
Implications of multiple high-redshift galaxy clusters

Ben Hoyle,1,2 Raul Jimenez,1,3 and Licia Verde1,3

1Institute of Sciences of the Cosmos (ICCUB) and IEEC, Physics Department, University of Barcelona, Barcelona 08024, Spain
2CSIC, Consejo Superior de Investigaciones Cienticas, Serrano 117, Madrid, 28006, Spain
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To date, 14 high-redshift (z > 1:0) galaxy clusters with mass measurements have been observed,

spectroscopically confirmed, and are reported in the literature. These objects should be exceedingly rare in

the standard � cold dark matter (�CDM) model. We conservatively approximate the selection functions

of these clusters’ parent surveys and quantify the tension between the abundances of massive clusters as

predicted by the standard �CDMmodel and the observed ones. We alleviate the tension, considering non-

Gaussian primordial perturbations of the local type, characterized by the parameter fNL, and derive

constraints on fNL arising from the mere existence of these clusters. At the 95% confidence level, fNL >

467, with cosmological parameters fixed to their most likely WMAP5 values, or fNL * 123 (at 95%

confidence) if we marginalize over prior WMAP5 parameters. In combination with fNL constraints from

cosmic microwave background and halo bias, this determination implies a scale dependence of fNL at

’ 3�. Given the assumptions made in the analysis, we expect any future improvements to the modeling of

the non-Gaussian mass function, survey volumes, or selection functions to increase the significance of

fNL > 0 found here. In order to reconcile these massive, high-z clusters with fNL ¼ 0, their masses would

need to be systematically lowered by 1:5�, or the �8 parameter should be �3� higher than cosmic

microwave background (and large-scale structure) constraints. The existence of these objects is a puzzle:

it either represents a challenge to the �CDM paradigm or it is an indication that the mass estimates of

clusters are dramatically more uncertain than we think.

DOI: 10.1103/PhysRevD.83.103502 PACS numbers: 98.80.�k

I. INTRODUCTION

Recent developments in observational hardware and
observing techniques have enabled the detection of many
massive, high-redshift clusters (see, e.g., [1–4]), which
seem to create some tension with the abundance predic-
tions of the standard � cold dark matter (�CDM) para-
digm [5,6]. Previous works [7–9] have examined how the
abundance of high-redshift massive clusters within the
�CDMmodel can be enhanced by allowing the primordial
fluctuations, a relic of inflation, to deviate from a Gaussian
random field. The most basic models of inflation predict a
scale-invariant power spectrum of density perturbations�,
described by a Gaussian random field�. Probes of the very
early Universe (e.g., [10]) and the large-scale structure
(LSS) of the late Universe have shown that this description
is a good approximation to first order. However, any devi-
ations from the slow-roll, single field, adiabatic vacuum
state inflation (and more complex inflationary models)
predict deviations from Gaussianity (see, e.g., [11–13],
and references therein), which are of interest because
they 1) modify the number of high-redshift clusters, reliev-
ing tension between theory and observation and 2) allow an
observational window into early Universe physics. The
non-Gaussian corrections may be characterized by the
coefficient fNL [14–17], which affects the initial potential
field �, as

� ¼ �þ fNLð�2 � h�2iÞ (1)

in the so-called local non-Gaussianity case.
Observations of the cosmic microwave background

(CMB) WMAP3 by Yadav and Wandelt [18] measured
fNL to be within 27< fNL < 147 [at the 95% confidence
level (C.L.)]. More recently, Komatsu et al. [19] find
�10< fNL < 74 (at 95% C.L.), consistent with the above
range but also consistent with zero. The CMB constrains
fNL at large scales (< 0:03h=Mpc), but, on smaller scales,
the LSS can also constrain fNL through the clustering
(see, e.g., [20,21], and references therein) and abundances
of massive halos (see, e.g., [8,9]). Measurements of fNL
using LSS provide complementary constraints to the CMB
and probe any scale dependence of fNL. Considering the
scale dependence on halo bias induced by local non-
Gaussianity, Xia et al. [22] obtain fNL � 53� 25 at 1�
(10< fNL < 106 at 95% confidence) from the NVSS sur-
vey; this signal comes from scales k� 0:03h=Mpc.
The detection of the high-redshift cluster of galaxies

XMMUJ2235:3þ 2557 [23] and a Hubble Space
Telescope weak lensing mass measurement [24] allowed
Jiminez and Verde [6] to show how the tension between
fNL ¼ 0 �CDM (which predicts�2� 10�3 such clusters)
and this cluster could be alleviated with values of 150<
fNL < 260. Massive clusters’ abundance probes fNL on
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scales corresponding to the Lagrangian radius of the halos;
k > 0:1h=Mpc.

Holz and Perlmutter [5] then calculated at which redshift
and mass the most massive cluster in the Universe was
expected to be found and how this changed with survey
volume. They also found that XMMUJ2235:3þ 2557 was
more than 2� away from fNL ¼ 0 �CDM predictions.

Finally, Cayón, Gordon, and Silk [25] formally calcu-
lated the constraints which could be placed on fNL using
XMMUJ2235:3þ 2557. They computed the probability
that the ‘‘most massive’’ cluster expected within the survey
volume had a mass 1) greater than the 68% upper mass
estimate of the cluster, 2) within the 68% upper and lower
bounds on the mass estimate, and 3) less than the 68%
lower bound on the cluster’s mass. They Poisson-sampled
from these abundances to obtain a probability that a
cluster with the mass of XMMUJ2235:3þ 2557 was the
most massive system. By exploring how values of fNL
modified cluster abundances (using [9]), they placed
constraints on fNL to be greater than zero at the 95%
significance level. We note that fNL > 0 is only one pos-
sible explanation of the existence of high-redshift massive
clusters (see, e.g., [26]).

The above studies represent the latest results for con-
straining fNL on ð�10 MpcÞ cluster scales and have con-
centrated on the above single cluster at high redshift. We
extend these previous works by exploring the constraints
on fNL using 14 high-redshift (z > 1:0) spectroscopically
confirmed galaxy clusters with masses measured in the
literature.

The layout of the paper is as follows: we begin by
reviewing the theoretical form of the cluster mass function
and the non-Gaussian correction to it and continue by
describing the compilation of a high-redshift cluster sam-
ple. Here, we discuss our conservative assumptions about
the selection functions and survey volumes. We then de-
scribe our analysis and find the best-fitting cosmological
parameters, followed by our conclusions and discussions.
Throughout the paper, unless otherwise stated, we assume
a flat �CDM model with WMAP5 [10] cosmological
parameters (i.e, �m; h; ns; �8 ¼ 0:28; 0:705; 0:960; 0:812)
and quote fNL using the LSS convention, e.g., fCMB

NL ’
fLSSNL =1:3 (see, e.g., [21]).

II. THE NON-GAUSSIAN CLUSTER
MASS FUNCTION

The theoretical cluster mass function was first written
down by Press and Schechter [27], who assumed spheri-
cally collapsed halos, and was later improved, e.g., [28].
Subsequently, large-volume, high-resolutionN-body simu-
lations have been performed, and mass functions fitting
formulae have been found (see, e.g., [29–31]). We use the
spherical overdensity Gaussian mass function given by
[30], which determines the number of haloes as a function
of mass as measured within a radius at which the density

contrast is 180 times the background matter density �m and
has the form

nðM; zÞ ¼ ��

M
f

�
� d ln�M

d lnM

�
; (2)

where �M is the rms variation of the density field,
smoothed on scales M. For a discussion of the minor
differences between 180�m and 200�m mass functions,
see [31]. We use the iCosmo package [32,33] to calculate
�MðzÞ, comoving distances, and other cosmology-
dependent parameters and use the functional form of f
(see Eq. B4 of [30]), given by

f ¼ 0:301 expð�j logð�MðzÞ�1Þ þ 0:64j3:82Þ: (3)

Non-Gaussian corrections to the mass function have
been proposed in the literature [7–9,34] and, over the
mass and redshift ranges considered here, agree within
10% (see Figs. 5 and 6 of [7]). These corrections are
typically written as the ratio of the non-Gaussian-to-
Gaussian mass functions R and are, for example, found
by linearizing the three-point expansion of the collapse
density (as in [8]) or by using saddle-point approximations
to nonperturbatively account for higher-order corrections
(as in [9], although, see also [34]). We adopt the Matarrese-
Verde-Jimenez (MVJ) prescription to describe how the
ratio of the non-Gaussian-to-Gaussian mass functions
changes as a function of fNL,

R ðS3;M;M; zÞ ¼ nðM; z; fNLÞ
nðM; z; fNL ¼ 0Þ ; (4)

where S3;M describes the normalized skewness of the

smoothed density field and can be used to define a ‘‘skew-

ness per fNL unit,’’ as S3;M ¼ fNLS
fNL¼1
3;M . R is given by

RNGðM; z; fNLÞ

¼ exp

�
�3
ec

S3;M
6�2

M

�
�

�����������
1

6

�ecffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ecS3;M

3

q dS3;M
d ln�M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ecS3;M

3

s �����������; (5)

where �ec is the critical density for ellipsoidal gravitational
collapse. Wagner, Verde, and Boubekeur [35] recently
tested these predictions for generic non-Gaussianity, using
a suite of N-body simulations, but, due to difficulty in
computing the initial conditions, they probed relatively
low-mass ( � 5� 1014M�) systems. They found that the
MVJ mass function may slightly overpredict the abundan-
ces of massive � 5� 1014M� clusters at high redshift. If
this result can be extrapolated to more massive clusters at
even higher redshifts, then the overprediction of the MVJ
non-Gaussian mass function will only strengthen the con-
clusions drawn from this work, as a larger value of fNL will
be required to fit the observed abundances of massive
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clusters using a more accurate model, implying this analy-
sis is conservative.

After the publication of this work, Enqvist, Hotchkiss,
and Taanila [36] found that the exponential fall in the
Ref. [30] mass function is not enough to counter the
exponential increase in the non-Gaussian correction
[9] for very large values of fNL and large masses
(* 1016M�). They find that the Ref. [31] mass function
is more well-behaved for larger values of fNL and masses
but still breaks down at very large scales. We stopped
the mass function integration at 1016M� just before the
Ref. [30] mass function breaks down. They additionally
checked and confirmed the robustness of our method to the
choice of the mass function and measured a mean value
very close to that measured here for the same sample of
clusters, even after correcting for the mass function ap-
proximation. In what follows, we only place a lower con-
straint on the value of fNL, and thus our approach is robust
to the choice of mass function at these lower values of fNL
and masses considered.

III. DATA

We compile a list of 14 high-redshift (z > 1:0) spectro-
scopically confirmed clusters with masses measured or
estimated in the literature and present them in Table I.
We believe this list to represent all known spectroscopi-
cally identified clusters with mass measurements. We show
the cluster’s name, the spectroscopic redshift, the cluster
mass, and the mass error converted to M200 (in units of
1014M�, assuming a Navarro-Frenk-White profile [43], if
necessary), which is the mass enclosed within a radius at

which the density is 200 times that of the background
matter density, and the reference to the mass measurement.
We distinguish clusters detected by x-ray surveys and those
found using the Sunyaev-Zeldovich (SZ) [44] effect.
Here, for each cluster, we adopt the mass estimate that

gave the least tension (best agreement) with fNL ¼ 0
�CDM. For an illustrative example, consider two cases:
1) a cluster mass has a large central value (1� 1015M�)
with a large error (4� 1014M�) and 2) a cluster has a
slightly lower mass estimate (7:9� 1014M�) with a
smaller error bar (9� 1013M�) (see [2]). In our analysis,
we find that case 1) is more likely to exist in an fNL ¼ 0
�CDM than case 2). Thus, we use case 1) to be
conservative.
We note that mass measurements from different tech-

niques typically agree well; e.g., XMMUJ2235:3þ 2557
had mass measurements using weak lensing of
8:3þ2:6

�1:9 � 1014M� and 7:3� 1:3� 1014M� [24] and x-

ray mass measurements of 6� 1014M� [45] and 7:7þ4:4
�3:3 �

1014M� [41].
We also note that potential high-redshift clusters have

been detected but not followed up spectroscopically
(e.g., see [46]), so their redshifts and, typically, masses
are subject to larger uncertainties, if not unknown. This
implies that our analysis can only place a lower limit on
fNL, as the other clusters may have higher redshifts and/or
be more massive than the clusters in our sample, which
would further boost the required value of fNL.
If any of these potential high-redshift cluster candidates

were found to be less massive than those in our sample or at
lower redshifts (and such smaller systems are expected in
all fNL > 0 �CDM cosmologies), they would not detract

TABLE I. We compile a list of high-redshift clusters with mass estimates or measurements
from the literature. We show the cluster name, redshift, the mass (converted to M200) and 1�
errors, the mass measurement technique, and the mass reference. The !’s indicate the least-
probable cluster observed in each of the combined surveys.

Cluster Name Redshift M200 1014M� Method Mass reference

WARPSJ1415:1þ 3612a 1.02 3:33þ2:83
�1:80 Velocity dispersion [37]

SPT-CLJ2341-5119 b 1.03 7:60þ3:94
�3:94 Richness [38]

XLSSJ022403.9-041328 a 1.05 1:66þ1:15
�0:38 X-ray [39]

!SPT-CLJ0546-5345 b 1.06 10:0þ6:00
�4:00 Velocity dispersion [2]

SPT-CLJ2342-5411 b 1.08 4:08þ2:53
�2:53 Richness [38]

RDCSJ0910þ 5422 a 1.10 6:28þ3:70
�3:70 X-ray [40]

RXJ1053:7þ 5375 (West) a 1.14 2:00þ1:00
�0:70 X-ray [41]

XLSSJ022303.0043622 a 1.22 1:10þ0:60
�0:40 X-ray [41]

RDCSJ1252.9-2927 a 1.23 2:00þ0:50
�0:50 X-ray [40]

RXJ0849þ 4452 a 1.26 3:70þ1:90
�1:90 X-ray [40]

RXJ048þ 4453 a 1.27 1:80þ1:20
�1:20 X-ray [40]

!XMMUJ2235:3þ 2557 a 1.39 7:70þ4:40
�3:10 X-ray [41]

XMMXCSJ2215.9-1738 a 1.46 4:10þ3:40
�1:70 X-ray [41]

SXDF-XCLJ0218-0510 a 1.62 0:57þ0:14
�0:14 X-ray [42]

aClusters identified from x-ray surveys.
bClusters identified using the SZ SPT survey.
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from these results using the present selection of clusters, as
our analysis only considers these ‘‘rare events’’ that have
already been confirmed.

The ability to detect a cluster and measure its redshift
and mass for any survey can be described by the selection
function. For believable upper and lower limits to be
placed on cosmological parameters (including fNL) using
galaxy clusters, the selection function must be understood.
Our analysis uses heterogeneously selected clusters, so
combining the selection functions is nontrivial. We now
describe how we conservatively model the selection func-
tions for the x-ray and SZ surveys. We note that deviations
from the conservative modeling will only strengthen our
conclusions.

A. Selection function

We split the cluster catalogues into two broad categories,
those detected using the x ray by the ROSAT and XMM
satellites and those found using the SZ effect at the South
Pole Telescope (SPT) [47].

1. X ray

Many of the x-ray surveys have partially overlapping
footprints and differing flux limits and exposure times.
This means that some clusters were detected by multiple
distinct groups; e.g., XMMUJ2235:3þ 2557 was origi-
nally detected by the XMM Newton Distant Cluster
Project [23] but was later redetected by the XMM
Cluster Survey [48]. The combination of all of the x-ray
surveys, as performed here, makes the construction of the
full survey volume and selection function nontrivial.

We continue conservatively, by assuming that all x-ray
surveys had independent footprints (even if they did not)
and uniform survey volumes (even if some were shallower
than others), which we choose to be between 1:0< z < 2:2
(2.2 represents our estimate of the deepest survey limit).
We find that our conclusions are stable to arbitrary in-
creases of the maximum redshift assumed but will depend
on improvements to the modeling of the survey footprints
and volumes. We reiterate that any improvements to the
conservative selection function and footprints adopted here
will make any conclusions drawn from this analysis
stronger, as a reduced survey volume (caused by a smaller
footprint or exposure time) or a worse selection function
(i.e., there are clusters in the volume that have not been
found) will modify the number of observable clusters
expected, which will, at best, not change our results but,
at worse, increase tension with fNL ¼ 0 �CDM.

The conservative x-ray survey footprint is 294.5 sq.
degrees and is composed of 168 sq. degrees from the
XMM Cluster Survey, 64 sq. deg. from the XMM Large
Scale Survey [49], 11 sq. deg. from the XMM Newton
Distant Cluster Project, 1.3 sq. deg. from the XMM
Contiguous Survey [50], 17.2 sq. deg. from the Wide

Angle ROSAT Pointed Survey [51], and 33 sq. deg. from
the ROSAT Deep Survey [52].

2. SZ

The SZ SPT survey has a well-understood selection
function and was expected to detect all massive clusters
above 2� 1014M� [53,54] at all redshifts. We again as-
sume a survey volume between 1:0< z < 2:2 and use the
footprint of 178 sq. degrees. To measure the redshifts of
clusters detected with the SZ, one needs optical spectro-
scopic follow-up. Not all the identified clusters have had
their redshifts and masses measured (see [38]), but we
continue conservatively, by assuming that only clusters
with follow-up were detected. This is conservative because
future cluster measurements will not relieve the tension
with fNL ¼ 0 found using the current collection of clusters.
Figure 1 is an Aitoff projection representing the survey

footprints of the combined x-ray survey (shown as a green
contiguous region containing several black crosses,
although note that the actual x-ray footprint covers many
different directions across the full sky) and the SZ SPT
survey (in yellow, with several black triangles); we also
show the Sloan Digital Sky Survey (SDSS) [55] footprint
for comparison [red (all other shaded regions that do not
contain markings)]. The high-redshift clusters compiled
here are represented by the crosses and triangles. This
figure demonstrates how little of the high-redshift sky has

FIG. 1 (color online). An Aitoff projection representing the
survey footprints of the combined x-ray survey (shown in the
green region containing several black crosses) and the SZ SPT
survey (yellow region with several black triangles); we also show
the SDSS survey footprint [red (all other shaded regions that do
not contain markings)] for comparison. We note that the x-ray
footprints are depicted here as a contiguous region, although the
actual footprints consist of pointings across the whole sky. We
represent the high-redshift clusters in each survey by crosses and
triangles.
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been observed and how much volume remains to find other
potentially massive, high-redshift clusters, which may in-
crease the tension with fNL ¼ 0 �CDM.

IV. METHOD AND RESULTS

Our analysis follows two approaches. First, we build on
the approach of (and refer the reader to Sec. 3 of) [25] and
define the ‘‘least-probable’’ (i.e., a combination of most
massive and highest-redshift) clusters in each of the com-
bined x-ray surveys and the SZ survey, which, due to the
high mass, should also be the easiest to find. We then
extend the approach of [25], by using the existence of the
compiled cluster sample, including the clusters’ full mass
error distributions, to examine the probability that the
ensemble of clusters could exist in a �CDM universe
and probe how the probability increases with fNL.
Initially, we keep the cosmological parameters fixed to
WMAP5 peak values and then relax this constraint and
marginalize over WMAP5 priors.

We used the output of both Gaussian (fNL ¼ 0) and non-
Gaussian (with fNL ¼ 250) N-body simulations (obtained
from the authors of [35]) at a snapshot corresponding
to z ¼ 1:0 to successfully blind-test the code pipelines.
We computed the relative values of fNL needed to explain
the existence, abundances, and masses of clusters above
>4� 1014M�, after crudely assuming a survey footprint
and a redshift slice, i.e., a survey geometry. We found that,
at a fixed ‘‘probability of existing,’’ the recovered value
of fNL for the non-Gaussian simulation data was always
* 225 greater than that of the Gaussian simulation data.
For the assumed survey geometry, we found that the
probability of the ensemble of clusters to exist was 40%
at fNL ¼ 0 in the Gaussian case and <4% in the non-
Gaussian case. In the non-Gaussian case, a value of
fNL ¼ 230 is required to obtain a probability of existing
to be 40%. We reiterate that the exact recovered probability
of existence at fixed fNL values depends on the crude
conversion of the simulated snapshot volume at z ¼ 1:0
to the assumed survey geometry, but the differences be-
tween the simulations required a value of fNL similar to
that inputted into the non-Gaussian simulations.

A. The least-probable clusters

We begin by asking the question, ‘‘What is the least-
probable object to be found in each survey, assuming
fNL ¼ 0?’’ This approach is analogous to determining
the most massive system in the survey (e.g., [25]) but
generalized to include the redshift dependence of the
mass function.

Assuming the central value for the clusters’ mass, we
find that the cluster XMMUJ2235:3þ 2557 is the least-
probable x-ray–detected object; we expect 5.4 over the
full sky (and 0.04 in the x-ray survey footprint) at
z > 1:39 and M> 7:7� 1014M� using our cosmology
and theoretical mass function. We also find that

SPT-CLJ0546-5345 is the least-probable SZ-detected
cluster; we expect only 12.5 over the full sky (and 0.05 in
the survey) with M> 1015M� and z > 1:06.
Following [25], we calculate the probability that the

mass of the least-probable cluster in each survey falls
within one of the following three mass bins: 1) less than
the 1� mass range of the cluster, 2) within the 1� mass
range of the cluster, and 3) greater than the 1� mass range
of the cluster. This is accomplished by calculating the
theoretical cluster abundance within each mass bin and
then Poisson-sampling from these three abundances 104

times (using the same random number seed for each of the
three bins) and recording the most massive bin for which
the Poisson sample is� 1. This yields a probability that the
most massive cluster exists within the above mass bins and
within the survey volume.
We then gradually increase fNL, which boosts the abun-

dances of clusters, and Poisson-sample from these new
abundances to rederive the above probabilities. This allows
us to place constraints on fNL using the least-probable
observed cluster in each survey.
In Fig. 2, we show the probability that each observed

massive cluster is the (theoretically predicted) least-
probable system in the survey as a function of fNL. We
note that both clusters provide similar constraints, which,
when combined, point to some tension with fNL ¼ 0
�CDM. The constraints obtained here are slightly different

FIG. 2 (color online). The probability that the least-probable
cluster (in terms of mass and redshift >zclus) in each survey
could exist and is the most massive cluster in the surveyed
volume, as a function of fNL. The solid lines indicate the
probability that a cluster more massive than the identified cluster
could exist, the dotted lines are the probability for a cluster
within the measured 68% mass and error range to be the ‘‘most
massive system,’’ and the dashed lines show the probability that
a cluster less massive than this cluster is the most massive system
in the survey volume.
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than that in [25], due to differences in the assumed
survey footprint, mass function, and cosmological parame-
ters. Note that, for example, XMMUJ2235:3þ 2557 has
another (weak-lensing–based) mass estimate which has a
higher central value and smaller error bars. This makes our
approach conservative.

B. All clusters

We proceeded by using the existence, masses, and
full error budgets of the 14 clusters in the sample. To
model uncertainties, we adopt the following Monte Carlo
approach. We log Gaussian random samples from each
cluster’s mass and error 104 times, producing a set of
sampled masses MS, and determine how many clusters
NSðM>MS; zclus < z < 2:2Þ one would expect to find
above each sampled mass and above the redshift of the
cluster out to the edge of the survey volume using the mass
function expression. For each of the 104 sampled masses
MS, we Poisson-sample PO from the predicted abundances
NS and noted if the Poisson sample POðNSÞ � 1, i.e., that a
cluster more massive than this cluster with a redshift equal
to or greater than this cluster could exist. This formed a
probability Pi that each cluster i could exist (marginalized
over its mass uncertainty), rather than forming a probabil-
ity that the cluster is the most massive, as above; i.e., the
probability a cluster exists is ð#POðNSÞ � 1Þ=104. We then
repeated this analysis for each of the clusters and multi-
plied the probabilities Pi that each cluster could exist in
the surveyed region to produce a combined probability
PðfNLÞ ¼ �Pi that the ensemble of high-redshift clusters
could exist in the modeled universe. We increased the
value of fNL, repeated the analysis to produce a probability
distribution, and stopped the analysis when the PðfNLÞ ¼
1, i.e, that all the clusters were likely to exist in the
cosmological model and survey volumes.

Figure 3 shows the probability that each cluster
could exist, given the survey volumes and selection func-
tion. The x-ray and SZ-identified clusters are distinguished
in the figure but combined in the analysis. We show how
the probability Pi for each cluster varies if we change fNL
from 0 (black symbols) to 580 [red (light gray) symbols].

We see that many clusters are unlikely to exist in a
fNL ¼ 0 �CDM universe and, by multiplying the proba-
bilities, we find that the probability of the observed
Universe being well-described by this model is 3� 10�3.
When fNL ¼ 580, we note that each cluster is more
likely to exist, and the combined probability ¼ 1 (for our
mass function), which suggests that this model is a better
description of the observed Universe (although, see [36]
for a discussion of the validity of the chosen mass
function).

In Fig. 4, we plot the combined probability that all the
clusters could exist as a function of fNL. We see that the
fNL ¼ 0 model is a poor fit to the observed Universe and,
by increasing fNL, we alleviate tension. We constrain

467< fNL at the 95% confidence level using these clus-
ters. We remind the reader that any improvement in the
modeling of the survey volumes, footprints, or theoretical
mass function or the detection of more massive, high-
redshift clusters will only increase this result.

1. Varying cosmological parameters

We next simultaneously Gaussian-random-sample from
the parameters �M, ��, �K � ð1��M ���Þ, �b, H0,
�8, w0, ns, �1750 times, using the WMAP5 priors (with-
out imposing spatial flatness), and record the value of fNL

FIG. 3 (color online). The probability that each cluster could
exist within the survey volume Pi, assuming �CDM with fNL ¼
0 (black symbols). We show x-ray–identified clusters by crosses
and SZ-identified clusters by triangles. We also show how the
probability changes, assuming �CDM and setting fNL ¼ 580.

FIG. 4. The probability that the ensemble of clusters could
exist in a WMAP5 �CDM universe, as a function of fNL.
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evaluated at P ¼ 0:05, denoted here as fNLjPð0:05Þ, which
describes the probability of observing our 14 clusters P in
their surveys P ¼ 0:05 (i.e., the existence of these clusters
in their surveys is allowed at 95% C.L.). This procedure is
totally analogous to the so-called ‘‘generalized p value’’
for p ¼ 0:05, where the uncertainty in the clusters’ mass
and on cosmological parameters is effectively marginal-
ized over by treating them as ‘‘nuisance parameters’’ with
probability distributions given by the mass estimates and
WMAP constraints.

In Fig. 5, we show the 1d distribution of (generalized) p
values (so that P � 0:05) as a function of fNL. In other
words, Fig. 5 shows the frequency in our Monte Carlo
procedure of each value of fNLjPð0:05Þ. We obtain (123)

330< fNLjPð0:05Þ at 68% (95%) confidence.

In Fig. 6, we present a selection of two-dimensional
distributions, showing the values of fNLjPð0:05Þ for the

sampled parameter values against marginalized distribu-
tions of (left) the variance of the density field smoothed on
8Mpc scales�8 and (right) the spectral index ns. The filled
color contours show the 66% [red (light gray)] and 95%
[blue (dark gray)] significance levels, and we have marked
the peaks in each of the distributions by crosses. When
viewing these plots, one should keep in mind that they
represent p-value distributions for p ¼ 0:05; thus, these
figures should not be interpreted as standard Markov chain
Monte Carlo plots.
We find that fNL is degenerate with �8 but less degen-

erate with all the other varied parameters (we have shown
only a selection). We can calculate the value of �8 needed
for fNLjPð0:05Þ ¼ 0 by going to lower p values or extrap-

olating down the line of degeneracy using the left panel of
Fig. 6, resulting in a value of �8 ’ 0:87. If we only vary �8

and keep the other parameters fixed to their WMAP5 peak
values, we find fNLjPð0:05Þ ¼ 0 when �8 ’ 0:89.
It is interesting to note that the Actacama Cosmology

Telescope found �8 < 0:86 at 95% C.L. from upper limits
on the SZ power spectrum [56], and SPT found �8 ¼
0:773� 0:025 [57]. The SZ power spectrum signal de-
pends very strongly on �8 but not as strongly on fNL, as,
for current observations, it is dominated by massive
(> 1014M�) but lower-redshift (z < 1) clusters (see

FIG. 5. The distribution of fNL, which correspond to Pð0:05Þ
for each Gaussian random sampling of the cosmological parame-
ters �M, ��, �K, �b, H0, �8, w0, ns using WMAP5 priors.

FIG. 6 (color online). Two-dimensional marginalized plots for the value of fNL, above which 95% of the probability distribution lies
fNLjPð0:05Þ, against �8 and primordial power spectrum spectral index ns. We have represented the peaks in the distributions by thick

black crosses and the 66% (95%) confidence levels of these p values by red (light gray) [blue (dark gray)]. Note that these figures
represent p-value distributions for p ¼ 0:05 and are not normal Markov chain Monte Carlo plots. Of all the cosmological parameters
explored, only �8 shows a degeneracy with fNL.
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[58]). The latest WMAP results alone (combined with
external data sets) give a more direct, cleaner measurement
�8 ¼ 0:801� 0:03 (�8 ¼ 0:809� 0:024) [19]. The high
�8 value necessary to obtain fNLjPð0:05Þ ¼ 0 is �3� away

from these constraints.

V. CONCLUSIONS AND DISCUSSION

We compiled a list of 14 high-redshift (z > 1:0) galaxy
clusters with mass measurements from the literature and
used their existence to place constraints on the non-
Gaussianity parameter fNL. The clusters were identified
from x-ray surveys and the SZ SPT survey, and we con-
servatively assumed a selection function and survey vol-
ume. We used the theoretical Gaussian mass function of
[30] and the prescription for modifying the cluster abun-
dance for non-Gaussianities of [9]. We additionally used
the output of the Gaussian and non-Gaussian N-body
simulations (obtained from the authors of [35]) at z ¼
1:0 to successfully blind-test the code pipelines.

We chose to use cluster mass estimates, which were
performed assuming a cosmology close to WMAP5
�CDM, and to remain conservative; if more than one
measurement technique had been used, we adopted the
cluster mass and error measurement which allowed for
the lowest sampled cluster mass.

We performed two sets of analysis. First, we asked the
question, which is the least-probable cluster in each survey
(this also turns out to be the most massive cluster) and
asked how likely this cluster was to be the most massive
system in each survey. We found that both massive clusters
provide some tension with the fNL ¼ 0 WMAP5 �CDM
model and that, by multiplying the probabilities, we find
that these two clusters have a probability of being observed
of �30%.

Using the existence of the 14 clusters, their masses, and
their full error distributions, we then calculated the proba-
bility that each cluster could exist in the survey. We
sampled from each cluster’s mass and error, calculated
the expected (Jenkins-mass-function–predicted) abun-
dance above each sampled mass and above the redshift
of the cluster, and then Poisson-sampled from the abun-
dances [59]. We recorded the frequency that the Poisson-
sampled number was greater than or equal to one, implying
that at least one cluster with the sampled mass could exist
above the redshift of the cluster in the survey volume. We
used the frequency of existence to construct a probability
that each cluster could exist. We then combined all prob-
abilities to obtain a final probability that the ensemble of
clusters could be found in the modeled universe and we
showed how this probability changes with fNL. We note
that our method allows for only a lower limit to be placed
on fNL. This is because any new clusters, improvements to
the survey volumes, or selection functions, will increase
tension with fNL ¼ 0 �CDM with WMAP priors on cos-
mological parameters.

We found that the best-fitting models bound fNL to be
greater than 467 at the 95% confidence level, when keeping
the WMAP5 parameters fixed at their peak values. We
also Gaussian-random-sampled from the cosmological pa-
rameters �M, ��, �K � ð1��M ���Þ, �b, H0, �8,
w0, ns using the WMAP5 priors. For each realization, we
calculated the value of fNL, above which 95% of the
probability distribution lay. We find that the median value
of Pð0:05Þ ¼ fNL is 393 and drops below fNL ¼ 123 in
only �5% of realizations. This means that, even after
marginalizing over cosmological parameters assuming
WMAP5 priors, we still find fNLjPð0:05Þ * 123 at the 95%
confidence level.
We have performed several checks: 1) the signal is not

driven by few objects (e.g., only clusters detected in x rays,
only those detected in SZ, or only clusters whose mass
estimate is obtained from x rays, etc.); 2) these rare events
are not evidently clustered in a special patch of the sky;
3) cosmological parameter degeneracies: the fNL parame-
ter is degenerate only with the �8 parameter, and, to obtain
that fNL ¼ 0 is allowed at 95% C.L., the value of�8 would
have to be �3� larger than current cosmological (CMB
alone and in combination with LSS) constraints; and 4) all
the cluster mass estimates would have had to be system-
atically overestimated by 1:5�, regardless of the measure-
ment technique used, to allow the ensemble of clusters to
be fully compatible with fNL ¼ 0 �CDM.
In Fig. 7, we compare the result obtained here with

other works, using a modified version of Fig. 8 of [21].
We overplot the result on CMB scales, at �0:04h=Mpc of
27< fNL < 147, at the 95% confidence level by [18] (dark
green, rectangle furthest to the left); of fNL ¼ 32� 21 at
1� by [19] (light green, rectangle second-furthest to the
left); the LSS results at scales�0:4h=Mpc of 449� 286 at
1� by [25] [light salmon (rectangle furthest to the lower
right), but note that, to apply an upper constraint, they
assume that there will be no other clusters found in this
footprint as massive or more massive than this cluster]; our
result of fLSSNL > 123, so fCMB

NL > 95 (dark salmon, rect-
angle in the upper-right-hand corner); the result using a
measurement of the non-Gaussian scale-dependent bias at
scales �0:1h=Mpc of �77< fNL < 47 at the 95% C.L.
and peaked at fNL ¼ 8 by [60] (light blue; rectangle in the
center, left); and the result fNL � 53� 25 at 1� (10<
fNL < 106 at the 95%C.L.) by [22] (dark blue; rectangle in
the center, right). They also obtained a similar, fully con-
sistent constraint from the SDSS quasar sample (fNL ¼
58� 24). For our application, here we use the NVSS
numbers.
We used these measurements to constrain the non-

Gaussian spectral index nNG, defined by [8],

fNL ¼ f	NL
�
k

k	

�
nNG

; (6)

where the 	 indicates the CMB pivot scale, k	 ¼
0:04h=Mpc. Note that this scale-dependence
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parameterization does not allow fNL to change sign, so, in
the following approach, only fNL � 0 is sampled by our
procedure. This (theoretically imposed) prior is not too
important, as fNL < 0 for only a small region with
relatively low probability (recall that [19] finds fNL > 0
at 1:5�).

Because of our inability to reliably place an upper con-
straint on fNL (see the introduction to the data section for
justification), we assumed a log normal distribution for
fCMB
NL with a mean of 5.69 and � ¼ 0:212.
We sampled from the measured values of fNL, while

keeping k fixed to the central value, and found the best-
fitting curve (using MPFIT [61]) and recorded the value
of nNG at each pass. The distribution of nNG is described
by nNG ¼ 0:50� 0:19 at 1�, which is a 2:6� detection
of scale-dependent bias, using [18,60] and our result;
or nNG ¼ 0:95� 0:23 at 1�, which is a 4:0� detection
of scale-dependent bias, using [19,22] and our result; or
nNG ¼ 0:93� 0:23 at 1�, using [19,60] and our result. All
of these constraints are in agreement with [25]. Since these
sets of analysis are not independent, the differing results
highlight some possible systematics effects. We show these
lines of best fit on Fig. 7.

For a nonflat distribution of objects, each with an ob-
served error, we must account for more objects to be
scattered into some part of the distribution than are scat-
tered out. This is described by the Eddington bias and
occurs here because the number of expected very massive
clusters above a mass M is exponentially smaller than the
expected number of clusters with mass less than M. This
could allow lower-mass clusters to masquerade as higher-
mass clusters and potentially cause us to overestimate fNL.
The Eddington bias is estimated to be only a fraction of

the full 1� mass error used in this work, and we have
marginalized over the full mass error distribution and have,
therefore, removed any of the Eddington bias effects.
As a worked example, we present the cluster

XMMUJ2235.3-2557. To calculate the true Eddington
bias, one should adopt the more robust cluster mass esti-
mate, not, as we have done here, the more conservative
one. Typically, the more conservative mass estimate is the
one with the largest mass error; e.g., [62] states the x-ray
mass estimate of XMMUJ2235.3-2557 to be 7:7þ4:4�3:1 �
1014M�. We find that the statistical correction to the
mass M is � lnM ¼ 0:48 with �2 lnM ¼ 0:16, and the
correction for the Eddington bias is � lnM ¼ 0:56, which
is, indeed, higher than the 1� statistical correction
(although less than 2�). Now, if we instead use the
weak lensing mass estimate M ¼ 8:5� 1:7� 1014M� of
the same cluster, we obtain a statistical correction of
� lnM ¼ 0:2 with �2 lnM ¼ 0:04, and the corresponding
Eddington bias correction is� lnM ¼ 0:14. The Eddington
bias here is, therefore, 3.5 times smaller than the 1�
statistical error of the x-ray estimate, which is that used
in this work.
We conclude with the remark that we have attempted to

remain very conservative with our choices of selection
functions and volumes, with the cluster mass estimates,
and the modeling of the theoretical non-Gaussian cluster
mass function. Any future improvements in the modeling
are expected to strengthen the conclusions of this work; if
the survey volume decreases, more clusters are followed up
spectroscopically and found to be massive, or the theoreti-
cal non-Gaussian mass function modeling is improved,
the tension with fNL ¼ 0 WMAP5 �CDM will, in all
cases, increase. The existence of high-redshift massive
clusters is a puzzle: it represents a challenge to the
�CDM paradigm if the clusters’ mass estimates reported
in the literature (central values and errors) are taken at face
value. These objects grew too massive too fast, compared
to the gravitational instability picture in a �CDM para-
digm. Alternatively, this is an indication that mass esti-
mates of high-redshift clusters are dramatically more
uncertain than currently believed. Aweak lensing cluster’s
mass estimate is an extremely promising approach to test
this possibility, as (e.g., [63]) robust and accurate mass
estimates are possible. Such an observational effort would
help address this ‘‘too big, too early’’ puzzle.

FIG. 7 (color online). A modification of Fig. 8 of Verde [21],
with additional fNL measurements from the literature (see text)
and this work. The colored regions show the scale-dependent
measurements of fNL using the CMB (green colors, the first two
rectangles furthest to the left), the galaxy halo bias (blue, the two
rectangles in the center), and the cluster halo abundances (sal-
mon, the two rectangles furthest to the right). The enclosed
boxes show the 95% confidence levels of each measurement.
The small x-axis offsets for different measurements of the same
probe are artificial. The lines show the values of scale-dependent
fNL; see the text.

IMPLICATIONS OF MULTIPLE HIGH-REDSHIFT GALAXY . . . PHYSICAL REVIEW D 83, 103502 (2011)

103502-9



ACKNOWLEDGMENTS

B.H. would like to thank Christian Wagner for detailed
discussions and making the results of his simulations
available and Shaun Hotchkiss for useful discussions and
code comparisons, and L.V. thanks Carlos Penya Garay for
discussions. The authors thank anonymous referees for
comments which improved the paper. B.H. acknowledges

Grant No. FP7-PEOPLE- 2007- 4-3-IRG n 20218 and the
Department of Mathematics and Applied Mathematics at
the University of Cape Town for hospitality, and L.V. and
R. J. are supported by MICINN Grant No. AYA2008-0353.
L. V. is supported by FP7-IDEAS-Phys.LSS 240117 and
FP7-PEOPLE-2007-4-3-IRGn202182.

[1] M.N. Bremer et al., Mon. Not. R. Astron. Soc. 371, 1427
(2006).

[2] M. Brodwin et al., Astrophys. J. 721, 90 (2010).
[3] M. Chiaberge, A. Capetti, F. D. Macchetto, P. Rosati, P.

Tozzi, and G. R. Tremblay, Astrophys. J. Lett. 710, L107
(2010).

[4] S. Muchovej et al., Astrophys. J. 663, 708 (2007).
[5] D. E. Holz and S. Perlmutter, arXiv:1004.5349.
[6] R. Jimenez and L. Verde, Phys. Rev. D 80, 127302

(2009).
[7] G. D’Amico, M. Musso, J. Noreña, and A. Paranjape, J.

Cosmol. Astropart. Phys. 02 (2011) 001.
[8] M. Lo Verde, A. Miller, S. Shandera, and L. Verde, J.

Cosmol. Astropart. Phys. 04 (2008) 014.
[9] S. Matarrese, L. Verde, and R. Jimenez, Astrophys. J. 541,

10 (2000).
[10] G. Hinshaw et al., Astrophys. J. Suppl. Ser. 180, 225

(2009).
[11] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Phys.

Rep. 402, 103 (2004).
[12] C. T. Byrnes and K. Choi, Adv. Astron. 2010, 724525

(2010).
[13] E. Komatsu et al., arXiv:0902.4759.
[14] A. Gangui, F. Lucchin, S. Matarrese, and S. Mollerach,

Astrophys. J. 430, 447 (1994).
[15] E. Komatsu and D.N. Spergel, Phys. Rev. D 63, 063002

(2001).
[16] D. S. Salopek and J. R. Bond, Phys. Rev. D 42, 3936

(1990).
[17] L. Verde, L. Wang, A. Heavens, and M. Kamionkowski,

Mon. Not. R. Astron. Soc. 313, 141 (2000).
[18] A. P. S. Yadav and B.D. Wandelt, Phys. Rev. Lett. 100,

181301 (2008).
[19] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18

(2011).
[20] B. Sartoris, S. Borgani, C. Fedeli, S. Matarrese, L.

Moscardini, P. Rosati, and J. Weller, Mon. Not. R.
Astron. Soc. 407, 2339 (2010).

[21] L. Verde, Adv. Astron. 2010, 768675 (2010).
[22] J.-Q. Xia et al., J. Cosmol. Astropart. Phys. 08 (2010) 013.
[23] C. R. Mullis, P. Rosati, G. Lamer, H. Böhringer, A.
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