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The ability to detect unexpected stimuli in the acoustic environment and determine their
behavioral relevance to plan an appropriate reaction is critical for survival. This perspective
article brings together several viewpoints and discusses current advances in understanding
the mechanisms the auditory system implements to extract relevant information from
incoming inputs and to identify unexpected events. This extraordinary sensitivity relies
on the capacity to codify acoustic regularities, and is based on encoding properties that
are present as early as the auditory midbrain. We review state-of-the-art studies on
the processing of stimulus changes using non-invasive methods to record the summed
electrical potentials in humans, and those that examine single-neuron responses in animal
models. Human data will be based on mismatch negativity (MMN) and enhanced middle
latency responses (MLR). Animal data will be based on the activity of single neurons at the
cortical and subcortical levels, relating selective responses to novel stimuli to the MMN and
to stimulus-specific neural adaptation (SSA). Theoretical models of the neural mechanisms
that could create SSA and novelty responses will also be discussed.
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INTRODUCTION
Traditionally, studies on the auditory nervous system have relied
on the analysis of neuronal responses to simple stimuli. While this
approach has been useful to understand the basic mechanisms
that operate in the auditory system, recent studies are using more
ecologically valid stimuli to explore the interplay of the different
levels of the auditory hierarchy, from the brainstem to the cortex,
in a realistic environment. To navigate in an ever-changing real-
life scene, the brain is continuously using the sensory past to form
expectations about the future.

Most of us have experienced an unbearably loud clock or a
busy street that—mysteriously—after a while we stop noticing.
Adaptation is a common feature in sensory processing, and the
auditory system is not an exception. There are different theo-
ries that are not mutually exclusive, about why sensory adap-
tation is so pervasive. It decreases the amount of information
flowing in the system when the stimulus does not vary or is
repeated, it increases the sensitivity to detect stimulus changes
and abrupt onsets (Ulanovsky et al., 2003; Puccini et al., 2006)
and/or it provides a gain control mechanism in the encoding
system (Rabinowitz et al., 2011). All these strategies facilitate
the detection of novel stimuli, making adaptation and novelty
detection closely intertwined.

In order for the nervous system to determine whether a sound
is “novel”—in its current context–, there must be some ongoing
storage of information about which sounds have already occurred
and how they are related to each other. Novelty or unexpectedness
can arise from rareness or from abrupt change (as in the above
examples), but can also take more complex forms: In some
cases (such as when a sound source is moving away from the
listener), stimulus change is expected while stimulus repetition
is unexpected. The auditory system easily forms expectations at
different levels of complexity (Näätänen et al., 2001, 2010); hence
the related phenomena are regarded as signs of regularity encod-
ing rather than mere adaptation to an unchanging environment
(Winkler, 2007). In this perspective article, we will discuss the
neuronal basis and functional implications of this amazing feat
of the auditory system.

STIMULUS-SPECIFIC ADAPTATION APPEARS
SUBCORTICALLY
Human electroencephalographic (EEG) studies of responses to
sensory stimuli have shown that the waveform elicited by a
“novel” (low-probability) stimulus differs from that elicited by
a predictable (high-probability) stimulus. Indeed, the detec-
tion of “novel” (unexpected) sounds has been associated to a
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particular brain response derived from the human EEG, the
mismatch negativity (MMN; Näätänen et al., 1978; for recent
review, see Näätänen et al., 2007). The MMN is an auditory
event-related brain potential (ERP) component thought to index
the mechanisms underlying auditory regularity encoding. MMN
can be obtained using an “oddball paradigm”, in which a high-
probability (“standard”) sound is occasionally replaced by a low-
probability (“deviant”) sound. Differences in sound probability
are created by setting up a sequential regularity; that is, a con-
straint in the allowed transitions between successive stimuli in
the sequence. In the simplest case, this regularity is based on
stimulus/feature repetition (cf. Grill-Spector et al., 2006, for a
comprehensive account in the visual domain); more complex
cases include feature alternation, gradual progression, or feature
conjunctions (cf. Näätänen et al., 2001, 2010; Winkler, 2007).
MMN is measured as the difference between the ERP elicited
by the deviant sound and that elicited by the standard sound
and peaks at 150–200 ms from deviation onset (Note that if the
standard is defined by repetition, a compensation for the larger
afferent responses of the infrequent deviant sound must be intro-
duced; cf. Schröger and Wolff, 1996). MMN can also be recorded
in non-human species (e.g., Javitt et al., 1994; Tikhonravov et al.,
2008) including rodents (Astikainen et al., 2006; Nakamura et al.,
2011; Budd et al., 2012; Shiramatsu et al., 2013).

Because the detection of “novelty” (i.e., simple acoustic
deviance or complex regularity violation) requires information
storage and comparison over time, it must involve more or
less complex memory operations (Näätänen et al., 2001, 2010;
Winkler, 2007). For this reason it is commonly believed that
novelty detection must be accomplished at the level of the cortex.
However, the fact that the MMN persists during sleep or anesthe-
sia suggests that it is “preattentive” in origin (Tiitinen et al., 1994)
and therefore could originate subcortically. Although this idea
received support from early seminal studies suggesting subcortical
generators to the MMN (Kraus et al., 1994; Csépe, 1995), it has
been largely unexplored until recently (Escera and Malmierca,
2014). Yet, recent human studies have suggested that subcor-
tical auditory stations may undergoo substantial experience-
dependent plasticity (Chandrasekaran and Kraus, 2010; Kraus
and Skoe, 2010; Chandrasekaran et al., 2013; Skoe et al., 2013,
2014). For example, Kraus et al. have found that the brainstem
activity is enhanced when stimulus sequences contain predictable
sounds compared to more random (i.e., unpredictable) sequences
that is infrequent and unpredictable. In the present perspective,
we will present data to suggest the active role of the inferior col-
liculus (IC), and in general of the subcortical auditory pathway in
regularity encoding and deviance detection”. It is even suggested
that the IC is analogous to V1 in processing complexity (King
and Nelken, 2009). Yet the assumption that novelty detection is
a cortical function has persisted, not only for theoretical reasons
(complexity of the involved regularities as explained above), but
also for technical reasons, because it is difficult to pinpoint the site
at which scalp EEG waveforms are generated, especially in the case
of subcortical structures.

Importantly, over the past 10 years, a similar phenomenon
to that described for MMN has been demonstrated to occur at
the cellular level using neurophysiological tools. Single neuron

recordings using an oddball paradigm similar to that used for
MMN studies have shown a decreased response to a repeated
(standard) sound and an increased response to a less repeated
(deviant) sound within a sound sequence in the cat auditory
cortex (AC; Ulanovsky et al., 2003). This phenomenon has been
termed “stimulus-specific adaptation” (SSA) and was originally
proposed as the neuronal correlate of MMN. Moreover, it was
assumed that SSA was a unique and emerging property of the
AC neurons (Ulanovsky et al., 2003; Nelken and Ulanovsky,
2007).

However, there is now a substantial body of evidence chal-
lenging this idea (Pérez-González et al., 2005, 2012; Anderson
et al., 2009; Malmierca et al., 2009; Yu et al., 2009; Antunes et al.,
2010; Antunes and Malmierca, 2011, 2013; Bäuerle et al., 2011;
Zhao et al., 2011; Duque et al., 2012, 2014; Patel et al., 2012;
Ayala et al., 2013; Ayala and Malmierca, 2013; Pérez-González
and Malmierca, 2014). These studies have demonstrated that
SSA also occurs subcortically (Figure 1A), i.e., in the IC and
medial geniculate body (MGB). Moreover, many aspects of SSA
seen in the IC (Ayala and Malmierca, 2013; Pérez-González and
Malmierca, 2014) and in the MGB (Antunes et al., 2010; Antunes
and Malmierca, 2013) are very similar (Figures 1B,C) to that
described in the AC (Ulanovsky et al., 2003, 2004; von der Behrens
et al., 2009; Taaseh et al., 2011). However, a major difference
between the cortical and subcortical SSA is that SSA in the IC
and MGB is stronger in the non-lemniscal divisions, while the
first lemniscal nucleus where SSA is strong and widespread is
the primary AC (Ulanovsky et al., 2003; Nelken and Ulanovsky,
2007). A simple interpretation would be that SSA is merely
imposed upon IC and MGB neurons (Nelken and Ulanovsky,
2007) through the massive descending corticofugal pathways in a
top-down fashion (Malmierca and Ryugo, 2011). However, recent
work has demonstrated that SSA in the MGB and IC is not merely
inherited from the AC (Antunes and Malmierca, 2011; Anderson
and Malmierca, 2013) since cortical deactivation does not change
SSA sensitivity. Hence SSA may be created independently at each
level of the auditory hierarchy (Escera and Malmierca, 2014). For
example, the pharmacological manipulation of GABAA recep-
tors in the IC (Pérez-González et al., 2012; Pérez-González and
Malmierca, 2012) and MGB (Duque et al., 2014) has shown
that, while not involved in the generation of SSA, inhibitory
inputs could modulate the level of adaptation by reducing the
relative strength of the response to the standard and deviant
stimuli increasing the deviant to standard ratio, acting as a gain
control mechanism, similar to the iceberg effect (Figures 1D,F;
Pérez-González et al., 2012). Note that this does not exclude
the possibility that the consequences of SSA are also transmitted
to the next relay station as in a cascade. In fact, adaptation
effects cascade through the visual system (Dhruv and Carandini,
2014).

CELLULAR MECHANISMS OF AUDITORY CORTEX
ADAPTATION
The previous section outlined findings showing that auditory
adaptation (often referred to as forward masking/suppression;
e.g., Wehr and Zador, 2005; Scholes et al., 2011) can be
attributed not only to AC but also to subcortical structures (cf.
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FIGURE 1 | (A) Schematic diagram (after Escera and Malmierca, 2014)
illustrating the main anatomical subdivisions as well as the similarities and
differences of SSA at the IC (left column), MGB (middle column) and auditory
cortex (AC) (right column). Arrows indicate the major connections between
these regions. Green arrows are excitatory projections, purple arrows
inhibitory connections. Non-lemniscal divisions are highlighted as
yellow-shade areas and stipple areas show regions where SSA is strong. Note
that SSA is linked to non-lemniscal regions in IC and MGB but to the lemniscal
primary AC. Dot raster plots (B) and peri-stimulus histogram (PSTHs); (C) that
show the adaptation of the response to the standard stimulus (blue dots)
while the response to the deviant stimulus (red dots) does not adapt. (D)
Neurons respond to deviants (orange) and standards (light blue) with high
firing rates, in the absence of inhibition and thus the deviant to standard ratio

is small. By contrast, GABAA- mediated inhibition (E) reduces the responses
to both deviants (red) and standards (dark blue) acting as in the “iceberg
effect” increasing the deviant to standard ratio and thus enhancing SSA. For
more details see Pérez-González et al. (2012). (F) Average adaptation time
course in single neurons in the AC in the awake animal, in silent cortical slices
and “active” cortical slices (where the intracellularly recorded neuron was
induced to fire following a prerecorded neuron in the awake animal). Note that
all adaptation in vitro is due strictly to cellular (and not synaptic) mechanisms.
To estimate the time course, two identical 50 ms pulses of current injection
were delivered with intervals spanning from 50 ms to 5 s (see inset). The
relative frequency rate of the second response with respect to the first one
are represented. Note that while the time course is similar, the larger

(Continued )
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FIGURE 1 | Continued
adaptation is that in the awake animal and the least the one in the silent
slice. Part of the difference between those two is due to the ongoing
activity in the awake, as the in vitro “active” preparation indicates. A logistic
function was fitted. Error bars are SEM. For more details see Abolafia et al.
(2011). Abbreviations: A1, primary auditory cortex; A2 non-primary auditory
cortex; CNIC, central nucleus of the inferior colliculus; DCIC, dorsal cortex
of the inferior colliculus; LCIC, lateral cortex of the inferior colliculus; MGD,
dorsal division of the medial geniculate body; MGM, medial division of the
medial geniculate body; MGV, ventral division of the medial geniculate
body; Rt, reticular thalamic nucleus.

Pérez-González and Malmierca, 2014). Besides this anatomical
diversity, adaptation shows diversity as well in the temporal
dimension: it occurs at different time scales spanning many
orders of magnitude, from several milliseconds to tens of sec-
onds (Ulanovsky et al., 2004; Costa-Faidella et al., 2011). This
broad time range makes it compatible with the participation of
different potential underlying mechanisms. Some of these are
synaptic mechanisms such as: synaptic depression (Wehr and
Zador, 2005), decreased excitation or lateral inhibition (Qin and
Sato, 2004), increased inhibition (Zhang et al., 2003), or excita-
tory/inhibitory imbalance (De Ribaupierre et al., 1972; Volkov
and Galazjuk, 1991; Ojima and Murakami, 2002; Oswald et al.,
2006).

Paradoxically, the role of intrinsic membrane mechanisms
such as potassium currents in AC adaptation had been ruled
out or neglected until recently, even though they participate
in sensory adaptation in other sensory cortices: sensorimotor
(Schwindt et al., 1988), barrel (Diaz-Quesada and Maravall,
2008), or visual cortex (Sanchez-Vives et al., 2000a,b; Wang
et al., 2003). Potassium currents act as an activity-dependent
adaptation mechanism, such that depolarization and high fre-
quency firing during sensory responses induce not only the
activation of voltage-dependent potassium currents but also an
intracellular increase of ions like Ca2+ and Na+ that activate ion-
dependent K+ channels (for reviews see Sah and Faber, 2002;
Bhattacharjee and Kaczmarek, 2005). Even if a synaptic depo-
larization is subthreshold, sodium entering through glutamate
receptors can activate sodium-dependent K+ channels (Nanou
et al., 2008). The activation of potassium currents hyperpolarizes
the membrane potential, decreasing the neuronal responsiveness
to subsequent inputs with time courses that range from tens
of milliseconds to tens of seconds. Such slow time courses are
supported by the dynamics of the relevant intracellular ions –in
particular Na+− in the vicinity of K+ channels and their bind-
ing/unbiding to them. Sodium and calcium-dependent potassium
currents also exist in neurons of the rat AC (Abolafia et al.,
2011).

In order to explore whether potassium channels do actually
play a role in auditory adaptation in the awake animal, it was
first necessary to determine the time course of adaptation of AC
neurons in chronically implanted awake rats. In a recent study,
Abolafia et al. (2011) delivered two auditory stimuli separated
by intervals ranging between milliseconds and several seconds.
The attenuation of the response to the second stimulus with
respect to the first along time provided the time course of

adaptation, showing that a 50 ms sound in the awake animal
influences responses occurring up to 2–5 s later. The same audi-
tory protocol was then mimicked in the cortical neurons in vitro
(Figure 1F) through intracellular current injections that had the
same duration and would evoke the same number of spikes
as the auditory stimuli did in the awake animal. It should be
noted that those were silent slices and therefore all the observed
phenomena only involve the intracellularly recorded neuron
and not the network in which it is embedded. This approach
demonstrated that the time course of adaptation observed in
the awake rat was highly similar to the one detected in vitro
(Abolafia et al., 2011). However, the response attenuation was
larger in the awake animal. A critical factor contributing to
this difference is the spontaneous ongoing activity in the awake
animal, that builds up adaptation currents contributing to a
steady state of adaptation in an active (awake) cortical network
with respect to a silent one (slice). This steady state of adap-
tation has been demonstrated by replicating spontaneous firing
recorded from neurons in the awake animal in in vitro neurons by
means of intracellular current injection (Figure 7; Abolafia et al.,
2011).

Therefore, a significant fraction of cortical auditory adap-
tation can be explained just by intrinsic cellular mechanisms
(K+ channels), although this does not exclude the additional
participation of synaptic mechanisms. Hence ionic mechanisms
should be incorporated into mechanistic explanations of adap-
tation and novelty detection. Further, the interaction between
potassium channels-mediated adaptation and synaptic depression
provides computational capabilities to the network to detect rate
of change, anticipation and detection of novelty (Puccini et al.,
2006, 2007).

An argument that is often used against ionic channels as
a mechanism for auditory adaptation is that they lack input
specificity and thus they would attenuate any incoming input, not
supporting the delicate SSA (Ulanovsky et al., 2003, 2004; Wehr
and Zador, 2005). However, based on cortical circuitry, a spec-
ulation would be that cellular hyperpolarization and decreased
excitability are cellular properties that become network properties
by reverberating in the local recurrent circuitry of the cortical
column, contributing to adaptation in neurons with the same
frequency-specificity.

NOVELTY DETECTION IN A CORTICO-SUBCORTICAL
DISTRIBUTED CEREBRAL NETWORK
The idea that novelty detection and the underlying regularity
encoding can take place at levels hierarchically lower/earlier than
those generating the MMN, is also supported by a series of human
studies that recorded middle latency responses (MLRs) in the
oddball paradigm. The MLR is a series of characteristic waveforms
elicited to discrete auditory stimuli in the range 12–50 ms post-
onset (Figure 2A). They are labeled as N0, P0, Na, Pa, and Nb
(sometimes Pb, equivalent to P50, is included), and represent the
earliest cortical responses to a sound (Winkler et al., 2013). For
example, it has been shown that the P0 waveform peaking at 16–
19 ms is generated in primary AC, whereas subsequent compo-
nents are generated in surrounding areas of the supratemporal
plane and gyrus (Yvert et al., 2001, 2005).
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FIGURE 2 | (A–B) Human auditory evoked potentials in the latency range of
the middle latency response (MLR, at circa 20–50 ms; A, left), and later on, by
the long latency response (circa 100–200 ms; B, right), reveal that deviance
detection based on regularity encoding takes place in human AC at recurrent
neural networks; red, deviant response; blue, standard response; black, control
response. Note that physically identical sounds elicited larger responses when
they were presented as deviant than as standard or control stimuli in the MLR

(by the Nb component, at 40 ms from change onset) and long-latency (i.e.,
MMN, by 100 ms) ranges. Adapted from Grimm et al. (2011). (C) Schematic
illustration of stimulus paradigms departing from the standard oddball
paradigm to achieve an increase in complexity and ecological validity. These
and similar paradigm variations have shown that complex regularities in the
acoustic environment can be extracted from just a few exemplars, as
demonstrated by long-latency auditory evoked potentials (the MMN).

One seminal study investigating novelty detection in the MLR
time range (Grimm et al., 2011) used a frequency “deviant”
tone of 1200 Hz presented amongst 800 Hz standard tones, and
implemented a “reversed” condition (where deviant and stan-
dard switched their roles, controlling for stimulus-feature effects),
and a “controlled” condition (where the deviant was embedded
amongst a series of other equiprobable tones, controlling for
refractoriness effects; cf. Schröger and Wolff, 1996). The results
(Figure 2A) showed an enhanced Nb MLR component elicited by
the deviant tones when compared both to the reversed standard
and to the control stimulus. This reveals that “true” deviance
detection (i.e., based on regularity encoding rather than simple
adaptation) occurs at latencies as short as 40 ms from sound onset
(Grimm et al., 2011). This demonstration of regularity-based
deviance detection is important to develop a general framework
encompassing not only simple adaptation phenomena (i.e., based
on stimulus repetition; cf. Grill-Spector et al., 2006), but also
more complex forms of auditory regularity encoding.

Subsequent studies confirmed the involvement of the Nb in
frequency deviant detection (Alho et al., 2012; Leung et al., 2012;
Althen et al., 2013), and revealed that other MLR waveforms are

related to deviant detection in other auditory stimulus features,
such as the Na for location changes (Sonnadara et al., 2006;
Cornella et al., 2012; Grimm et al., 2012), and the transition
between the Na-Pa waveforms for intensity changes (Althen et al.,
2011) or the Pa-Nb for temporal deviations (Leung et al., 2013).

A further magnetoencephalographic (MEG) study revealed
that deviant-detection is in fact a distributed property of the AC,
with neural populations generating its Nb/MLR correlates located
in more medial and anterior regions than those giving rise to
the MMN (Recasens et al., 2014a). Hence, these early deviance-
related responses by the MLR (Figure 2A) may represent, by their
earlier latency and lower hierarchical distribution, a better human
psychophysiological correlate of the single-unit novelty responses
than the MMN (Figure 2B; Escera et al., 2013).

At lower auditory stations, while no correlates of deviance
detection were found in the auditory brainstem response (ABR;
Slabu et al., 2010; Althen et al., 2011), a recent study that mea-
sured the frequency following response (FFR; Skoe and Kraus,
2010) revealed the involvement of the human IC in deviance
detection based on regularity encoding (Slabu et al., 2012) as in
animal studies (Gao et al., 2014).
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Interestingly, studies addressing whether more complex types
of auditory regularities could be encoded at the level of the
MLR-generating system, such as tone alternation (Cornella et al.,
2012), feature conjunction (Althen et al., 2013) or pattern regu-
larities (Recasens et al., unpublished observations), yielded neg-
ative results. These negative findings, together with the early
effects described above for simple feature violations, suggest that
the auditory system is organized in a hierarchical fashion, so
that complex regularities require higher levels of the auditory
hierarchy to be picked up (Grimm and Escera, 2012; Escera and
Malmierca, 2014). However, it should be noted that preliminary
studies using single unit recordings in animals suggest that IC
neurons show sensitivity to complex regularities (Aguillon et al.,
2013).

REGULARITY ENCODING AND NOVELTY DETECTION IN
COMPLEX STIMULUS ENVIRONMENTS
Now that the existence of “novelty responses” along the auditory
pathway is well established both in animal and human stud-
ies, an important next step will be to characterize the proper-
ties of this mechanism in more detail—particularly with more
ecologically valid stimulus configurations (Figure 2C). Initial
demonstrations of these effects have often used repetitive sound
sequences over long recording periods, making it difficult to
distinguish between simple (repetition-based) adaptation and a
“true” regularity encoding account. But realistic sound sources
exhibit more complex forms of organization; for instance, they
do not repeat their sound emissions but change them in a regular
manner (e.g., when gradually moving to a different location).
There is now abundant evidence to show that the MMN responds
to violations of such complex forms of regularities (for reviews,
see Näätänen et al., 2001, 2010; Winkler, 2007). Whether the
same is true at earlier levels of the auditory hierarchy is still
a matter of investigation (see above; cf. Cornella et al., 2012;
Aguillon et al., 2013; Althen et al., 2013). It is important to resolve
this issue to develop better links between the neuronal models
reviewed above and theoretical accounts of regularity encoding
coming from MMN-based investigations (Winkler, 2007) or from
closely related research fields such as predictive coding (Friston,
2005).

Another form of real-life complexity has received much less
attention: a sound source usually does not exhibit the same type
of regular behavior over hours, but behaves according to one
regularity for a while and then according to another regularity
(e.g., it stands still, gradually changes location, then stands still
again). Hence the brain should be able to extract regularities con-
siderably faster than shown in a typical protocol where the same
regularity is valid for an hour or longer. Some MMN studies have
demonstrated that regularity extraction is possible from just a few
exemplars (Cowan et al., 1993; Winkler et al., 1996; Huotilainen
et al., 2001; Haenschel et al., 2005; Bendixen et al., 2007, 2008).
Both human and animal data suggest that the brain picks up
regularities at multiple timescales (Ulanovsky et al., 2004; Costa-
Faidella et al., 2011). This is important because it demonstrates
quick adaptation to newly emerging regularities as well as longer-
lasting impact of previously valid regularities, both of which
appear to be ecologically adaptive. Systematic investigations along

these lines across different levels of the auditory hierarchy should
prove informative for a comprehensive model of regularity encod-
ing and novelty detection.

Characterizing the mechanisms and temporal dynamics of
regularity encoding is important also in the face of its implications
for other cognitive processes. Sensory regularities render the
environment predictable and hence serve preparation of appro-
priate motor responses. Another benefit of regularity encoding
may lie within perception itself: Regularities have been shown to
support auditory scene analysis, i.e., disentangling a mixture of
overlapping signals emitted by several concurrently active sound
sources (see Bendixen, 2014, for review). Furthermore, the ability
to use certain regularities for sound source segregation appears to
decline with age (Rimmele et al., 2012), possibly linked with an
age-related decline in regularity encoding capacities (Pekkonen,
2000; Näätänen et al., 2012). Hence a comprehensive understand-
ing of regularity encoding and novelty detection, as well as of
impairments in these processes, may shed light on crucial aspects
of everyday listening experience.

CONCLUDING REMARKS
In the auditory system, the sequence of previous sensory stim-
ulation and its resulting neuronal activation deeply influence
subsequent responses—providing the ground for auditory adap-
tation, regularity encoding, and novelty detection. The anatom-
ical stages and mechanisms contributing to these phenomena
can now be partly delineated based on recent advances outlined
above. Animal studies help to shed light on the neurophysiological
mechanisms subserving adaptation. We have argued that not
only synaptic but also cellular mechanisms should be taken into
account as viable contributors. Furthermore, we suggested that it
may be more appropriate to link SSA with MLR deviance-related
effects than with the MMN component.

Human studies are contributing to a more comprehensive
picture of the mechanisms involved in auditory perception where
regularity encoding seems to be paramount. Moreover, human
ERP studies provide a link to clinical neuroscience so that patho-
physiological mechanisms of auditory information processing
in neurological, psychiatric and developmental disorders can be
revealed (Näätänen et al., 2011, 2012). In this regard, the recently
discovered correlates of auditory deviance detection by the MLR
latency range, and even the psychophysiological subcortical cor-
relates revealed by the FFR may help to go a step beyond the
MMN in understanding these disorders. Animal correlates again
provide a valuable complementary approach to elucidate the role
of novelty and adaptation in auditory perception under normal
and pathological conditions. Additional insight may be gained
by studying animal models in the same way as done in human
studies (e.g., MLR, MMN). With this perspective article, we hope
to contribute to further promising research at this fascinating
intersection.
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