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Abstract  

All electron relativistic density functional theory (DFT) based calculations using 

numerical atom-centered orbitals have been carried out to explore the relative stability, 

atomic and electronic structure of a series of stoichiometric TiO2 anatase nanoparticles 

explicitly containing up to 1365 atoms as a function of size and morphology. The 

nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and 

span the 1- 6 nm size range. Initial structures were obtained from a Wulff construction, 

thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were 

obtained from geometry optimization with full relaxation of all structural parameters 

using both generalized gradient approximation (GGA) and hybrid density functionals. 

Results show that, for nanoparticles of a similar size, octahedral and truncated 

octahedral morphologies have comparable energetic stabilities. The electronic structure 

properties exhibit a clear trend converging to the bulk values as the size of the 

nanoparticles increase but with a marked influence of the density functional employed. 

Our results suggest that electronic structure properties, and hence reactivity, for the 

largest anatase nanoparticles considered in this study will be similar to those exhibited 

by even larger mesoscale particles or by bulk systems. Finally, we present compelling 

evidence that anatase nanoparticles become effectively bulk-like when reaching a size 

of ~20 nm diameter.  
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1. Introduction 

Titanium dioxide (TiO2) nanoparticles are at the heart of large number of 

technological applications, 1  including solar cells 2 , 3 , environmental clean-up, 4 , 5  self 

cleaning surfaces 6  and photocatalysis. 7 - 10  In particular, H2 production from 

photocatalytic water splitting using TiO2 nanoparticles11,12 constitutes a promising clean 

and sustainable alternative to fossil fuels. Unfortunately, the rather large band gap (> 

3.0 eV)13 of the most common polymorphs of titanium dioxide (anatase, rutile and 

brookite) means that ultraviolet (UV) radiation is required for electronic excitation. This 

hinders general use as only ~10% of the incoming photons from sunlight have enough 

energy to be absorbed, and hence to participate in the photocatalytic process. Suitable 

modifications of titanium dioxide are thus actively being sought to overcome this 

constraint. 

Several strategies, from nanostructuring1,14 to doping with different types of 

elements,15-17 have been proposed to reduce the band gap of TiO2 so as to render the 

materials photocatalytic active under sunlight. The metastable anatase phase has been 

found to be stable in the form of nanoparticles. In turn these nanoparticles exhibit the 

highest photocatalytic activity, including water splitting reaction under certain 

conditions,2,11,12,18-22 yet with too low activity under sunlight. The origin of the higher 

photocatalytic activity of anatase nanoparticles is largely unknown and likely to be the 

result of many factors including morphology, size and possibly the presence of point 

defects and/or adsorbates. Thus, new techniques have been developed aimed at 

controlling the shape and size of anatase nanoparticles with the goal of optimizing their 

photocatalytic activity. 23  Nevertheless, experimental conditions make it difficult to 

discern between the different effects of size and shape and those introduced by the 

synthesis conditions.  

To complement experiments, theoretical models can be used to investigate the 

effect of different morphologies for a given composition, or vary the composition for a 

given morphology. A large amount of useful information has been gathered from 

electronic structure calculations of extended models of TiO2 bulk polymorphs, including 

defects and/or dopants,24-33  and of several well-defined surfaces.34-36 However, these 

models lack effects arising from the finite size and shape of the TiO2 nanoparticles. To 

take these effects into account requires explicitly modeling (TiO2)n nanoparticles which 

is computationally expensive and so far largely limited to the electronic ground state 
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and small clusters with n in the 8-38 range.37-45 The study of these species results in 

useful information although one must realize that rather small to moderately large 

(TiO2)n nanoclusters typically exhibit a significant number of non-bulk-like 

energetically low lying isomers. Since this implies that experimental measurements may 

provide information over an ensemble of particles rather than on the most stable 

structural ground state, it is necessary to investigate the properties of different isomers 

of TiO2 nanoparticles. This is analogous to the bulk case of TiO2 polymorph engineering, 

where similarly energetically stable yet distinct crystal structures lead to different 

modifications of band edges and hence band gaps due to varying local coordination.46  

The ground state and excited electronic structure of specific low energy (TiO2)n 

non-bulk-like clusters in the size range n =1-15 have been studied in detail,38,44 but 

information regarding larger particles is almost inexistent with the exception of a recent 

study by some of us dealing with ground and excited states of small TiO2 clusters 

including the most stable isomers and the low lying ones and also considering larger 

anatase bulk-cut (TiO2)n particles with n up to 84.47 The transition from nanoclusters, 

without a regular atomic structure, to nanocrystals exhibiting the crystal structure of the 

known polymorphs has also been theoretically estimated recently and results indicate 

that anatase-like crystallinity emerges in titania nanoparticles of approximately 2–3 nm 

diameter.48  

To help close the gap between nanoclusters and periodic models, Barnard et 

al.49 developed a self-consistent tight-binding (SCTB) model that was found to be able 

to mimic the results obtained from density functional theory (DFT) based calculations 

of a moderately sized (TiO2)35 nanoparticle. These authors subsequently employed this 

SCTB approach to investigate the relative stability and atomic structure of (TiO2)n 

anatase-like particles having different realistic bulk-cut morphologies exhibiting the 

lowest energy surfaces with n up to 455 (i.e. 1365 atoms). Unfortunately, the 

computational burden required to carry out explicit density functional theory based 

calculations for such large systems prevented reaching a more accurate description and 

the details of the electronic structure based properties of these large nanoparticles 

remain unknown. Nevertheless, the advent of new powerful supercomputers containing 

thousands of cores together to the existence of newly developed computational codes 

which are able to fully exploit this architecture should provide the appropriate 

framework to undertake this challenge. The aim of the present work is precisely to 
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provide a detailed study of the atomic and electronic structure of realistic (TiO2)n 

nanoparticles, encompassing the models used by Barnard et al.49 among others, and 

hence explore the convergence of stability and electronic structure related properties as 

a function of size and shape using a unified, consistent, and numerically accurate 

theoretical approach. 

2. Computational details  

The DFT based calculations for the TiO2 nanoparticles described in this study 

were carried out using the highly parallel FHI-AIMS code which is able to handle 

thousands of atoms with O(N) scaling.
50,51 ,52

 The calculations explicitly include all 

electrons and relativistic effects are accounted for at the zeroth order regular 

approximation (ZORA)
53 , 54

. The atomic structure of the different nanoparticles 

considered in the present work were optimized at the DFT level using the Perdew-

Bruke-Ernzerhof
55

 (PBE) implementation of the Generalized Gradient Approximation 

(GGA) using a light-tier-1 numerical atom-centered orbitals (NAO) basis with quality 

similar to that obtained with valence triple- plus polarization Gaussian Type Orbitals 

(GTO) as illustrated in the next section. In most cases, tight-binding optimized 

structures
49,56

 were used as starting points which facilitates the convergence of the 

geometry optimization. The energy threshold for self consistency was chosen as 10
-5

 eV. 

In the geometry optimization, all atoms were allowed to relax until the atomic forces 

were smaller than 0.001 eV/Å.  

To improve the description of the electronic structure of these systems and to 

overcome the well known underestimation of the band gap associated with calculations 

using GGA functionals,
25,57

 we performed single point calculations using the optimized 

PBE structures with the PBE0 and PBEx hybrid functionals. The latter includes an 

empirically chosen 12.5% of Hartree Fock exchange (instead of the 25% of the PBE0) 

so as to properly describe the electronic structure of stoichiometric and reduced rutile 

and anatase polymorphs/nanoparticles of TiO2.
58,59

 The single point calculations with 

the hybrid functionals were carried out using the same light-tier1 basis set and the same 

electronic convergence criteria of 10
-5

 eV for the total energy.  

All calculations presented in this work were carried out the Marenostrum 

supercomputer of the Barcelona Super Supercomputer Center (BSC) using 1024 cores 

with a time limitation of 72 hours per run. Within this constraint the hybrid (PBEx and 
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PBE0) DFT based calculations for the ground state of the largest nanoparticle and the 

PBE open shell spin polarized calculations for the cation and anion were unfeasible. Yet, 

the trends from the series of calculations lead to meaningful and sound conclusions as 

described in detail in the forthcoming sections. 

3. Defining the TiO2 anatase nanoparticles 

Ten different stoichiometric (TiO2)n nanoparticles have been modeled with n 

ranging from 10 to 455 TiO2 units hence containing up to 1365 atoms. The initial 

structure of these nanoparticles was obtained via Wulff constructions.
60,61

 This approach 

relates the shape of the nanoparticle to the area of the surfaces exposed and of their 

relative stability. For the anatase phase of titania, the two most stable surfaces are the 

(101) and (001) respectively.
62

 Restricting the morphology of the three-dimensional 

nanoparticles to those exhibiting these two surfaces leads to two kind of structures, a 

first set exhibiting only the (101) surface and displaying octahedral (Oh) symmetry and 

a second set simultaneously exhibiting (101) and (001) surface displaying a truncated 

octahedral (TOh) shape. In the following we will refer to both sets of nanoparticles as Oh 

and TOh and are schematically shown in Figure 1. 

Lu et al.
63

 have been able to stabilize anatase nanoparticles exhibiting a large 

amount of the less stable (001) surface using fluorine. This finding has been later 

rationalized from DFT calculations and ab initio thermodynamics showing that F 

stabilizes the (001) surface and destabilizes the (101) ones.
64

 Lu et al. also found that 

particles exhibiting the (001) facets present a higher photocatalytic activity than the 

nanoparticles presenting (101) surfaces only. This justifies the choice of nanoparticles 

studied which are displayed in Figure 2. The dimensions of these nanoparticles are 

between 1.3-6.1 nm high and 0.5-3 nm wide as measured from nucleus to nucleus or 

1.6-6.4 nm high and 0.8-3.3 nm wide considering twice the O (1.52 Å) van der Waals 

radii,
65

 as suggested by other authors.
66

 Clearly, the size and shape of the nanoparticles 

studied in this work approach the size of experimentally synthesized nanoparticles used 

to probe photocatalytic water splitting.
23 
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4. Results and discussion 

Assessing the quality of the NAO basis set used 

To assess the quality of the light-tier1 NAO basis set we compare the PBE total 

energy of the Ti atom and of the O2 and TiO2 molecules with those obtained using the 

widely used standard 6-311G** and TZVP basis sets. Table 1 reports the calculated 

energies corresponding to the formation of the TiO2 molecule from Ti and O2. For a 

proper comparison, the NAO results in Table 1 have been calculated without taking the 

relativistic effects into account. The calculations for the two molecules were carried out 

at the experimental geometry.  

Results in Table 1 show that the energies obtained with the NAO light-tier1 

basis set are always lower than those obtained with the 6-311G** GTO basis set by at 

least by 0.004 Hartrees and slightly higher than those obtained with the TZVP GTO 

basis set. Consequently, one can safely conclude that this NAO basis set is of triple-z 

plus polarization quality which provides a good compromise between accuracy and 

computational cost, especially given the large size of the systems treated in the present 

work and the high computational cost of calculations with hybrid density functionals. 

Stability and atomic structure as a function of size, shape and functional.  

In this section we analyze the convergence of relative stability and structure of 

the modeled nanoparticles, as function of size, shape taking also into account the effect 

of the DFT method used. First, we note that the optimization of the bulk cuts 

nanoparticles preserves the initial shape with well defined surfaces except in the 

smallest particles. In the case of the Oh particles, two different types of nearly 

degenerate local minima are found differing essentially in the position of the two apical 

oxygen atoms. In one type, the apical Ti-O bond preserves its direction as in the bulk 

structure, whereas in the other the Ti-O apical bond is tilted relative the long axis of the 

nanoparticle (see Figure 3). Nevertheless, for each of the Oh nanoparticles, the 

difference of energy per TiO2 unit relative to anatase bulk (/n) between these two 

stable geometries is minor (~0.009 eV/unit) except for the case of the smallest (TiO2)10 

nanoparticle where, as expected, the small size implies large surface 

reconstruction/distortion effects leading to a larger energy/unit difference (0.12 eV/unit). 

Because of the small difference in the energy/unit of these two types of isomers (see 

Figure S1 in the supporting information), further analysis of the stability respect to the 
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size and the functional used will focus on the structures with the tilted apical Ti-O 

bonds. Results regarding the more symmetric local minima are provided in the 

Supporting Information. 

Figure 4 plots the /n values for the optimized (TiO)n structures of the Oh and 

OhT nanoparticles as obtained from calculations using the PBE functional. For 

comparison Figure 4 also reports the corresponding /n values for the unrelaxed bulk 

cut structures as well as for the some of the structures as relaxed from the tight-binding 

method of Barnard et al.
49

 which were made available by these authors. Figure 4 shows 

that, in all cases, /n drops rapidly with size especially in the range of the smaller 

nanoparticles; the largest energy decrease of 0.47 eV/unit corresponding to the increase 

in nanoparticle size from (TiO2)10 to (TiO2)35. With further increases nanoparticle size, 

/n continues to decrease asymptotically with the decrease in /n being only 0.06 

eV/unit when going from (TiO2)286 to (TiO2)455. Within the nanoparticle size range we 

consider /n is still significant due to the presence of terminating surfaces which 

necessarily introduce an energy cost relative to the infinite bulk. The /n values by 

PBE for fully relaxed Oh and TOh particles approximately follow the same curve in 

spite of the fact that the former contains (101) facets only and the latter includes also 

two less stable (001) facets. This is also clear from the formation energy plots in Figure 

S2 calculated with respect to Ti(s) and O2(g) where values for Oh and TOh particles 

follow the same trend.  

From Figure 4 the variation in /n produced by relaxation of the atomic 

structure from the bulk cut to the PBE optimized structure can also be observed. This 

relaxation energy is very large for the smaller particles and asymptotically decreases for 

the larger ones as their internal structure converges to that of the bulk. Figure 4 also 

shows that the relaxation is much smaller when the initial structure has been previously 

optimized using the tight binding method of Barnard et al.
49

 although further relaxation 

is still required to obtain the PBE minimum energy structure. In this sense, the tight 

binding method can be regarded as an efficient and economic way to provide suitable 

starting structures for subsequent more accurate calculations. 

In order to assess the influence of the density functional on the relative stability 

of the nanoparticles modeled, we have calculated the energies of the nanoparticles using 

the PBEx and PBE0 functionals using fixed geometries obtained from optimizations at 
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the PBE level. For the relatively large nanoparticles considered in the present work, 

geometry optimization with the hybrid functionals is excessively demanding. 

Calculations with the hybrid functionals were excessively demanding for the (TiO2)455 

particle and some PBEx and PBE0 results for this particle have been extrapolated from 

corresponding data calculated for the (TiO2)286 nanoparticle. An indication of the 

influence of the functional is provided by comparing the change in /n when going 

from the original bulk cut to the PBE-optimised structure for each functional. For PBE, 

this change in /n for (TiO2)10 is 1.26 eV/unit whereas for (TiO2)455 the corresponding 

/n decrease is about 0.28 eV/unit. The corresponding values for the PBEx hybrid 

functional are 1.39 eV/unit and 0.32 eV/unit and for the PBE0 functional 1.54 eV/unit 

and 0.39 eV/unit, respectively. The discussion so far relied on the structures optimized 

with the PBE functional. In absence of polarons,
67

 as is the case here, PBE and PBEx 

lead to the same optimized structure as proven for both stoichiometric anatase and 

rutile.
58

 Hence we can safely assume that for the stoichiometric particles under scrutiny 

the PBEx and PBE0 functionals will also lead to almost equivalent optimized structures. 

Consequently, it is acceptable to claim that trends in /n are rather independent of the 

density functional method used. Nevertheless, for a given particle, /n values decrease 

from PBE to PBEx and followed by the PBEx and PBE0 subsequently. The effect of the 

functional is a consequence of the higher localization of the molecular orbitals with 

increasing the amount of non-local Fock exchange in the functional. 

To assess the convergence of structure with respect to the size of the 

nanoparticles we focus now on two structural parameters: (i) the average Ti-O distance 

and (ii) the average coordination of the Ti and O atoms. In both cases we take the values 

of bulk anatase as the converged limit for large nanoparticles. The smallest (TiO2)n 

nanoparticles with n < 35 have an average Ti-O distance significantly below the bulk 

value but which rapidly converges to the bulk value as the size of the nanoparticles 

increases (Figure 5, top panel). A similar trend is found for the coordination of the Ti 

and O atoms but in this case the average coordination for Ti (Figure 5, middle panel) 

and O (Figure 5, bottom panel), converges to the bulk value more slowly. This is a 

result of the presence of a significant proportion of surface atoms always exhibiting 

lower coordination than those in the bulk.  
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Electronic structure related properties as a function of size, shape and functional.  

One of the main features of TiO2 is its photocatalytic activity, which is 

necessarily directly related to the electronic structure of the material in its different 

forms. Here, we discuss the electronic structure of the nanoparticles again focusing on 

the influence of size and shape and taking into account the effect of the choice of 

density functional. In particular we investigate the band gap of these materials and 

consider both the optical and electronic gap of the different (TiO2)n nanoparticles 

following the strategy employed recently by Cho et al.
47

 In all cases we use the anatase 

bulk values for the band gap as reference. This is justified since surface effects on the 

band gap of anatase have been reported to be very small. For instance, for TiO2 

nanoparticles with a diameter of 7.6 to 24 nm, the band bending from the center to the 

surface is only 0.004 eV only.
68

 

The optical gap (Ogap) corresponds to the energy needed to excite an electron 

from the highest occupied molecular orbital (HOMO) energy level to the lowest 

unoccupied molecular orbital (LUMO) and is experimentally measurable from optical 

spectroscopy. On the other hand, the electronic gap (Egap) is defined as the energy 

difference between the vertical ionization potential (VIP) and the vertical electron 

affinity (VEA) and is measured with the help of photoemission and inverse 

photoemission experiments. For an ideal infinite system with well delocalized valence 

and conduction bands both values coincide (i.e. in the absence of excitons). In fact, 

small exciton-like excitations have been found in rutile and anatase but the 

corresponding excitation energies are of the order of a few meV only. 69-71 In the case of 

relatively small finite systems Ogap is lower than Egap because of the electrostatic 

stabilization of the electron-hole pair interaction in the exciton state. The difference 

between these two energy gaps is commonly defined as the exciton binding energy and 

provides a measure of how bulk-like a given nanoparticle of a certain size is with 

respect to its electronic structure.47  

Let us start with the trends exhibited by Ogap which has been calculated simply 

as the energy difference of the corresponding Kohn-Sham energies. This is of course an 

approximation since an accurate treatment of the HOMO-LUMO excitation would 

require configuration interaction, time dependent DFT (TD-DFT), or GW many body 

quasi particle calculations. These levels of calculation are unfeasible for systems of the 

size considered in the present work.  As such, the usual approach to estimating the band 



10 
 

gap of bulk solids involves using the Kohn-Sham energy eigenvalues from band 

structure calculations. Since the main purpose of the present work is to explore to 

convergence of Ogap towards the bulk it is reasonable to compare Ogap values for the 

nanoparticles and for the bulk using this widely used approach. This methodological 

choice is also justified from explicit TD-DFT calculations of the lowest singlet to 

singlet transition on (TiO2)35 and (TiO2)84 particles showing that, for a given functional, 

the HOMO-LUMO gap follow the same trends as those gaps obtained from TD-DFT.47 

However, because of the well known effect of the density functional on the position of 

the Kohn-Sham energy levels, also evidenced in recent work,58 Ogap values have been 

obtained using the PBE, PBEx and PBE0 functionals and results for the Oh set of 

particles are summarized in Figure 6. Here, we recall that PBE severely underestimates 

the anatase experimental band gap of 3.2 eV, PBE0 overestimates it, and PBEx has been 

empirically adjusted to reproduce the experimental value for bulk TiO2.
58 We note that 

the PBEx calculated Ogap of (TiO2)84 and (TiO2)455 particles with Oh morphology, 

corresponding to nanoparticles with 3nm and 6 nm apical diameters, are consistent with 

the experimentally estimated Ogaps of anatase nanoparticles with 3nm and 6 nm sizes 

assumed to have a spherical shape.72 The calculated and experimental Ogap values are 

3.61 eV and 3.50 eV for the 3nm nanoparticle and 3.34 eV and 3.34 eV for the 6nm one 

respectively. Hence, it appears that the PBEx functional also predicts reasonable Ogap 

values for TiO2 nanoparticles. The same trend between functionals is observed for the 

Ogap values in Figure 6 where the most salient feature is perhaps the weak dependence 

of this quantity with respect to nanoparticle size This confirms that the electronic 

structure converges faster than the energy (E/n) related properties.  

Figure 6 also reports the Egap values for the Oh set of particles as obtained with 

the three different considered functionals. The results in Figure 6 show that Egap values 

are also strongly dependent on the functional used, but also that they are markedly 

dependent on the particles size. As found for Ogap, lower values are obtained when using 

the PBE functional, higher energies for PBE0, with those corresponding to the PBEx 

functional in between. With respect to Ogap, the Egap values rapidly decreases and 

asymptotically converge to the values of the anatase bulk band gap. For comparison and 

to assess the influence of the shape of the nanoparticle in this important property, Figure 

7 collects the Ogap and Egap values for the complete set of particles studied as predicted 

from the calculations using the PBEx hybrid functional
58

 (the results for the largest 

particle are extrapolated as indicated above). Analysis of Figure 7 shows that, as far as 
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electronic structure is concerned, size dominates over shape. However, for a given size 

Ogap and Egap noticeably vary with shape suggesting that it may be able to tune the 

electronic properties by modifying the nanoparticle morphology. 

Finally, we focus on the exciton binding energy (Eex) defined as Egap-Ogap. The 

magnitude of Eex provides a direct measure of convergence of electronic properties 

towards the bulk since, in absence of excitons as is the case in TiO2,
69-71

 the magnitude 

of Eex must tend to zero. Figure 8 plots Eex as a function of the number of TiO2 units 

in the nanoparticles. Since Egap decreases sharply with size and Ogap decreases more 

gradually, Eex exhibits a decreasing trend with size moving from energy values of 

about 3 eV at the PBEx level to less than 1 eV for the largest ones. This latter value fits 

well with predictions based on extrapolating results from smaller particles.
47

 In addition, 

the present results allow one to define the size at which the TiO2 nanoparticles will 

exhibit a bulk electronic structure. To this end, and following the strategy used in our 

previous work,
47

 Figure 9 plots Eex for the (TiO2)n particles with Oh morphology as a 

function of n
-1/3

. Consistent with results of previous work,
47

 the data in Figure 9 follow 

linear trends. The present PBE0 and PBEx fit lines lying in between those for smaller 

particles predicted by non relativistic B3LYP calculations within a standard GTO basis 

set of 6-31G(d) quality, and the same B3LYP results scaled down by 20% to 

empirically correct for the B3LYP overestimate of band gap of anatase. The linear plots 

in Figure 9 allows one to make a prediction of the number of TiO2 units a particle 

should have to have an exciton shift within the limits of accuracy of experiment (taken 

to be approximately ±0.1 eV). Thus, assuming that an exciton shift of or smaller than 

0.2 eV is indicative of bulk behavior, the trends in Figure 9 indicate that this limit is 

reached by Oh particles of 22810, 15000 and 10218 TiO2 units for the PBE0, B3LYP 

and PBEx hybrid functionals, with a clear trend following the amount of Fock exchange 

(25, 20 and 12.5%) included in the functionals. In terms of TiO2 units this may appear 

as a rather broad range but this is very much reduced when focusing on the particle size. 

For the (TiO2)n particles with Oh morphology a linear relationship exist between the 

particle height and n
1/3

 (See Figure S3 in the supporting information). From this 

relationship one can readily find that the height of particles of 22810, 15000 and 10218 

units is 18.1, 20.6 and 23.8 nm, respectively. Therefore one can safely conclude that the 

onset size for bulk-like electronic properties is of ~20 nm apical diameter in an anatase 

Oh nanoparticles exhibiting the most stable (101) surfaces; a prediction in full 
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agreement with previous indications extracted from significantly smaller 

nanoparticles.
47

  

5. Conclusions 

A systematic study has been presented of the atomic and electronic structure of 

realistic (TiO2)n nanoparticles with n ≤ 455 from relativistic, all electron density 

fucntional theory based calculations using a sufficiently large atom-centered numerical 

orbital basis set. Three different density functional have been used, each differing in the 

amount of Fock exchange included (0% in PBE to 25% in PBE0). Interestingly, the 

main conclusions regarding qualitative trends in relative stability and electronic 

structure are consistent and independent of the functional used.  

The energy per TiO2 unit (E/n) of the systems studied decreases as the size of 

the particle increases, as expected, with size effects dominating over morphology. In 

fact, octahedral and truncated octahedral nanoparticles exhibit similar size dependent 

stabilities. Note, however, that for very small sizes the truncated octahedral 

nanoparticles are similarly stable, or even more stable, than the octahedral 

nanoparticles. However, at larger sizes the effect of the different surfaces starts to 

become more important and the octahedral nanoparticles become more energetically 

stable than the truncated nanoparticles. 

Comparing the level of theory used in the calculations and the different starting 

point geometries, we can see that nanoparticles directly cut from the bulk are highly 

metastable and still require significant optimization of their structure. Part of this 

structural relaxation is well captured by the tight-binding approach of Barnard et al.,
49

 

although further optimization at the PBE level still has a considerable effect on the 

structure and energetic stability.  

Regarding the electronic structure, the main conclusions are that the optical gap 

only varies slightly with size whereas the electronic gap quickly converges with size to 

the value of the bulk band gap of anatase calculated at the same level of theory. This is 

confirmed by the explicit calculation of the exciton binding energy that shows smooth 

convergence towards zero (bulk behavior) for Oh particles of ~20 nm between the apical 

corner sites. This implies that nanoparticles of size equal or larger than the largest ones 
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studied in the present work would present electronic structure features, and hence 

photocatalytic activity, similar to that expected for bulk like anatase samples.  

A final caveat is necessary here since the overall study presented in this work 

holds for TiO2 nanoparticles in gas phase or in vacuum whereas photocatalysis, 

especially water splitting, takes place in aqueous environment. The presence of water 

will likely result in heavily hydroxylated nanoparticles with possible effects on both 

atomic and electronic structure trends. The effect of water on this type of nanoparticle is 

being currently studied in our laboratory. 
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Table 1.- Total non relativistic PBE energy of the Ti atom (triplet state), O2 (triplet 

state) and TiO2 (singlet state) as obtained with a NAO light-tier1 and the GTO 6-

311G** and TZVP basis sets. 

 

  Total energy (Hartrees) 

  NAO (light-tier1)  6-311G** TZVP 

Ti -848.3777 -848.3571 -848.3800 

O2 -149.6646 -149.6600 -149.6765 

TiO2 -998.1397 -998.0971 -998.1415 

Ti + O2  TiO2 -0.0974 -0.0800 -0.0850 
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Figure 1. Schematic representation of the octahedral and cubo-octahedral TiO2 anatase 

nanoparticles featuring (101) and (001) surfaces. 
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Figure 2. Octahedral (top) and cubo-octahedral (bottom) (TiO2)n nanoparticles 

considered in the present work.  
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Figure 3. The two types of local minima found for the Oh type (TiO2)n nanoparticles: 

tilted apical Ti-O bonds (left) and bulk-like straight apical Ti-O bonds (right) 
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Figure 4. Energy per TiO2 unit relative to anatase (E/n) for the different Oh and TOh 

(TiO2)n nanoparticles studied in the present work as obtained from calculations using 

the PBE functional. For comparison, the values corresponding to the unrelaxed structure 

cut from bulk and to the tight-binding relaxed structures from Barnard et al are also 

shown.
49

 Blue squares correspond to single point calculations using the bulk cut 

structures (SP@BC), red dots correspond to single point calculations using the tight-

binding relaxed structures (SP@TB), black diamonds correspond to the optimized Oh 

structures (Opt Oh), and green triangles correspond to the optimized TOh structures (Opt 

TOh).  

 

  



20 
 

Figure 5. Average Ti-O distance (top panel), Ti coordination (middle panel) and O 

coordination (bottom panel) for the considered (TiO2)n nanoparticles as a function of n. 

Black dots correspond to Oh and red squares to TOh nanoparticles. The blue 

discontinuous lines correspond to the bulk values.  
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Figure 6. Optical (Ogap) and electronic (Egap) gap calculated values for the octahedral 

(TiO2)n nanoparticles as a function of n. Black, blue and red correspond to PBE, PBEx 

and PBE0 respectively at optimized PBE geometries. The discontinuous line refers to 

the bulk value calculated at the same level of theory 
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Figure 7. Optical (Ogap) and electronic (Egap) gap calculated values for the whole set of 

(TiO2)n nanoparticles, Oh and TOh, as a function of n as predicted from the PBEx 

calculations at the PBE optimized geometry. Black dots and red squares refer to Ogap for 

Oh and TOh nanoparticles, respectively. Green diamonds and blue triangles correspond 

to Egap values for Oh and TOh nanoparticles, respectively. 
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Figure 8. Exciton binding energy for the whole set of (TiO2)n nanoparticles, Oh and 

TOh, as a function of n as predicted from the different considered density functionals. 

Black dots, red squares and blue diamonds correspond to Oh nanoparticles at PBE, 

PBEx and PBE0 levels, respectively. Green triangles correspond to PBEx results for 

TOh nanoparticles.  
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Figure 9. Exciton binding energy for the Oh set of (TiO2)n nanoparticles as a function of 

n
-1/3

 as predicted from the PBE0 and PBEx hybrid density functionals. Red circles and 

green triangles correspond values obtained with the PBE0 and PBEx hybrid functionals, 

respectively. Blue lines correspond to the non-relativistic B3LYP/6-31G(d) values for a 

set of smaller particles (upper blue line) and to the values scaled by 20% (bottom blue 

line) to take into account the overestimation of the band gap at the B3LYP level as 

taken from Ref. 47. 
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