a number greater than 2 but if it is too great, the

agglomeration does not occur for high proper motion stars. Therefore, the optimal value

is considered to be 3.

2.2 Nearest Neighbor criteria

We consider the nearest neighbor criteria for cluster analysis because the nearest neigh-

bor chain (NNC) algorithm is the preferred for Ward’s dissimilarity (see [8]) and, most

importantly, the modified NNC algorithm for IDU-XM task in previous versions is the

most suitable algorithm for the IDU-XM task (see [3]).

Furthermore, other modifications have to be introduced to implement the algorithm

with the source model purposed in Section 2.1.

2.2.1 Nearest neighbor chain

Definition 2.18. Let C be a set of clusters, the nearest neighbor of a cluster Ci ∈ C,

denoted by NN(Ci), is a distinct cluster Cj ∈ C such that

∆(Ci, Cj) = min
Ck∈C\{Ci}

∆(Ci, Ck). (2.89)
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To make the nearest neighbor unique we choose the cluster Cj with the minimum identifier

in case of ties.

If Cj = NN(Ci) and Ci = NN(Cj), the clusters Ci and Cj are called reciprocal nearest

neighbors (RNNs).

Definition 2.19. The nearest neighbor graph is the directed graph 〈C, E〉 where the set of

directed edges is E = {〈Ci, NN(Ci)〉 | Ci ∈ C}.

Proposition 2.20. (Reducibility property) Let ∆ be the Ward’s dissimilarity (see

Definition 2.2), and Ci, Cj ∈ C two reciprocal nearest neighbors, then there exists ρ > 0

such that for any other cluster Ck ∈ C,

∆(Ci, Cj) < ρ

∆(Ci, Ck) > ρ

∆(Cj , Ck) > ρ

 =⇒ ∆(Ci ∪ Cj , Ck) > ρ. (2.90)

Proof. The proof can be done by just using the Lance-Williams’ recurrence formula (Propo-

sition 2.4),

∆(Ci ∪ Cj , Ck) >
ni + nk

ni + nj + nk
ρ+

nj + nk
ni + nj + nk)

ρ−

− nk
ni + nj + nk

ρ = ρ. (2.91)

Proposition 2.21. Let Ci and Cj be two reciprocal nearest neighbors. If they are agglom-

erated and the reducibility property (Proposition 2.20) holds, then the nearest neighbor

graph has to be updated only for those clusters which had Ci or Cj as nearest neighbor.

Proof. Let Ck be an arbitrary cluster (different of Ci and Cj) in the nearest neighbor

graph. It is enough to show that ∆(Ck, Ci ∪ Cj) ≥ ∆(Ck, NN(Ck)) because the only

change is the agglomeration of Ci and Cj .

Note that, ∆(Ck, NN(Ck)) ≤ ∆(Ck, Ci) and ∆(Ck, NN(Ck)) ≤ ∆(Ck, Cj), so

• if ∆(Ck, NN(Ck)) > ∆(Ci, Cj) then, using the reducibility property (Proposition

2.20) with ρ = ∆(Ck, NN(Ck)),

∆(Ck, Ci ∪ Cj) > ∆(Ck, NN(Ck)), (2.92)
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• otherwise, let ρ = ∆(Ci, Cj) such that ρ ≤ ∆(Ci, Ck) and ρ ≤ ∆(Cj , Ck). Using

again the reducibility property (Proposition 2.20), we get

∆(Ck, Ci ∪ Cj) ≥ ∆(Ci, Cj) ≥ ∆(Ck, NN(Ck)). (2.93)

Observe that, the equality (2.93) only holds when all the dissimilarities between Ci,

Cj and Ck are equal.

Definition 2.22. Let Ci ∈ C be an arbitrary cluster, a nearest neighbor chain from Ci is

a directed path leading from Ci.

Note that the maximum number of clusters in a nearest neighbor chain is |C| and, in

this case, is the complete nearest neigbor graph.

Proposition 2.23. The nearest neighbor chain satisfies the following properties:

(i) Dissimilarities between consecutive clusters are not increasing.

(ii) The nearest neighbor chain cannot contain a n−cycle with n > 2.

(iii) The final two clusters of a nearest neighbor chain are an RNN pair.

Proof. (i) Let Ci, Cj = NN(Ci) and Ck = NN(Cj) be a subset of clusters in the nearest

neighbor chain. Assume for contradiction that ∆(Ck, Cj) > ∆(Cj , Ci). But we thus

get NN(Cj) 6= CK .

(ii) Let Ci, Cj = NN(Ci), . . . , Ck, NN(Ck) = Ci be a subset of clusters in the nearest

neighbor chain. By property (i), ∆(Ci, Ck) < ∆(Ci, Cj), thus NN(Ci) 6= Cj and this

is a contradiction.

(iii) Let Cnn(k) ∈ C be the last point of a nearest neighbor chain. This leads that its

nearest neighbor has to be other cluster of the nearest neighbor chain, but from (ii),

it has to be the predecessor of Cnn(k) ∈ C, denoted by Cnn(k−1). In other words,

NN(Cnn(k)) = Cnn(k−1) and, by definition, NN(Cnn(k−1)) = Cnn(k).

By building a nearest neighbor chain, we have the so-called nearest neighbor chain

algorithm, which performs the following steps,

Step 1. Let Ci ∈ C be an arbitrary cluster, get the nearest neighbor chain from Ci.

Step 2. Let Cj and Ck be the final two clusters of the nearest neighbor chain (the RNN

pair), agglomerate them and replace with Cmin{j,k} = Cj ∪ Ck.
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Step 3. If Ci 6= Cj , carry on the nearest neighbor chain from the predecessor of Cj .

Otherwise, return to step 1.

Step 4. Go to step 2 until there is more than one cluster in the set of clusters.

Definition 2.24. Let C0 be a set of disjoint clusters, a stepwise dendrogram for C0 is a

(|C0| − 1) × 3−matrix whose ith row is the triple (Ci1 , Ci2 ,∆(Ci1 , Ci2)) such that

Ci1 , Ci2 ∈ Ci are reciprocal nearest neighbors and Ci+1 is recursively defined as

Ci+1 = (Ci \ {Ci1 , Ci2}) ∪ {Ci1 ∪ Ci2}.

Observe that a nearest neighbor chain produces a stepwise dendrogram. So now, our

interest is to prove the uniqueness of the stepwise dendrogram (up to row order), in other

words, to demonstrate that the reciprocal nearest neighbors do not depend on the order

of the clustering steps.

Proposition 2.25. Let Ci, Cj ∈ C be two reciprocal nearest neighbors and Ck, Cl ∈ C be

two other reciprocal nearest neighbors. If ∆ is the Ward’s dissimilarity, then

∆(Ci∪Cj , Ck∪Cl) is independent of whether Ci, Cj are agglomerated first and then Ck, Cl
or the other way round.

Proof. Using the Lance Williams’ recurrence formula (Proposition 2.4),

∆(Ci ∪ Cj , Ck ∪ Cl) =
ni + nk + nl

ni + nj + nk + nl
∆(Ci, Ck ∪ Cl) +

+
nj + nk + nl

ni + nj + nk + nl
∆(Cj , Ck ∪ Cl)−

− nk + nl
ni + nj + nk + nl

∆(Ci, Cj) = (2.94)

=
ni + nk

ni + nj + nk + nl
∆(Ci, Ck) +

ni + nl
ni + nj + nk + nl

∆(Ci, Cl) +

+
nj + nk

ni + nj + nk + nl
∆(Cj , Ck) +

nj + nl
ni + nj + nk + nl

∆(Cj , Cl)−

− ni + nj
ni + nj + nk + nl

∆(Ck, Cl)−

− nk + nl
ni + nj + nk + nl

∆(Ci, Cj), (2.95)

where nα for α = i, j, k, l is the number of observations in the cluster Cα.

Due to the symmetry, the dissimilarity between Ci ∪Cj and Ck ∪Cl does not depend

on the order of the agglomeration.
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Proposition 2.26. Let C be a set of disjoint clusters and let ∆ be the Ward’s dissimilarity.

Let Cα, Cβ ∈ C be two reciprocal nearest neihbors, define C0 = (C \ {Cα, Cβ}) ∪ {Cα ∪Cβ}
and let D0 = ((Ci1 , Ci2 ,∆(Ci1 , Ci2))i=0,...,|C0|−1) be a sorted stepwise dendrogram for C0,

i.e., ∆(Ci1 , Ci2) ≤ ∆(Ci+11 , Ci+12) for all i = 0, . . . , |C0| − 2.

Assuming that it exists j ∈ N such that ∆(Ci1 , Ci2) < ∆(Cα, Cβ) for all i < j and

∆(Ci1 , Ci2) ≥ ∆(Cα, Cβ) for all i ≥ j, then the following matrix D is a sorted stepwise

dendrogram for C,

D =



C01 C02 ∆(C01 , C02)
...

...
...

C(j−1)1 C(j−1)2 ∆(C(j−1)1 , C(j−1)2)

Cα Cβ ∆(Cα, Cβ)

Cj1 Cj2 ∆(Cj1 , Cj2)
...

...
...

C(|C0|−1)1 C(|C0|−1)2 ∆(C(|C0|−1)1 , C(|C0|−1)2)


. (2.96)

Proof. By the reducibility property (Proposition 2.20), it is clear that Cα and Cβ are

kept as reciprocal nearest neighbors after the agglomeration between other reciprocal

nearest neighbors. Furthermore, the first j rows of D cannot include Cα ∪Cβ because the

dissimilarity between Cα ∪ Cβ and any other cluster is greater than ∆(Cα, Cβ).

Hence, the first j rows of D are valid for a sorted stepwise dendrogram for C.
Afterward, it suffices to show that the dissimilarities are the same in the set C0 after

j agglomerations (in sorted order) and in the set C after j + 1 agglomerations (in sorted

order) because the partitions of the original set are obviously equal.

On the one hand, the dissimilarity between a distinct cluster Ck 6= Ci1 ∪ Ci2 and

Cα ∪ Cβ (resp. Ci1 ∪ Ci2) is independent of the agglomeration of Ci1 and Ci2 (resp. Cα
and Cβ) by definition. On the other hand, the dissimilarity ∆(Cα ∪ Cβ, Ci1 ∪ Ci2) does

not depend on the order of the agglomeration by Proposition 2.25. This completes the

proof.

Corollary 2.27. The resulting hierarchy does not depend on the order of the agglomera-

tion.

Proof. By Proposition 2.26, the rows in a stepwise dendrogram are independent of the

agglomeration, thus the algorithm produces the same cluster agglomerations in all cases.

Finally, note that, as mentioned in [9], the algorithm yields in O(N2) time and O(N)

space if the previous properties are satisfied.
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2.2.2 Modified nearest neighbor chain for IDU XM resolver

The dissimilarity in the generalized source model (Section 2.1.4) does not satisfies the

reducibility property, therefore the chain has to be restarted in each agglomeration and

the final clusters can depend on the order of the agglomeration. It makes sense because

initially we do not know information about the proper motion, and it depends on the

agglomerations.

Moreover, we must take into account that our objective is to get the optimal clusters

but in the algorithm described above, the iteration in step 4 ends when there is only a single

cluster, therefore we have to stop the cluster agglomeration for the optimum solution.

Stopping rule

For the XM task, the agglomeration only makes sense while the dispersion of residuals

within the clusters is below a given limit. This dispersion is measured by the variance

σ2(C) = R(C)/n and the limit has to depend on Gaia observation error and the model

error caused by not including the parallax.

Therefore, the limit is

σ2lim = σ2pos + σ2par, (2.97)

where σpos = 0.3arcsec is the Gaia observation error and σp is the parallax error which is

configured as:

σpar =

{
A, A > σt
σp0, otherwise

(2.98)

where A is the cluster amplitude error, σp0 = 0.5arcsec and σt = 0.2arcsec.

On one hand, A is calculated as the maximum dispersion from the mean in each

direction:

A =
√
A2
α +A2

δ , Au = max{bj − u(tj)|j = 1, . . . , n}, u = α, δ. (2.99)

On the other hand, the parameters σp0 = 0.5arcsec and σt = 0.2arcsec are configured

with maximum parallax sources.

The parameter σp0 corresponds to the maximum parallax values, thus initially the

algorithm uses this value because we do not know the correct value and if the maximum

cluster error is bigger than a threshold, denoted by σt, we consider that the maximum

cluster error is a value that we can take into account.

Implemented features

Definition 2.28. A pair of observations (Oi, Oj) is incompatible when they are from the

same scan. Otherwise, a pair is considered compatible.
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Therefore, two detections have to be separated at least 106.5 minutes in order to be

compatible. This value is extracted from the separation between the two telescopes and

the spin rate of Gaia.

Definition 2.29. Two disjoint clusters Ci and Cj are NN-compatible if the pairs of ob-

servations (Oik , Ojl) are compatible for all Oik ∈ Ci and Ojl ∈ Cj.

Therefore, the implementation includes the condition that two clusters can be nearest

neighbors if and only if they are NN-compatible.

Note that, it forces observations in the same scan into different clusters.

Algorithm

Including these considerations, the modified algorithm performs the following steps,

Step 1. Initialize C with n non-finished clusters Ci = {Oi}, one for each observation.

Step 2. Let Ci ∈ C be an arbitrary non-finished cluster, get the nearest neighbor chain

from Ci only until a cluster Cj ∈ C such that σ2(Cj ∪NN(Cj)) > σ2lim.

Step 3. Let Ck and Cl be the final two clusters of the nearest neighbor chain. If

σ2(Ck ∪ Cl) ≤ σ2lim, agglomerate them and replace with the cluster

Cmin{k,l} = Ck ∪ Cl. Otherwise, consider Cl as a finished cluster and return

to step 2.

Step 4. If Ci 6= Ck, get the nearest neighbor chain from Cmin{k,l} only until a cluster Cj
such that σ(Cj ∪NN(Cj)) > σ2lim. Otherwise, return to step 2.

Step 5. Go to step 3 until only one non-finished cluster remains in C.

In the step 4, the nearest neighbor chain is restarted because the reducibility property

does not hold. Then, the chain begins from the agglomerated cluster because it is preferred

than an arbitrary cluster due to the assumption that the agglomeration is correct.

Despite of this, the above algorithm depends on the order of the agglomeration and

the final clusters may not be completely correct, therefore a post-processing should be

taken into account to correct it.

Finally, note that the time is incremented with the inclusion of these modifications.

Nevertheless, this increment is not relevant because the previous stages provide MCGs

with a number of MC not really huge.

More schematically, this algorithm is represented in the following flowchart,
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Input: non-finished

clusters Ci = {Oi}

Is there any

non-finished

cluster?

Let C be an

arbitrary non-

finished cluster

Get the nearest

neighbor of C
C = NN(C)

σ2(C∪NN(C)) <

σ2lim?

Are C and

NN(C) RNNs?

Agglomerate C

and NN(C).

Let C be the

agglomer-

ated cluster

Consider C as a

finished cluster

Output:

finished

clusters

yes

yes

yes

no

no

no

Figure 2.1: Flowchart for the modified NNC algorithm.
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2.3 Post-processing algorithm

The post-processing algorithm has to detect and correct wrong cases due to the de-

pendence of the order of the agglomeration.

These cases could be, but not only,

• a HPM star which is separated in two or more clusters,

• a HPM cluster with observations of several real sources,

• a high parallax source which is separated in two or more clusters,

• several clusters in crowded areas.

In all cases, there exist clusters with small number of observations. Thus, the clusters

whose number of observations is at least the scans number divided by 2 are considered as

well-finished clusters (F), and the other clusters are considered as pending clusters (P),

F =

{
C ∈ C | n > n(scans)

2

}
, (2.100)

P =

{
C ∈ C | n ≤ n(scans)

2

}
, (2.101)

where n(scans) is the number of scans.

Furthermore, if the number of finished clusters is less than the ratio
[

|C|
n(scans)

]
, we

will add the biggest pending clusters to reach this ratio, and we will remove them from

pending clusters. Thus, |F| ≥
[

|C|
n(scans)

]
.

The method consists in breaking up the pending clusters into initial clusters and joining

them to the finished clusters, if possible.

Since a source may not be observed in all scans, there can exist pending clusters which

are correct. In this case, the initial clusters from this valid cluster cannot join with any

finished cluster and we will have to consider it as a well-finished cluster.

Specifically, the algorithm performs the following steps,

Step 1. Break up all the clusters in P into initial clusters i.e., one for each observation.

Step 2. While there is an initial cluster C still pending,

(a) get the nearest neighbor of C from F , i.e., NN(C) ∈ F .

(b) If σ2(C ∪NN(C)) < σ2lim, agglomerate the two clusters and remove C from

the initial clusters.

(c) Otherwise, consider C as a non-finished cluster and remove it from the initial

clusters.
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Step 3. Do the modified NNC algorithm (Section 2.2.2) with the set of non-finished clus-

ters.

Although each initial cluster can be agglomerated with other clusters which we know

their shapes (in step 2), for the initial clusters that they cannot be merged into well-

finished clusters, we recover the cluster from the modified NNC algorithm again (in step

3).

More schematically, this algorithm is represented in the following flowchart,

Input:

F and P

Break up all the

clusters in P

Is an initial

cluster C still

pending?

Get the nearest

neighbor of

C from F

σ2(C∪NN(C)) <

σ2lim?

Agglomerate

C and NN(C)

Do the mod-

ified NNC

algorithm with

the set of non-

finished clusters

Consider C

as a non-

finished cluster

Output:

finished

clusters

no

yes

yes

no

Figure 2.2: Flowchart for the post-processing algorithm.



Chapter 3

Explorative tests of the

clustering-based cross-matching

using Gaia data

The parameters and the implementation details of the algorithm explained in Chapter

2 have been configured using realistic Gaia data. Therefore, the purpose of this chapter is

to assess some interesting realistic cases to show that the algorithm works as expected. To

do so, we selected a set of high proper motion sources (HPM) and a set of high parallax

sources (see Table 3.6.1 and Table 3.6.2 from [4].). Moreover, some crowded areas are

analyzed as well.

Note that the Gaia observations may correspond to a valid source observations, but

they may also correspond to spurious detections1 not properly filtered. It is important

to emphasize that the IDU-XM resolver task does not perform any kind of detection

classification, which has been performed in previous stages. Thus we suppose that all the

incoming detections are valid.

In the following figures, the observation size is according to the magnitude of the

observation, i.e., a brighter observation is represented with a greater dot than a faint

observation. In addition, the observations matched with an input source are represented

with full blue dots, and the other ones are represented with empty blue dots.

3.1 Selected source cases

A correct inclusion of the proper motion was one of the main objectives of this work.

In addition, as mentioned above in section 2.2.2, the stopping rule depends on the parallax

1 the stars brigther than 15 magnitude create spikes in their near environment that the on-board

detection system considers as new sources, the so-called spurious detecions.

36
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error. Therefore, some real cases of HPM and high parallax sources are developed in this

section.

The selected sources are sorted by decreasing proper motion.

3.1.1 HIP 87937 (Barnard’s Star)

The main features of HIP 87937 are presented in Table 3.1 and the result of the

clustering stage is shown in Figure 3.1.

Figure 3.1: Clustering stage of IDU-XM Resolver around HIP 87937 with blue dots for

observations and green areas for finished clusters.

The global algorithm sets the observations in 4 different finished clusters. Only one of

them (with 10 observations) corresponds to the HPM source, as expected.

Therefore, the algorithm matches successfully all the Barnard’s observations to the

expected source.
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Feature Value

α 269.454◦

δ 4.668◦

Visual magnitude V 9.54 GMag

Total proper motion 10357.70 mas/year

Parallax 549.01 mas

Table 3.1: Main features of the input source from [4].

3.1.2 HIP 24186 (Kapteyn’s Star)

The main features of HIP 24186 are presented in Table 3.2 and the result of the

clustering stage is shown in Figure 3.2.

Figure 3.2: Clustering stage of IDU-XM Resolver around HIP 24186 with blue dots for

observations and green areas for finished clusters.

The global algorithm sets the observations in 9 different finished clusters. Only one of

them (with 29 observations) corresponds to the HPM source, as expected.

Therefore, the algorithm matches successfully all the Kapteyn’s observations to the

expected source.
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Feature Value

α 77.897◦

δ −45.004◦

Visual magnitude V 8.86 GMag

Total proper motion 8670.50 mas/year

Parallax 255.26 mas

Table 3.2: Main features of the input source from [4].

3.1.3 HIP 70890 (α Cen C)

The main features of HIP 70890 are presented in Table 3.3 and the result of the

clustering stage is shown in Figure 3.3.

Feature Value

α 217.449◦

δ −62.681◦

Visual magnitude V 11.01 GMag

Total proper motion 3852.99 mas/year

Parallax 772.33 mas

Table 3.3: Main features of the input source from [4].

Figure 3.3: Clustering stage of IDU-XM Resolver around HIP 70890 with blue dots for

observations and green areas for finished clusters.

Observe that only one finished cluster corresponds to the HPM source with 62 obser-

vations, as expected.

Therefore, the algorithm matches successfully all the observations to the expected

source.
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3.1.4 HIP 36208 (Luyten’s Star)

The main features of HIP 36208 are presented in Table 3.4 and the result of the

clustering stage is shown in Figure 3.4.

Figure 3.4: Clustering stage of IDU-XM Resolver around HIP 36208 with blue dots for

observations and green areas for finished clusters.

Feature Value

α 111.851◦

δ 5.235◦

Visual magnitude V 9.84 GMag

Total proper motion 3738.16 mas/year

Parallax 263.26 mas

Table 3.4: Main features of the input source from [4].

Observe that only one finished cluster corresponds to the HPM source with 7 observa-
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tions, as expected.

Therefore, the algorithm matches successfully all the observations to the expected

source.

3.1.5 HIP 74234

The main features of HIP 74234 are presented in Table 3.5 and the result of the

clustering stage is shown in Figure 3.5.

Figure 3.5: Clustering stage of IDU-XM Resolver around HIP 74234 with blue dots for

observations and green areas for finished clusters.

Observe that only one finished cluster corresponds to the HPM source with 16 obser-

vations, as expected.

Therefore, the algorithm matches successfully all the observations to the expected

source.
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Feature Value

α 227.557◦

δ −16.454◦

Visual magnitude V 9.44 GMag

Total proper motion 3681.49 mas/year

Parallax 33.68 mas

Table 3.5: Main features of the input source from [4].

3.1.6 HIP 3829 (Van Maanen 2)

The main features of HIP 3829 are presented in Table 3.6 and the result of the clustering

stage is shown in Figure 3.6.

Figure 3.6: Clustering stage of IDU-XM Resolver around HIP 3829 with blue dots for

observations and green areas for finished clusters.

The global algorithm sets the observations in 2 different finished clusters. Only one of

them (with 57 observations) corresponds to the HPM source, as expected.

Therefore, the algorithm matches successfully the observations to the expected source.
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Feature Value

α 12.288◦

δ 5.395◦

Visual magnitude V 12.37 GMag

Total proper motion 2977.84 mas/year

Parallax 226.95 mas

Table 3.6: Main features of the input source from [4].

3.2 Tests in other selected areas

It is also interesting to analyze MCGs where the distance between sources is comparable

to motions of HPM sources. These tests are shown in Figs. 3.7-3.9 and, according to the

results of these tests, the algorithm’s behaviour in crowded areas may also be benign.

Figure 3.7: Clustering stage of IDU-XM Resolver with blue dots for observations and

green areas for finished clusters. This MCG has 236 observations in 61 scans, and the

algorithm sets the observations in 5 different finished clusters.
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Figure 3.8: Clustering stage of IDU-XM Resolver with blue dots for observations and

green areas for finished clusters. This MCG has 184 observations in 52 scans, and the

algorithm sets the observations in 4 different finished clusters.



3.2 Tests in other selected areas 45

Figure 3.9: Clustering stage of IDU-XM Resolver with blue dots for observations and

green areas for finished clusters. This MCG has 115 observations in 32 scans, and the

algorithm sets the observations in 4 different finished clusters.
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Since the beginning of its operational activities, Gaia detects a huge number of celestial

objects including solar system objects and stars of our Galaxy -the Milky Way- and be-

yond, thus requiring an efficient data reduction strategy in order to provide the targeting

accuracy of the final Gaia catalogue, expected in the early 2020s. In particular, one of the

key tasks of the Gaia data reduction is the cross-matching (XM) of Gaia objects, which

is aimed at providing a link between every Gaia observation and a source in a reference

catalogue.

To do this, the adopted approach consists in the splitting of the Gaia XM in three differ-

ent tasks: Observation to Source Match, Sky Partitioner and Match Resolver. Specifically,

the Match Resolver task is divided in three stages (clustering, cluster linking, and conflict

resolution) with the aim of offering an optimal XM resolution.

In this project, we have designed, developed and implemented a novel generalization

of the clustering stage of the Match Resolver task. Concretely, this approach is based on

a clustering analysis technique, namely the Nearest Neighbor Chain (NNC).

We have shown that the source model may be generalized to accommodate additional

source parameters and that the NNC algorithm may be adapted to it. As a result, a

suitable cluster analysis method has been identified with the inclusion of the proper motion

and the magnitude of the sources from the observations.

In addition, in the model developed in this project, the stopping rule is dynamically

computed during the clustering agglomeration process and it depends only on the obser-

vations of the specific cluster being processed, in contrast to other hierarchical methods

where, in general, the stop criteria is fixed to a constant value under user intervention.

During the development of this project, we noticed that in the proper motion model the

dissimilarity between two observations (i.e., clusters with only one observation) is always

zero and therefore it would be possible to match any two observations. Thus, although

the inclusion of the motion in the source model, initially we have had to agglomerate the

observations in terms of position in order to retrieve then a better estimate of the motion

of the source.

Moreover, the dissimilarity in the generalized source model does not satisfy the re-
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ducibility property, and therefore the stack of observations within the NNC algorithm

needs to be reset in each agglomeration iteration, which implies that the modified algo-

rithm depends on the order of the agglomeration. To solve this, it has been considered,

designed and implemented a post-processing to correct clusters which may not be coher-

ent as a final cluster. This post-analysis allows to provide consistent and optimal sets of

clusters.

As a future work, the inclusion of the parallax as well as other kind of source parameters

may be taken into account. Specifically in the case of including the parallax in the source

model, the current stopping rule may be updated thus not requiring any thresholding

dependency in order to accommodate the displacements in the apparent position of a

given object viewed along different lines of sight.

Conclusively, the results of the proposed generalization of the clustering stage for cross-

matching Gaia objects developed in this project are consistent as well as promising in terms

of performance. Moreover, the implemented algorithm provides an optimal resolution for

observations from high proper motion sources.
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