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With the advent of galaxy surveys which provide large samples of galaxies or galaxy clusters over a volume comparable to the
horizon size (SDSS-III, HETDEX, Euclid, JDEM, LSST, Pan-STARRS, CIP, etc.) or mass-selected large cluster samples over a large
fraction of the extra-galactic sky (Planck, SPT, ACT, CMBPol, B-Pol), it is timely to investigate what constraints these surveys
can impose on primordial non-Gaussianity. I illustrate here three different approaches: higher-order correlations of the three
dimensional galaxy distribution, abundance of rare objects (extrema of the density distribution), and the large-scale clustering of
halos (peaks of the density distribution). Each of these avenues has its own advantages, but, more importantly, these approaches

are highly complementary under many respects.

1. Introduction

The recent advances in the understanding of the origin
and evolution of the Universe have been driven by the
advent of high-quality data, in unprecedented amount (just
think of WMAP and SDSS, e.g.). Despite this, most of the
information about cosmological parameters come from the
analysis of a massive compression of the data: the power
spectrum of their statistical fluctuations over the mean. The
power spectrum is a complete statistical description of a
random field only if it is Gaussian.

Even the simplest inflationary models predict deviations
from Gaussian initial conditions. These deviations are
expected to be small, although “small” in some models may
be “detectable.” For a thorough review of inflationary non-
Gaussianity see [1]; for our purpose it will be sufficient
to say that to describe inflation-motivated departures from
Gaussian initial conditions many write [2-5]

© = ¢+ fu(¢p® — (¢2)). (1)

Here ¢ denotes a gaussian field and ® denotes Bardeen’s
gauge-invariant potential, which, on sub-Hubble scales
reduces to the usual Newtonian peculiar gravitational poten-
tial, up to a minus sign. In the literature, there are two
conventions for (1): the large-scale structure (LSS) and the

Cosmic Microwave Background (CMB) one. In the LSS
convention @ is linearly extrapolated at z = 0; in the CMB
convention @ is instead primordial: thus fi?® = g(z =
oo)/g(O)fI\?LMB ~ 1.3f1§LMB, where g(z) denotes the linear
growth suppression factor relative to an Einstein-de-Sitter
Universes. In the past few years it has become customary to
always report fSMP values even if, for simplicity as it will be
clear below, one carries out the calculations with fit.

While for simplicity one may just assume fyi, in (1) to be
a constant (yielding the so-called local model or local-type)
in reality the expression is more complicated and fyr, is scale
and configuration dependent. Even if the bispectrum does
not completely specify non-Gaussianity, in most practical
applications, the non-Gaussianity is set by writing down the
bispectrum of ®. For example, one can see that for the local
model the bispectrum is

Bo(ki,ka, k3) = 2 furPg(ki)Pg(k2) + 2 cyc, (2)

where P denotes the power spectrum and it is often assumed
that Py = Pg; “cyc.” denotes two cyclic terms over ki, ks, k3.
It has been shown [6] that for non-Gaussianity of the
local type the bispectrum is dominated by the so-called
squeezed configurations, triangles where one wave-vector
length is much smaller than the other two. Models such
as the curvaton for example, have a non-Gaussianity of



the local type. Standard, single-field slow roll inflation also
yields a local non-Gaussianity but with an unmeasurably
small fnr (see [1] and references therein). On the other
hand, many inflationary models have an equilateral-type
non-Gaussianity, that is, the bispectrum is dominated by
equilateral triangles [6]. References [7, 8] have proposed a
functional form which closely approximates the behavior of
the inflationary bispectrum and which is useful for efficient
data-analysis:

Bki, ka, ks) = 6 fa§ — P(ki)P(kz) + 2cyc.
— 2[P(k1)P(k)P(k3)]** 3)

+PV3 (k) P? (k) P(ks) + 5cyc.}.

Note that the same numerical value for fyi gives rise to a
larger skewness in the local case than in the equilateral case
(e.g., see [9]), explaining why the CMB constraints on fyr,
are weaker for the equilateral case [7, 8, 10].

Specific deviations from a single field, slow roll, canonical
kinetic energy, Bunch-Davies vacuum, leave their specific
signature on the bispectrum “shape” (i.e., the dependence of

B on the shape of the triangle made by the three k vectors),
see discussion in [11] and references therein.

Non-Gaussianity therefore offers a probe of aspects of
inflation (namely, the interactions of the inflaton) that are
difficult to probe by other means (i.e., measuring the shape
of the primordial power spectrum and properties of the
stochastic background of gravity waves). So, how could
primordial non-Gaussianity be tested?

One could look at the early Universe: by looking at
CMB anisotropies we can probe cosmic fluctuations at a
time when their statistical distribution should have been
close to their original form but the signal is small. On the
other hand, one could analyze the statistics of the large-scale
structures, close to the present-day, when the overdensities
are larger, but this is a more complicated approach, since
gravitational instability (for the dark matter distribution)
and bias (for galaxies or clusters of galaxies) introduce non-
Gaussian features in an initially Gaussian field and they
mask the signal one is after. Finally, the abundance of rare
events (such as galaxy clusters and high-redshift galaxies)
probes the tails of the PDF of the density field, which are
extremely sensitive to deviations from Gaussianity. Here,
I will concentrate on the signature of non-Gaussianity on
large-scale structure (i.e., at redshift z < 1) as they can be
traced by galaxy surveys (i.e., I will not consider wide field
weak gravitational lensing surveys); other contributions to
this review will focus on non-Gaussian signatures on the
CMB, thus here it will be sufficient to give only a very brief
and succinct introduction to the subject.

At recombination fluctuations are small (recall that d¢, ~
107%), and the CMB temperature fluctuations are directly
related to @ making this a very clean probe. However,
effectively only one redshift can be tested giving us only a
2-dimensional information.
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The most widespread technique for testing Gaussianity
in the CMB is to use the CMB bispectrum:

my _my _msz\ _ 6 6 ¢
<a€1 dp, Ap, > = B€1€253 (nil n212 r3n3)’ (4)

where the a;' are the coefficients of the spherical harmonic
expansion of the CMB temperature fluctuation: AT/T =
Demap Y and the presence of the 3-J symbol ensures that
the bispectrum is defined if [} + [, + [ = even, £; + & =
li = |l; — & (triangle rule), and that m; + m, + m3 = 0.
It should be however clear that secondary CMB anisotropies
and foregrounds also induce a CMB bispectrum which can
mask or partially mimic the signal see, for example [5, 12—
17] and references therein.

In the last few years, this area of research has received
an impulse, motivated by the recent full sky CMB data from
WMAP. In particular it has been shown that the constraints
can be greatly improved by effectively “reconstructing” the
potential ® from CMB temperature and polarization data
rather than simply using the temperature bispectrum alone
[18, 19]. This technique would yield constraints on non-
Gaussianity of the local type of Afy;, ~ 1 for an ideal
experiment and Afyr ~ 3 for the Planck satellite. This
is particularly promising as fyi, of order unity or larger is
produced by broad classes of inflationary models (see e.g.,
[1] and references therein).

Currently, the most stringent constraints for the local
type are 27 < fyr, < 147 at the 95% confidence (central value
87) from WMAP 3 years data [20]; and from the WMAP
5 years data, =9 < fnr < 111 at the 95% confidence level
(central value 55) [10] and —4 < fyi < 80 [21]. Despite
the heated debate on whether fyy = 0 is ruled out or
not, the two measurements are not necessarily in conflict:
the two central values differ by only about 1o; different,
although not independent, data sets were used with different
galactic cuts, and the maximum multipole considered in
the analyses is also different. What makes the subject very
interesting, is that, if the central value for fyy is truly around
60, forthcoming data will yield a highly-significant detection.

2. Higher-Order Correlations

Theoretical considerations (see discussion in e.g., [11]
and references therein) lead us to define primordial non-
Gaussianity by its bispectrum. While in principle there may
be types of non-Gaussianity which would be more directly
related to higher-order correlations (e.g., [22] and references
therein), and while a full description of a non-Gaussian
distribution would require the specification of all the higher-
order correlations, it is clear that quantities such as the
bispectrum enclose information about the phase correlation
between k-modes. In the Gaussian case, different Fourier
modes are uncorrelated (by definition of Gaussian random
phases) and a statistic like the power spectrum does not carry
information about phases. The bispectrum is the lowest-
order correlation with zero expectation value in a Gaussian
random field. But, even if the initial conditions were
Gaussian, nonlinear evolution due to gravitational instability
generates a nonzero bispectrum. In particular, gravitational
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instability has its own “signature” bispectrum, at least in the
next-to-leading order in cosmological perturbation theory
[23]:

B(’gl,lgz,]zs) = 2P(k1)P(k2)](’€1,1€2) + 2cyc, (5)
where J (121, lgz) is the gravitational instability “kernel” which

depends very weakly on cosmology and for an Einstein-de-
Sitter Universe is

- - - -\ 2
(k) =2+ 8 "‘2("1+k2)+2("1 'kz) G

7 2k1k2 k2 k1 7 k1k2

In the highly nonlinear regime the detailed form of the
kernel changes, but it is something that could be computed
and calibrated by extending perturbation theory beyond the
next-to-leading order and by comparing with numerical N-
body simulations (see other contributions in this issue). It
was recognized a decade ago [4] that this signal is quite large
compared to any expected primordial non-Gaussianity and
that the primordial signal “redshifts away” compared to the
gravitational signal. In fact, a primordial signal given by a
local type of non-Gaussianity parameterized by a given fxr,
would affect the late-time dark matter density bispectrum
with a contribution of the form

BfNL local (lzl, Igz, ];3’ Z)

7 (K, Ko) 7)

= 2fNLP(k1 )P(kz)m + 2CYC,

where D(z) is the linear growth function which in an

Einstein-de-Sitter universe goes like (1 + z) 'and

o Mlks)
M (k)M (kz)’

2 K*T(k)
3H Qo

o~

M(k) =

(8)

T(k) denoting the transfer function, Hy the Hubble parame-
ter, and Q,,o the matter density parameter. Clearly the two
contributions have different scale and redshift dependence
and the two kernel shapes in configuration space are
different, thus, making the two components, at least in
principle and for high signal-to-noise, separable.
Unfortunately, with galaxy surveys, one does not observe
the dark matter distribution directly. Dark matter halos are
believed to be hosts for galaxy formation, and different
galaxies at different redshifts populate halos following differ-
ent prescriptions. In large-scale structure studies, often the
assumption of linear scale independent bias is made. A linear
bias will not introduce a nonzero bispectrum in a Gaussian
field and its effect on a field with a nonzero bispectrum is
only to rescale its bispectrum amplitude. This is, however,
an approximation, possibly roughly valid at large scales for
dark matter halos, and when looking at the power spectrum,
but unlikely to be true in detail. To go beyond the linear bias
assumption, often the assumption of quadratic bias is made,
where the relation between dark matter overdensity field
and galaxy field is specified by two parameters: b; and b,
0g(x) = bidpm(x) + bz((?l%M - (612)M)); b, and b, are assumed

to be scale-independent (although this assumption must
break down at some point) but they can vary with redshift.
Clearly, a quadratic bias will introduce non-Gaussianity even
on an initially Gaussian field. In summary, for local non-
Gaussianity and scale-independent quadratic bias we have
4, 24]

B(lgl,k;, ];3, Z)

= 2P(k;)P(k2)by (2)° 9)
F (ki k. -
X fNLSD(lz)Z) +](k1’k2) * Zbljl((zz)) e

Before the above expression can be compared to observa-
tions it needs to be further complicated by redshift space
distortions (and shot noise). Realistic surveys use the redshift
as a proxy for distance, but gravitationally induced peculiar
velocities distort the redshift-space galaxy distribution. We
will not go into these details here as including redshift space
distortions (and shot noise) will not change the gist of the
message.

From a practical point of view, it is important to note
that photometric surveys, although in general can cover
larger volumes that spectroscopic ones, are not suited for this
analysis: the projection effects due to the photo-z smearing
along the line-of-sight is expected to suppress significantly
the sensitivity of the measured bispectrum to the shape of
the primordial one (see e.g., [25, 26]).

Reference [4] concluded that “CMB is likely to provide
a better probe of such (local) non-Gaussianity.” Much more
recently, reference [27] revisited the issue and found that,
assuming a given known redshift dependence of the (by, b)
bias parameters and an all sky survey from z = 0 to
z = 5 with a galaxy number density of at least 5 X
10~*h’/Mpc?, the galaxy bispectrum can provide constraints
on the fyi parameter competitive with CMB. However, for
all planned surveys, the forecasted errors are much larger
than Planck forecasted errors. This holds qualitatively also
for the equilateral case.

While the gravitationally induced non-Gaussian signal
in the bispectrum has been detected to high statistical
significance (see [28] and references therein, see also other
contributions to this issue), the nonlinear bias signature is
not uncontroversial, and there have been so far no detection
of any extra (primordial) bispectrum contributions.

Of course one could also consider higher-order corre-
lations. One of the advantages of considering, for example,
the trispectrum is that, contrary to the bispectrum, it has
very weak nonlinear growth [29], but has the disadvantage
that the signal is delocalized: the number of possible
configurations grows fast with the dimensionality # of the
n-point function!

In summary, higher-order correlations as observed in the
CMB or in the evolved Universe, can be used to determine
the bispectrum shape. The two approaches should be seen as
complementary as they are affected by different systematic
effects and probe different scales. The next two probes we



consider have a less-rich sensitivity to the bispectrum shape,
but their own peculiar advantages.

3. The Mass Function

The abundance of collapsed objects (dark matter halos as
traced, e.g., by galaxies and galaxy clusters) contains impor-
tant information about the properties of initial conditions
on galaxy and clusters scales. The Gaussian assumption plays
a central role in analytical predictions for the abundance
and statistical properties of the first objects to collapse
in the Universe. In this context, the formalism proposed
by Press and Schechter [30], with its later extensions and
improvements, has become the standard lore for predicting
the number of collapsed dark matter halos as a function of
redshift. However, even a small deviation from Gaussianity
can have a deep impact on those statistics which probe
the tails of the distribution. This is indeed the case for
the abundance of high-redshift objects like galaxies and
clusters at z 2 1 which correspond to high peaks, that
is, rare events, in the underlying dark matter density field.
Therefore, even small deviations from Gaussianity might be
potentially detectable by looking at the statistics of high-
redshift systems. Before proceeding let us introduce some
definitions.

We are interested in predictions for rare objects, that
is the collapsed objects that form in extreme peaks of the
density field 6(x) = dp/p. The statistics of collapsed objects
can be described by the statistics of the density perturbation
smoothed on some length scale R (or equivalently a mass
scale M = 4/37R%p), O¢.

To incorporate non-Gaussian initial conditions into
predictions for the smoothed density field, we need an
expression for the probability distribution function (PDF)
for &g. For a particular real-space expansion like (1), one may
make a formal change of variable in the Gaussian PDF to
generate a normalized distribution [31]. However, this may
not be possible in general and the change of variables does
not work for the smoothed cumulants of the density field. In
general, the PDF for a generic non-Gaussian distribution can
be written exactly as a function of the cumulant’s generating
function ‘Wy for the smoothed density field:

P(8r)dor = J % expl—iAde + We(L)]dSr  (10)
with
) A n
W) = 3 A, (an
n=2 °

where p,r denote the cumulants and, for example, por =
0}% = (8123) and the skewness p3 r is related to the normalized
skewness of the smoothed density field Szr = ps, R/yz R

» SfNI 1

It is useful to define a “skewness per fyi unit SO

that S3z = fNLSf\I“ The skewness s is related to the
underlying bispectrum by

J’d3k1d3k2d3k3
Wr=|— "6

oy r(k1, ko, ks ) 62

ks (12)
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where 8P denotes the Dirac delta function and Bs r denotes
the bispectrum of the § overdensity field smoothed on scale
R. It is related to the potentlal one trivially by remembermg

the Poisson equation: 8R(k) = M(k)WR(k)CD(k) Here,
Wr(k) denotes the smoothing kernel, usually taken to be the
Fourier transform of the top hat window. In any practical
application the dimensionality of the integration can be

reduced by collapsing the expressing k3 as a function of k1

and k2

It is important at this point to make a small digression to
specify definitions of key quantities. Even in linear theory, the
normalized skewness of the density field depends on redshift;
however in the Press and Schechter framework one should
always use linearly extrapolated quantities at z = 0. In this
context therefore, when writing Ss g = fNLS3NI Uif Sf Nt
that if the density field extrapolated linearly at z = 0 then fNL
must be the LSS one and not the CMB one.

To compute the abundance of collapsed objects from the
PDF one will then follow the Press and Schechter swindle:
first compute

P(>8. | R) = j Ao P (8%), (13)
8c(2)

where J, denotes the critical threshold for collapse; then the
number of collapsed objects is

_3H}Q
n(M,2)dM = 2"~ = 1

R)

Note that the redshift dependence is usually enclosed only in
Oc: oy is computed on the field linearly extrapolated at z = 0,
and 6.(z) = A(z)D(z = 0)/D(z) and A.(z) depends very
weakly on redshift and A.(z = 0) ~ 1.68.

Equation (14) however cannot be computed analytically
and exactly starting from (10): some approximations need
to be done in order to obtain an analytically manageable
expression. Two approaches have been taken so far in the
literature which we will briefly review below.

3.1. MV] Approach. The authors of [31] proceed by first
performing the integration over 6z to obtain an exact
expression for P (> 6. | z, M). At this point they expand
the generating functional to the desired order, for example,
keeping only terms up to the skewness, then perform a
Wick rotation to change variables and finally a saddle-
point approximation to evaluate the remaining integral. The
saddle point approximation is very good for large thresholds
Oc/aym > 1, thus for rare and massive peaks. For the final
expression for the mass function they obtain

n(M,z) =

3HOQ 1 B 2

8 GM? 7oy P 203
(15)
1 662 dS3,M 0« doy

6 1 Ss.010./3 dInM * oy dInM |’

where o) denotes the rms value of the density field, the
subscript M denotes that the density field has been smoothed
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FIGURE 1: Skewness S; & of the density field at z = 0 as a function of
the smoothing scale R for different types of non-Gaussianity. Figure
reproduced from [32].

on a scale R(M) corresponding to R(M) = [M3/(4p)] 13 and
Oy = Ocry/1 — 8:S3.m/3.

This derivation shows that the mass function in principle
depends on all cumulants, but that if non-Gaussianity is
described by a bispectrum (and all higher order connected
correlations are assumed to be zero or at least negligible),
it depends only on the skewness. The mass function does
not carry explicit information about the shape of non-
Gaussianity. Nevertheless for a given numerical value of
fni the skewness can have different amplitude and scale
dependence for different models of non-Gaussianity, as
illustrated in Figure 1.

3.2. LMSV Approach. The authors of [9] (LMSV) instead
proceed by using the saddle point approximation in the
expression for & (6g) and then using the Edgeworth expan-
sion truncated at the desired order. The resulting simplified
expression for the PDF can then be integrated to obtain
P (> 6. | z,R) and derived to obtain the mass function. The
final mass function in this approximation is given by

2 2
ﬁ(M,z):ZaHOQm’O ! exp[ 6‘}

W 27Xxs _E
4 2
o |dnow (O Ssmom 87;_28—;—1
dM \ oy 6 Oy oM

Vs (8
+6 M GM(UJ%/[ 1]].

Without knowledge of all higher cumulants one is forced
to use approximate expressions for the mass function. By
truncating the Edgeworth expansion at the linear order
in the skewness, the resulting PDF is no longer positive-
definite. The number of terms that should be kept in the
expansion depends on §.(z)/oy. The truncation used is a
good approximation of the true PDF if §.(z)/op is small

(16)

(and non-Gaussianity is small) but for rare events (the tails
of the distribution) 8.(z)/oy is large. One thus expect this
approximation to break down for large masses, high redshift,
and high fxr.

Reference [9] quantified the range of validity of their
approximation by assuming that when terms proportional
to S} become important is no longer valid to neglect terms
proportional to higher-order cumulants. Then they define
the validity regime of their mass function to be where
corrections from the S3 are unimportant. They find, as
expected, that for very massive objects the approximation
breaks down and that the upper mass limit for applicability
of the mass function decreases with redshift and fyi. But for
low masses, redshifts and fyp, their formula is better than the
MVJ. On the other hand the MV] range of validity extends to
higher masses, redshifts and fyi, values, as expected, as MV]
applied the saddle point approximation to (> 8, | M, z)
which is an increasingly good approximation for rare objects.

Of course, the natural observable to apply this method to
are not only galaxy surveys (and the clusters found there),
but, especially suited, are the mass-selected large clusters
surveys offered by on-going Sunyaev-Zeldovich experiments
(e.g., Planck, ACT, SPT).

A detailed comparison with N-body simulations is the
next logical step to pursue.

3.3. Comparison with N-Body Simulations. Before we pro-
ceed we should consider that the Press and Schechter
formulation of the mass function even in the Gaussian
initial conditions case, can be significantly improved see
for example, [34-36]. Much improved expressions have
been extensively calibrated on Gaussian initial conditions
N-body simulations. The major limitations in both the
MV] and LMSV derivations (since they follow the classic
Press and Schechter formulation) are the assumption of
spherical collapse and the sharp k-space filtering. In addition,
the excursion set improvement on the original Press and
Schechter swindle relies on the random-phase hypothesis,
which is not satisfied for non-Gaussian initial conditions.
Since these improvements of the mass function have not yet
been generalized to generic non-Gaussian initial conditions
(but work is on-going, see other contributions in this
issue) the analytical results above should be used to model
fractional corrections to the Gaussian case.

Thus the non-Gaussian mass function, nyg(M, z) can be
written as a function of a Gaussian one, ng(M, z) (accurately
calibrated on N-body simulations) with a non-Gaussian
correction factor R (see e.g., [9, 37]):

HNG(M,Z) = HG(M,Z)ﬂ(S3,M,Z), (17)

where

l/’l\(M, Z, fNL)

R(S3,M,2) = 7o —
( ’ Z) n(M)Z>fNL = 0)

(18)

and 7 is given by the MV] or LMSV approximation. The
correction R can then be calibrated on N-body simulations.

Reference [33] argues that the same correction that is
in the Gaussian case modifies the collapse threshold, ., to
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FiGURrk 2: Correction to the Gaussian mass function as measured in different non-Gaussian simulations. There is now agreement between
different simulations. The y axis should be interpreted as Log,,R (M, z, fur). For negative values of fyi the absolute value of the non-
Gaussian correction is considered. Reproduced from [33, Figures 4 and 5].

improve over the original Press and Schechter formulation,
may apply to the non-Gaussian correction. The detailed
physical interpretation of this is still matter of debate in the
literature [38—40]. In summary, reference [33] proposes to
write the non-Gaussian correction factor for the MVJ [31]
case as

Rne(M,z, i)
el

1
x| = Sec ds3,M + 1—

6 : 5“53)MdlnaM
/ -

and for the LMSV [9] case:

(19)

5ecSS,M

Rne(M, z, fuL)

I 82
X |:S3)M<ic — 2% -1
OMm OMm

where .. denotes the modified critical density for collapse,
which for high peaks is 8. ~ §../q. Reference [33] calibrated
these expressions on N-body simulations to find g = 0.75.
We anticipate here that the validity of this extrapolation (i.e.,

* dlnoy (01%4 AL

(20)

in terms of a correction to the critical collapse threshold) can
be tested independently on the large-scale non-Gaussian halo
bias as described in Section 4. Note that, in both cases, in the
limit of small non-Gaussianty the correction factors reduce
to

3

1)
R=1+ S3)M7‘3§.

60 (21)

Non-Gaussian mass functions have been computed from
simulations and compared with different theoretical pre-
dictions in several works [41-45]. In the past, conflicting
results were reported, but the issue seems to have been
settled, there is agreement among mass function measured
from different non-Gaussian simulations performed by three
different groups as shown for example in Figure2. As
expected both MV] and LMSV prescriptions for the non-
Gaussian correction to the mass function agree with the
simulation results, provided one makes the substitution §, —
Oec, with some tentative indication that MV] may be better
for very massive objects while LMSV performs better for
less rare events. This is shown in Figure 3 where the points
represent measurements from N-body simulations presented
in [33].

3.4. Voids. While galaxy clusters form at the highest over-
densities of the primordial density field and probe the high-
density tail of the PDE, voids form in the low-density regions
and thus probe the low-density tail of the PDE. Most of the
volume of the evolved universe is underdense, so it seems
interesting to pay attention to the distribution of underdense
regions. A void distribution function can be derived in an
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Ficure 3: The points show the non-Gaussian correction to the
mass function as measured in the N-body simulations of [33]. Blue
corresponds to fyi = 200 and red to fyi = —200. the dashed lines
correspond to the MVJ formulation and the dot-dashed lined to the
LMSYV formulation. In both cases the substitution §. — 6, has been
performed. The y axis should be interpreted as R (M, z, fxr = 200).
Reproduced from Figure 7 [33].

analogous way to the Press Schechter mass function by
realizing that negative density fluctuations grow into voids
[32], a critical underdensity &, is necessary for producing a
void and this plays the role of the critical overdensity &, for
producing bound objects (halos). The more underdense a
void is the more negative &, becomes. The precise value of
0y(z) depends on the precise definition of a void (and may
depend on the the observables used to find voids); realistic
values of §,(z = 0) are expected to be = —1. In the absence
of a better prescription, here, following [32], &, is treated
as a phenomenological parameter and results are shown
for a range of §, values. To derive the non-Gaussian void
probability function one proceeds as above with the only
subtlety that §, is negative and that (< §) = 1 — (> §)
thus |dP (< 8)/dM| = |dP (> §)/dM|. Thus the void PDF
as a function of |8,| can be obtained from the PDF of MV]
[31] or LMSV [9], provided one keeps track of the sign of
each term. For example in the LMSV approximation the void
distribution function becomes [32]
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where the expression is reported as a function of the smooth-
ing radius rather than the mass, since a void Lagrangian
radius is probably easier to determine than its mass.

Note that while a positive skewness (fxr. > 0) boosts the
number of halos at the high-mass end (and slightly suppress
the number of low-mass halos), it is a negative skewness that
will increase the voids size distribution at the largest voids
end (and slightly decrease it for small void sizes). Reference
[32] concluded that the abundance of voids is sensitive to
non-Gaussianity, |8,| is expected to be smaller than &, by
a factor 2 to 3. If voids probe the same scales as halos then
they should provide constraints on fyr2 to 3 times worse.
However voids may probe slightly larger scales than halos, in

many non-Gaussian models, S~ increases with scales (see
e.g., Figure 1), compensating for the threshold.

The approach reviewed here provides a rough estimate of
the fractional change in abundance due to primordial non-
Gaussianity but will not provide reliably the abundance itself.
It is important to stress here that rigorously quantitative
results will need to be calibrated on cosmological simulations
and mock survey catalogs.

4. Effects on the Halo Power Spectrum

Recently, reference [43, 46] showed that primordial non-
Gaussianity affects the clustering of dark matter halos (i.e.,
density extrema) inducing a scale-dependent bias for halos
on large scales. This can be seen for example by considering
halos as regions where the (smoothed) linear density field
exceeds a suitable threshold. All correlations and peaks
considered in the section are those of the initial density
field (linearly extrapolated to the present time). Thus for
example in the Gaussian case [47-49] for high peaks we
would have the following relation between the correlation
function of halos of mass M, &, (r) and that of the dark
matter distribution smoothed on scale R, corresponding to
mass M, &p(r):

Gn(r) = (b8,) &), (23)

where bf ~ §./0% denotes the Lagrangian halo bias (in the
Gaussian case), although more refined expressions can be
found in for example, [50, 51].

The Lagrangian bias appears here because correlations
and peaks are those of the initial density field (lineary
extrapolated). Making the standard assumptions that halos
move coherently with the underlying dark matter, one can
obtain the final Eulerian bias as by = 1 + by, using the
techniques outlined in [50-53]. Below we will omit the
subscript E for Eulerian bias.

The two-point correlation function of regions above
a high threshold has been obtained, for the general non-
Gaussian case, in [54-56]:

Em(Ix1 —x2|) = —1 + exp[X], (24)

where
N-1

X = i ME(N) |:X1s~-)X1»X2»---aX2 :| (25)
N N =)t j times (N—j) times |”
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F1GURE 4: The scale-dependence of the large-scale halo bias induced
by a nonzero bispectrum for different types of non-Gaussianity.
The dashed line corresponds to the local type and the dot-dot-dot-
dashed to equilateral type. Figure reproduced from [57].

where v = §.0r. For large separations the exponential can
be expanded to first order. This is what we will do in what
follows but we will comment on this choice below.

For small non-Gaussianities (Effectively that is for values
of fai, consistent with observations.), we can keep terms up
to the three-point correlation function £, obtaining that
the correction to the halo correlation function, Aéj, due to a
non-zero three—point function is given by:

Afh = [5(3)(X1,X2>X2) + fz(zs)(xl)xl,xz)]
(26)
VR £(3)
= TER (x1,X1,X2).
OR

For a general bispectrum B(k, k3, k3) this yields a correction
to the power spectrum (see [46] for steps in the derivation):

E 0:(2) 2
P Mg (k) 47‘[2 z Idklk M)
1 Btk vk )
¢\ 1> >
x| duta(v) Py(k)

where we have made the substitution & = k3 +k2+2k; kp. Here
Mp = WrM and Wy and M were introduced in Section 3.
The effect on the halo bias is Abﬁ/bL = (1/2)(AP/P) and thus

A(z)

b =1
03D%(z)

h

[1+8.(2)Br(k)], (28)

where the expression for 8 can be obtained by comparing to
(27). The term A.(z)/[03D?(z)] ~ bS — 1 can be recognized
as the Gaussian Lagrangian halo bias.

So far the derivation is generic for all types of non-
Gaussianity specified by a given bispectrum. We can then
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consider specific cases. In particular for local non-Gaussian-
ity we obtain

2L

Br(k) = TRk)

Jdk K2 M (K1) Py (k)
(29)

! Py(/a)
xj_ldyMR(\/&)[ Po(K) +2].

Thus Aby/by, is 2 far times a redshift-dependent factor
Ac(z)/D(z) = 8:(z), times a k- and mass-dependent factor.
The function Sr(k) is shown as the dashed line in Figure 4.
This result for the local non-Gaussianity has been derived
in at least three other ways. Reference [43] generalizes the
Kaiser [47] argument of high peak bias for the local non-
Gaussianity. Starting from V20 = V2¢ + 2f[¢V3 +
[V¢|?] where near peaks |V@|? is negligible they obtain
8 = 6/M=O[1 + 2 far.¢]. The Poisson equation to convert ¢ in
¢ then gives the scale-dependence. More details are presented
elsewhere in this issue.

Reference [58] works in the peak-background split. This
approach is especially useful to understand that it is the
coupling between very large and small scales introduced
by local (squeezed-configurations) non-Gaussianity to boost
(or suppress) the peaks clustering. In this approach, the
density field can be written as p(x) = p(1 + & + &;) where
& denotes long wavelength fluctuations and J; short wave-
length fluctuations. d; is the one responsible for modulating
halo formation (i.e., to boost peaks above the threshold for
collapse), so the halo number density is n = 7(1 + by, .6;) and
bh,L = ﬁ_lan/a&.

In the local non-Gaussian case they decompose the
Gaussian field ¢ as a combination of long and short
wavelength fluctuations ¢ = ¢; + ¢, thus @ = ¢; + fard? +
(142 fand) s+ fur9? +const. Also in this non-Gaussian case
one can split the density field § in §; and &, and relate this to
i (it is easier to work in Fourier space): §;(k) = a(k)¢i(k)
and &, = a(k)[(1+ 2 fwd)ds + fud?] = a(k)[X1 6, + X292],
the last equality giving the definition of X; and X,. Note
that §; cannot be ignored here because ¢; enters in X, in
other words, local non-Gaussianity couples long and short
wavelength modes. The local halo number density is now
function of §;, X;, and X, yielding the following result for
the Lagrangian halo bias:

b _7_1[an d¢; on ]

a0, P NGs o,

d¢; dlnn (30)
dé; dln oy

= bl +2fn s

= b5, (1+2fwatk)'s.)

where a(k) encloses the scale-dependence of the effect.
Reference [59] rederives the ellipsoidal collapse for small
deviations from Gaussianity of the local type. They find
that a non-zero fy; modifies the threshold for collapse,
the modification is proportional to fyr. This should sound
familiar from Section 3. They then use the definition by =
7~ 10n/98. keeping track of the fact that & is “modulated” by

e
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Figure 5: Effect of the non-Gaussian halo bias on the power
spectrum. In the left-top of (a) panel we show the halo-matter
cross-power spectrum for masses above 10° M, at z = 1.02.
The left-bottom panel of (a) shows the ratio of the non-Gaussian
to Gaussian bias. Figure reproduced from [33]. The fy values
reported in the figure legend should be interpreted as fi°. On the
right panel we show the expected effect and error-bars for the large-
scale power spectrum for a survey like LSST. Figure reproduced
from [26].

The effect of the non-Gaussian halo bias on the power
spectrum is shown in Figure 5 where the points are mea-
surements from an N-body simulations of [33] (see figure
caption for more details).

The above result

Ab = furd(b§ — )R (k) (31)

where Br(k) = fNLﬁIf{NL:I(k), can be improved in several
ways.

First of all, we have not made any distinction between the
redshift at which the object is being observed (z,) and that
at which is being formed (zy). Except for the rarest events
this should be accounted for. The Gaussian Lagrangian bias
expression used so far is an approximation, a more accurate
expression is [50, 52, 53]

55(2f> 1
& ac(zf)]' 2

Then, the halo bias expressions are derived within the
“classical” Press and Schechter theory, as we have seen in
Section 3, subsequent improvements on the mass function
can be seen as a correction to the collapse threshold. In the
expression for the Gaussian halo bias by = 71 '9n%/96, one
can consider mass functions that are better fit to simulations
than the standard Press and Schecter one obtaining:

1 {q&(Zf) 1 ]

o)~ 5|

bfl’:L(ZmM’Zf) = D(z,) ol - é‘c(Zf)

b 2P 1+(q8§(zzf>)P 7
8 (zf) D(z0) o
(33)

The parameters q and p account for nonspherical collapse
and fit to numerical simulations yield g ~ 0.75, p = 0.3 for
example, [34]. In this expression the term in the second line
is usually subdominant. The term “—1/8.” in the first line is
known as “antibias”, and it becomes negligible for old halos
Zf > z,. Note that by including the antibias correction in b,
of (31) one recovers the “recent mergers” approximation of
[58].

The same correction should also apply to the non-
Gaussian correction to the halo bias:

Ab = fiq'8c(b§ — 1)BE"" (k), (34)

where g" should coincide with g above; it can be calibrated
to N-body simulations and is found indeed to be q¢" = 0.75
[33]. The non-Gaussian halo bias prediction and results from
N-body simulations with local non-Gaussianity are shown in
Figure 6.

Finally one may note that for fx; large and negative, (27)

and (28) would formally yield b,{m‘ and Pj,(k) negative on
large enough scales. This is a manifestation of the breakdown
of the approximations made: (a) all correlations of higher
order than the bispectrum were neglected, for large NG
this truncation may not hold; (b) The exponential in (24)
was expanded to linear order. This however could be easily
corrected for, remembering that the P(k) obtained from (27)
is in reality the Fourier transform of X, the argument of the
exponential. One would then compute the halo correlation
function using (24) and Fourier transforming back to obtain
the halo power-spectrum.
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So far we have concentrated on local non-Gaussianity,
but the expression of (27) and (28) is more general. Using
this formulation, reference [57] computed the quantity

}{NI‘:I(k) for several types of non-Gaussianity (equilateral,
local, and enfolded); this is shown in Figure 4. It is clear
that the non-Gaussian halo-bias effect has some sensitivity
to the bispectrum shape, for example the effect for the
equilateral type of non-Gaussianity is suppressed by orders

of magnitude compared to the local-type and the flattened
case is somewhere in the middle. Figure 4 also shows a
type of non-Gaussianity arising from General-relativistic
(GR) corrections on scales comparable to the Hubble radius.
Note that perturbations on super-Hubble scales are initially
needed in order to “feed” the GR correction terms. In this
respect the significance of this contribution is analogous
to the well-known large-scale anticorrelation between CMB
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FiGure 7: Non-Gaussian halo bias correction as function of the
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reported in the figure legend should be interpreted as £57°.

temperature and E-mode polarization, it is a consequence
of the properties of the inflationary mechanism to lay
down the primordial perturbations. This effect has the same
magnitude as a local non-Gaussianity with fy, 2 1.

The next logical step is then to ask how well present or
forthcoming data could constrain non-Gaussianity using the
halo-bias effect. It is interesting to note that surveys that
aim at measuring Baryon Acoustic Oscillations (BAO) in the
galaxy distribution to constrain dark energy are well suited
to also probe non-Gaussianity; they cover large volumes and
their galaxy number density is well suited so that on the
scale of interest (both for BAO and non-Gaussianity) shot
noise does not dominate the signal. Photometric surveys are
also well suited: as the non-Gaussian signal is localized at
very large scales and is a smooth function of k, the photo-
z smearing effects are unimportant.

The theory developed so far describes the clustering of
halos while we observe galaxies. Different galaxy populations
occupy dark matter halos following different prescriptions.
If we think in the halo-model framework (e.g., [60] and
references therein) at very large scales only the “two-halo”
contribution matters and the details of the halo occupation
distribution (the “one-halo” term) become unimportant.

What is important to keep in mind is that the effect of
the non-Gaussianity parameter one wants to measure, fxr,
is fully degenerate with the value of the Gaussian (small
scales) halo bias. Figure 7 shows the dependence of the non-
Gaussian correction on the Gaussian bias.

Thus highly biased tracers will show a larger non-
Gaussian effect for the same fyr value. Of course for
a given cosmological model the Gaussian bias can be
measured accurately by comparing the predicted dark matter
power spectrum with the observed one. Alternatively, two
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TaBLE 1: Current recent 2 — ¢ constraints on local fy;.
Data/method §iNs Reference
Photometric LRG-bias 63119} (58]
Spectroscopic LRG-bias 70743 (58]
QSO-bias g+i7 (58]
Combined 28712 (58]
NVSS-ISW 1057733, (58]
NVSS-ISW 236 + 127(1 — o) [59]
WMAP3-Bispectrum 30 + 84 [10]
WMAP3-Bispectrum 32+ 68 (8]
WMAP3-Bispectrum 87 = 60 [20]
WMAP-Bispectrum 38 +42 [11,17,21]
WMAPS5-Bispectrum 51 + 60 [10]
WMAP5-Minkowski —57 + 121 [10]
TABLE 2: Forecasts 1 — ¢ constraints on local fy;.

Data/method Afa (1 —0) Reference
BOSS-bias 18 [63]
ADEPT/Euclid-bias 1.5 [63]
PANNStarrs-bias 3.5 [63]
LSST-bias 0.7 [63]
LSST-ISW 7 [59]
BOSS-bispectrum 35 [27]
ADEPT/Euclid-bispectrum 3.6 [27]
Planck-Bispectrum 3 [19]
BPOL-Bispectrum 2 [19]

differently biased tracers can be used in tandem to disentan-
gle the two effects [61, 62].

Since clustering amplitude may depend on the entire halo
history, it becomes then interesting to model in details the
dependence of the effect on the halo merger tree (Reid et al.,
in preparation).

4.1. Outlook for the Future. How well can this method do
to constrain primordial non-Gaussianity compared with the
other techniques presented here? The Integrated Sachs Wolfe
(ISW) effect offers a window to probe clustering on the
largest scales (where the signal is large); on the other hand, a
measurement of clustering of tracers of dark matter halos is a
very direct window into this effect. A Fisher matrix approach
[58, 59, 63] shows that the ISW signal is weighted at relatively
low redshift (where dark energy starts dominating) while the
non-Gaussian signal grows with redshift, thus making the
shape of the halo power spectrum a more promising tool.
An overview of current constraints from different approaches
can be found in Table 1 and future forecasts in Table 2,
for non-Gaussianity of the local type. Large, mass-selected
cluster samples as produced by SZ-based experiments will
provide a optimally suited data-set for this technique (see
e.g., [64]).

While for a given fyi, model such as the local one,
methods that exploit the non-Gaussian bias seem to yield
the smallest error-bars for large-scale structure, it should be
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kept in mind that the bispectrum can be used to investigate
the full configuration dependence of fyi and thus is a very
powerful tool to discriminate between different type of non-
Gaussianity. In addition CMB-bispectrum and halo bias test
non-Gaussianity on very large scales while the large scale
structure bispectrum mostly probes mildly nonlinear scales.
As primordial non-Gaussianity may be scale-dependent, all
these techniques are highly complementary.

The above estimates assume that the underlying cosmo-
logical model is known. The large-scale shape of the power
spectrum can be affected by cosmology. Carbone et al. (in
prep.) explore possible degeneracies between fyi, and cos-
mological parameters. They find that the parameters that are
most strongly correlated with fxr, are parameters describing
dark energy clustering, neutrino mass and running of the
primordial power spectrum spectral slope. For surveys that
cover a broad redshift range the error on fxi, degrade little
when marginalizing over these extra parameters; the peculiar
redshift dependence of the non-Gaussian signal lifts the
degeneracy.

5. Conclusions

A natural question to ask at this point may be “what observ-
able will have better chances to constrain primordial non-
Gaussianity?”

In principle the abundance of rare events is a very
powerful probe of non-Gaussianity; however, in practice, it is
limited by the practical difficulty of determining the mass of
the observed objects and its corresponding large uncertainty
in the determination. This point is stressed for example,
in [9]. With the advent of high-precision measurements of
gravitational lensing by massive clusters, the mass uncer-
tainty, at least for small to moderate size clusters samples
can be greatly reduced. Forthcoming Sunyaev-Zeldovich
experiments will provide large samples of mass-selected
clusters which could then be followed up by lensing mass
measurements (see e.g., [65, 66]). So far there is only one
very high redshift (z = 1.4) very massive M =~ 8 X 10"M,
with high-precision mass determination via gravitational
lensing [67]. Reference [68] pointed out that this object is
extremely rare, for Gaussian initial conditions there should
be 0.002 such objects or less in the surveyed area, which is
uncomfortably low probability. But the cluster mass is very
well determined; a non-Gaussianity still compatible with
CMB constraints could bring the probability of observing
of the object to more comfortable values. This result should
be interpreted as a “proof of principle” showing that this a
potentially powerful avenue to pursue.

The measurement of the three-point correlation function
allows one to map directly the shape-dependence of the
bispectrum. For large-scale structures the limiting factors
are the large non-Gaussian contribution induced by grav-
itational evolution and the uncertainly of the nonlinear
behavior of galaxy bias.

The halo-bias approach can yield highly competitive
constraints, but it is less sensitive to the bispectrum shape.
Still, the big difference in the magnitude and shape of
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TaBLE 3: Forecasted non-Gaussianity constraints: (A) [20] (B) [63]
(C) [69, 70] (E) [57]) (F) e.g., [15].

CMB Bispectrum Halo bias
type NG Planck BPol Euclid LSST
1 — o errors
Local 34 24 1.5 0.7®
Equilateral 25(© 14© - —
Enfolded 010 010 39 18(F)
#0 detection
GR N/A N/A 1® 28
secondaries 3 5 N/A N/A

the scale-dependent biasing factor between different non-
Gaussian models implies that the halo bias can become
a useful tool to study shapes when combined with for
example, measurements of the CMB bispectrum. Table 3
highlights this complementarity. For example, one could
envision different scenarios.

If non-Gaussianity is local with negative fyi and CMB
obtains a detection, then the halo bias approach should
also give a high-significance detection (GR correction and
primordial contributions add up), while if it is local but
with positive fxr, the halo-bias approach could give a lower
statistical significance for small fyi as the GR correction
contribution has the opposite sign.

If CMB detects fur, at the level of ~ 10 and of a form
that is close to local, but halo bias does not detect it, then the
CMB bispectrum is given by secondary effects.

If CMB detects non-Gaussianity but is not of the
local type, then halo bias can help discriminate between
equilateral and enfolded shapes; if halo bias sees a signal it
indicates enfolded type; if halo bias does not see a signal it
indicates equilateral type. Thus even a nondetection of the
halo-bias effect, in combination with CMB constraints can
have an important discriminatory power.

In any case, if the simplest inflationary scenario holds,
for surveys like Euclid and LSST, the halo-bias approach is
expected to detect a non-Gaussian signal very similar to the
local type signal with an amplitude of fyx;, ~ —1.5 which is
due to large-scales GR corrections to the Poisson equation.
This effect should leave no imprint in the CMB; once again
the combination of the two observable can help enormously
to discriminate among models for the origin of cosmological
structures.

In addition we should bear in mind that non-Gaussianity
may be scale-dependent. In fact for models like DBI inflation
it is expected to be scale-dependent. A proposed parameter-

ization of the scale-dependence of non-Gaussianity is given
by

B¢(I€1,I€2,I€3> = fNL(li) ngF(lgngz;k;), (35)

where K = (kikk3)"? [70], k, denotes the pivot and 7,4
the slope or running of non-Gaussianity, although other
authors prefer to use K = (k; + ky + k3)/3 [9, 59] as for
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FIGURE 8: Scale-dependent fy; and scales probed by different
approaches mentioned here. The solid line has n, = 0, the dotted
line has n, = 0.2, and the dashed one has n, = 0.6. Hashed areas for
CMB and halo-bias show allowed regions.

squeezed configurations K # 0. It is still an open issue which
parameterization is better in practice.

In any case different observables probe different scales
(see Figure 8) and their complementary means that “the
combination is more than the sum of the parts.”

What is clear, however, is that the thorny systematic
effects that enter in all these approaches will require that
a variety of complementary avenues be taken to establish a
robust detection of primordial non-Gaussianity.
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