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I
TRODUCTIO
 

In medicine and sciences of the life in general, it is so important the evolution of 

one measurement as well as its value at a certain moment. Nevertheless the analysis of 

the temporary series, that is the appropriate methodology for this type of study, and in 

individual the version of the spectral analysis or analysis of the time series in the 

dominion of frequencies, is little known and therefore underused. The medicine books 

are concentrated almost exclusively in explaining methodology that analyzes fixed 

measures, measures done in a certain moment, Campbell (1996). 

In this work we try to analyze the frequency whereupon it happens the pulsating 

secretion of luteinizing hormone LH, that is to say, we are going to determine as they 

are the significant frequencies obtained by analysis of Fourier. The main difficulty with 

that are the professionals of the biomedicine, to detect the frequencies with which the 

pulsating secretion of the LH takes place is that random errors in the measures and 

problems in the sampling exist. This does that pulsating secretions of small amplitude 

do not detect because random errors are considered and that random variations of the 

secretion are considered like pulsating secretions. In physiology it is accepted that 

cyclical patterns in the secretion of the LH exist and in this work we are going to 

confirm this pattern and to determine its frequency. By another part we are going to 

give diffusion to a statistical methodology little used, without an excessive formalism, 

but with sufficient rigor and that it is very useful for the investigators, without any 

excessively deep knowledge of the mathematics. A simplified vision of the subject we 

can find it in Diggle (1990), and one more developed of the theory on spectral analysis 

we can consult Brockwell at al. (2000) and one more formalized vision in Brockwell et 

al. (1991).  
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1. MATERIAL A
D STATISTICAL METHODOLOGY 

In this section we are going to expose of which the physiology of the secretion of 

the luteinizing hormone consists and are going to make a description of the analysis of 

temporary series in the dominion of frequencies or spectral analysis. 

 

1.1. Luteinizing hormone 

The fertile life of the woman begins in menarquia that is the first menstrual 

period and finishes with the menopause. This period is divided in cycles of 

approximately 28 days, separated by the menstruation. Arbitrarily it is considered that 

the cycle begins the first day of the menstruation and finishes the day previous to the 

following one. It is characterized by monthly rhythmical variations of the secretion of 

the hormone LH that helps to regulate the menstrual cycle and the ovum production. 

The cycle is divided in two periods: the follicular phase that goes from the beginning of 

the cycle to the ovulation and the luteal phase from the ovulation to the end of the 

cycle. The follicular phase, in its turn, has two phases: the early phase that embraces 

the period starting with the beginning of the menstruation until its finishing, and the 

late phase, from the end of menstruation until the ovulation, that is normally the 14
th
 

day of the normal feminine sexual cycle. In this stage a quick increment of the LH 

secretion occurs that is known as the LH pick in medicine. 

 

 

Figure 1. Hormonal behaviour in the follicular and luteal phases. 
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Figure 2. The menstrual cycle. 

 

1.2. Spectral Analysis 

Isaac Newton published one article in the Royal Society in 1672 where he had 

used the term “spectrum” for the description of the colours of the rainborn, in which the 

white light, solar light was discomposed passing via a crystal prism. 
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We know from the physics that each colour corresponds to the determinate 

frequency (see Figure 3), thus, light analysis is one of the forms of frequency analysis. 

A role of the prism will be associated with the Fourier series, as it will be shown later 

that the decomposition of the observed series values during some time period is a lineal 

combination of sinus and cosines. 

   

 

Figure 3. Electromagnetic spectrum and light decomposition discovered by Isaac 

Newton. 

The process to obtain this decomposition is called frequency or spectral analysis. 

 

1.2.1. Temporal Series of the Complex Stationary Values 

Although the data we are going to work with in this work are real numbers, we 

are going to develop the theory for the complex stationary processes that result easier to 

treat mathematically, and then consider our data as particular cases for the complex 

processes. 
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a) Definition. The process {Xt} of the complex values is a stationary process if its 

absolute value has moment of the second order and if E(Xt) and E(Xt+hXt) are 

independent of t. 

b) Definition. The autocovariance function γ(h) of one stationary process of 

complex values {Xt} is: 

)()()()( thttht XEXEXXEh ++ −=γ  

 

1.2.2. Spectral Density Function. 

At this point we are going to introduce the concept of the spectral density 

function justifying its formal definition. 

If {Xt} is one stationary process with zero mean and autocovariance function   

γ(h), accomplishing ∞<∑
∞

−∞=h

h)(γ . The spectral density function of the process {Xt} can 

be defined as 

∑
∞

−∞=

− ∈=
h

ih Rhef λγλ λ )()(  

This expression is defined under the condition that the sum of )(hγ  exists and 

1=− λihe . 

Since sinus and cosines functions are periodical with the 2π period, it is enough to 

define it in the interval (-π,π]. 

From another hand we have 

∫ ∫ ∑ ∑ ∫
− −

∞

−∞=

∞

−∞= −

−− ===
π

π

π

π

π

π

λλ πγλγλγλλ
h k

hkihkiih hdehdhedfe )(2)()()( )()(
. 

Supposing, as a general case, that the sum of )(hγ  doesn’t exist, we could define the 

spectral density function as:  
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a) Definition. One function f is a spectral density function of one stationary 

process {Xt} with autocorrelation function γ(h) if: 

i) ( ]πλλ ,00)( ∈∀≥f  

ii) Zhdfeh ih ∈∀= ∫
−

λλγ
π

π

λ )()(  

 

Using the Fourier theory it is possible to demonstrate that if 

Zhgedfe ihih ∈∀= ∫∫
−−

π

π

λ
π

π

λ λλλ )()( , then f and g are equals. Consequentially the 

spectral density function is unique.  

b) Suggestion. If {Xt}~W�(0,σ
2
) then its spectral density function is: 

πλπ
π

σ
λ ≤≤−= ,

2
)(

2

f  
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• It is easy to check it if we consider that. 

• This process is called as a white noise since all frequencies influence 

equally in the variance. 

 

1.2.3. The Periodogram. 

 

If {Xt} is one stationary process with the autocorrelation function γ(h), 

spectral density function f(λ) and  is a realization of this process the periodogram 

In(λ) is defined from the observations and will play the same role above 2πf(λ) as 

the sample autocorrelation function γ*(h) above γ(h). 

Let us consider the vector of the complex numbers as 

n

n Cxxxx ∈= )',...,,( 21

r
. 

Let nkk /2πω = , where k is an integer number between –(n-1)/2 and n/2 (both 

included), or  

[ ] [ ]2/,...,2/)1(,/2 nnknkk −−== πω . 

Where [ ]y denote the major integer less o equal to y. These values are called 

Fourier frequencies associated to the sample of the size n, and as we can check, they 

are values belong to the interval of (-π,π].  

Let us consider now that the column of vectors n  

[ ] [ ]2/,...,2/)1(,)',...,,(
1 2 nnkeee
n

e kkk niii

k −−== ωωωr
. 

It is easy to check that ijkj ee δ=
rr*

 where 
*

je
r
denotes the row vector which 

components are the values conjugated from the components of the vector je
r
and where 

δij is the delta of Kronecker, jkkjjj ≠== 0,1 δδ .  

Thus the vectors { ke
r
} are orthogonal and constitute one base of C

n
. That means 

that any nCx ∈
r

is possible to express as a lineal combination of },...,{ 1 nee
rr
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[ ]

[ ]

∑
−−=

=
2/

2/)1(

n

nk

kkeax
rr
 

Each component xt of the vector x
r
 is given by  

[ ]

[ ]

[ ]

[ ]

∑ ∑
−−= −−=

=+==
2/

2/)1(

2/

2/)1(

,...,1))()(cos(
n

nk

k

n

nk

kk

it

kt nttisentaeax k ωωω
 

The last expression demonstrates that each observation xt can be expressed as a 

lineal combination of sinus y cosines with frequencies 

 [ ] [ ]2/,...,2/)1(,/2 nnknkk −−== πω  

 

a) Proposition. If 

,/2 nkk πω =  and    [ ] [ ]2/,...,2/)1(,)'...,,(
1 2

nnkeee
n

e kkk niii

k −−== ωωωr
 

then ijkj ee δ=
rr*

(Delta of Kronecker). 

In reality if  j=k, 1)1...1(
1* =++=
n

ee jj

rr
.   

From another side, if ωk≠0, .0
1

∑
=

− =
n

t

it ke
ω   If j ≠k,   then =kjee

rr*
 ∑

=

N

1t

k))-j(-it(e^ ωω    

 

b) Proposition. The coefficients ak of the decomposition   
 

[ ]

[ ]

∑
−−=

=
2/

2/)1(

n

nk

kkeax
rr
 

are easy to obtain since 

∑
=

−==
n

t

it

tk
kex

n
xea

1

1
*

ωrr
. 
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 c) Definition. The periodogram of the realization },...,,{ 21 nxxx of one stationary 

process {Xt} is the function: 

2

1

1
)( ∑

=

−=
n

t

it

tn ex
n

I λλ  

If λ=ωk then 
2

)( kkn awI = and thus the absolute value of the x
r
 squared is 

[ ]

[ ]

[ ]

[ ]

∑ ∑∑
−−= −−==

===
2/

2/)1(

2/

2/)1(

2
2

1

).(*
n

nk

n

nk

knk

n

t

t Iaxxx ω
rr

 

If the square of the absolute value of the observations vector x
r
 represents the 

variance of the observations, this variance is a result of the sum of the n values of the 

periodogram at the frequencies of ωk, and the value of the periodigram at the frequency 

ωk represents the contribution of the frequency ωk in the variability of the observations. 

 

d) Proposition. If  },...,,{ 21 nxxx  is the realization of the one real process y,  ωk is 

a Fourier frequency ,/2 nkπ  in the ( ]ππ ,−  then 

∑
<

−=
nh

ih

kn heI )(*)( γω λ  

where )(* hγ is the autocovariance simple function of },...,,{ 21 nxxx . 

 Since the values of xk are real ones, 

))((
1

)(
11

kk it
n

t

t

n

s

is

skn exex
n

I ωωω ∑∑
==

−=  

Given that  0
1

=∑
=

−
n

i

it ke ω  if ωk ≠0 we can rest the simple mean x a kx and have: 
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∑

∑∑∑∑

<

−

=

−−

===

−

=

=−−=−−=

nh

ik

n

t

tsi

ts

n

s

it
n

t

t

n

s

is

skn

k

kkk

eh

exxxx
n

exxexx
n

I

ω

ωωω

γ

ω

)(*

))((
1

))()()((
1

)(
1

)(

111

  

From another hand: 

∑
∞

−∞=

−=
h

ihehf λγλ )()(  

  Due to the similarity between both expressions we can consider In (λ) as a 

natural estimator of the f(λ).  

 

e) Theorem. If {Xt} is a stationary  process with a spectral density positive 

function and λ1,…,λm  are frequencies that 0<λ1 <…<λm <π, the distribution join 

function Fn(x1,…,xm) of the periodigram values (In(λ1),…,In(λm))  converges in 

F(x1,…,xm) when n→∞ where 








>

−
−

=
∏

=

otherwise

xxif
f

x

xF

m

i

m

i

i

0

0,...,)),
)(2

exp(1(
)x,...,( 1

1
m1 λπ

 

Thus for the values of n sufficiently big the ordinates’ values of the periodigram 

In(λ1),…,In(λm) are approximately distributed as freedom exponentially independent 

values with means f(λ1),…, f(λm)  respectively. 

For each value λ∈(0,π) and ε>0, 

( ) ∞→→>− nkfIp n ,)()( ελλ  

This means that the difference between the estimator In  and the density function  

f it is impossible to reduce as we would like to even increasing simple size, that  means 

that it is not consistent estimator. To see a simple and practical demonstration of the 

properties of the estimators, please, refer to Cuadras (2000). 
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1.2.4. White 
oise 

It is utile to explore the special case of the white noise, i.e. a process {Zt} where 

the variables Zt are mutually independent with a common mean 0 and variance σ
2
 and 

let denote as W�(0, σ
2
). This process is called as a white noise since each frequency is 

constant and thus contributes by equal manner in the process variability. 

 

a) Densidad espectral. If {Zt}~ W�(0, σ
2
) then γ(0)= σ

2
 y γ(h)= 0 for all |h|>0. 

Thus the spectral density function is 

2)( σλ =f , -π ≤λ ≤π. 

 

b) Periodogram of the white noise. If },...,,{ 21 nzzz  is a realization of the 

process {Zt} → W�(0, σ
2
).
 
taking into account   

2

1

1
)( ∑

=

−=
n

t

it

tn ez
n

I λλ  

it can be expressed as 

2

1

1
)( ∑

=

−=
n

t

it

tn ez
n

I λλ = ]))(())([(
1 22 λλ BA
n

+  

Where ∑
=

=
n

t

t tzA
1

)cos()( λλ  and  ∑
=

=
n

t

t tsenzB
1

)()( λλ . 

Thus 0))(())(( == λλ BEAE  and  

∑∑∑
===

+=+==
n

t

n

t

n

t

tnttA
11

2

1

2
22 )]2cos([

2
))2cos(1(

2
)(cos))(var( λ

σ
λ

σ
λσλ  

∑∑∑
===

−=−==
n

t

n

t

n

t

tnttsenB
11

2

1

2
22 )]2cos([

2
))2cos(1(

2
)())(var( λ

σ
λ

σ
λσλ  

But 
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∑
= −

−
=

n

t
i

nii
ti

e

ee
e

1 1

)1(
λ

λλ
λ

 

Since 

Zk
n

k ∈= ,
2π

λ ; 0))2()2(cos(11 =+−=− ππλ kisenke ni  and that is why 

∑ ∑ ∑
= = =

+=+=
n

t

n

t

n

t

t
n

ik

it
n

ksenit
n

ke
1 1 1

2

00)
2

()
2

cos(
ππ

π

. 

Since the parts real and imaginary must be equals: 

Zkt
n

ksent
n

k
n

t

n

t

∈==∑ ∑
= =

0)
2

()
2

cos(
1 1

ππ
 

In particular 

0)
2

2()
2

2cos(
1 1

==∑ ∑
= =

n

t

n

t

t
n

ksent
n

k
ππ

 

since 2k∈Z. 

Finally if  Zk
n

k ∈= ,
2π

λ  

2
))(var())(var(

2σ
λλ

n
BA ==  

 As well 

0)()cos()]()cos([)](),(cov[
1 1

2

1

=== ∑ ∑∑
= ==

n

s

n

t

st

n

t

tsentssentzzEBA λλσλλλλ  

since 

∑∑
==

==
n

t

n

t

tsentsent
11

;0)2(
2

1
)()cos( λλλ Zk

n
k ∈= ,
2π

λ . 

From all the above we deduct that 
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)1,0(
2

)()(
2

�
n

AU →=
σ

λλ      )1,0(
2

)()(
2

�
n

BV →=
σ

λλ  

Since U(λ) y V(λ) are independents then 

2

22

22

2
)(

2
)]()([

2
χλ

σ
λλ

σ
→=+ nIBA

n
  (chi-square with 2 degrees of freedom.) 
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2. DATA 

The data of this research are obtained from the blood samples taken from 

one healthy woman without any treatment. The samples were taken each 10 

minutes within three periods of 8 hours. One period was correspondent to the late 

follicular phase, another to the early one of the following menstrual cycle, and the 

third period of 8 hours corresponded to the late phase of the second cycle. The 

data originate from Murdoch et al (1985) and given in the Table 1. 

 

Table.1. Levels of the luteinizing hormone in the blood samples (Murdoch et al.) 

Time*10 
min. 

Late phase 
1 

Early phase 
 2 

Late phase 
2  

Time*10 
min. 

Late phase 
1 

Early phase 
 2 

Late phase 
2 

1 5,5 2,4 4,3  25 4,8 2,3 4,5 

2 4,5 2,4 4,6  26 5,5 2 4,6 

3 5,1 2,4 4,7  27 5,1 2 5,8 

4 5,5 2,2 4,1  28 5,2 2,9 5 

5 5,7 2,1 4,1  29 5 2,9 5,1 

6 5,1 1,5 5,2  30 4 2,7 4,5 

7 4,3 2,3 5  31 3,7 2,7 4,2 

8 4,8 2,3 4,4  32 4,8 2,3 6 

9 5,6 2,5 4,2  33 5,9 2,6 5,6 

10 5,9 2 5,1  34 5,5 2,4 5,4 

11 6 1,9 5,1  35 4,9 1,8 5 

12 5,1 1,7 4,7  36 4,4 1,7 4,4 

13 5,2 2,2 4,4  37 4,7 1,5 4,6 

14 4,4 1,8 3,9  38 4,2 1,4 5,7 

15 5,5 3,2 5,4  39 5,5 2,1 5,2 

16 5,4 3,2 5,9  40 4,9 3,3 5 

17 4,1 2,7 4,2  41 4,8 3,5 4,4 

18 4,4 2,2 4,1  42 4,5 3,5 5,7 

19 4,7 2,2 4,1  43 4,9 3,1 5,7 

20 4,6 1,9 3,6  44 4,9 2,6 4,8 

21 6 1,9 3,1  45 4,5 2,1 3,4 

22 5,6 1,8 4,8  46 4,2 3,4 5,5 

23 5,1 2,7 5,1  47 4,9 3 5,5 

24 4,7 3 5,1  48 5,9 2,9 5,6 
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Figure 4. Time Series of Late Follicular Phase. 1st Cycle. 
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Figure 5. Time Series of Early Follicular Phase. 2
nd
 Cycle. 
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Figure 6. Time Series of Late Follicular Phase. 2
nd
 Cycle.  
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Figure 7. LH concentrations during all three observed phases.
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3. RESULTS 
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Figure 8. Periodogram of Late Follicular Phase. 1
st
 Cycle. 

Figure 8 shows the periodogram of the first of the three LH series corresponding to the 

late follicular phase of the cycle 1. The dominant peak indicates a cyclic component to 

the time variation in the data, the location of the peak suggesting a frequency of about 8 

cycles in the 8 hours time-span of the data, i.e. one cycle per 1 hour. 
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Figure 9. Periodogram of Early Follicular Phase. 2
nd
 Cycle. 

 

 

Figure 9 shows the periodogram of the second of the three LH series corresponding to 

the early follicular phase of the cycle 2. The dominant peak indicates a cyclic 

component to the time variation in the data, the location of the peak suggesting a 

frequency of about 6 cycles in the 8 hours time-span of the data, i.e. one cycle per one e 

per 1 hour and 20 minutes. 
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Figure 10. Periodogram of Late Follicular Phase. 2
nd
 Cycle. 

 
Figure 10 shows the periodogram of the third of the three LH series corresponding to 

the late follicular phase of the cycle 2. The dominant peak indicates a cyclic component 

to the time variation in the data, the location of the peak suggesting a frequency of about 

12 cycles in the 8 hours time-span of the data, i.e. one cycle per 40 minutes; as well 

there is another significant frequency of about 9 cycles that corresponds to one cycle per 

53 minutes approximately. 
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4. CONCLUSIONS  

 

The methods of spectral analysis and its applications are well developed and 

explained by different authors such as Chatfield (1980), Priestly (1981), Diggle (1990). 

From another hand, the spectral analysis was little appreciated by some authors such as 

Clifton & Steiner (1983) since they consider that it can be applied only in the series of 

values that follow a regular cycle, however, the spectral analysis is applied to other 

types of data as it is shown in this research work. 

It is known that various hormones, such as the luteinizing hormone or the 

growth hormone, have a pulsate secretion that makes them effective. That means that its 

action does not depends on its absolute levels, but on the pulsate ones, as per Lincoln et 

al. (1985). 

As per values of the luteinizing hormone concentrations in the blood samples, 

taken each 10 minutes, it is demonstrated in the current research that the behavior of 

these values is cyclic with the frequency of approximately of one cycle per hour in the 

first of the series that corresponds of the late stage 1 of the follicular cycle (the 

frequency of the cycle is each 1 hour); in the second series that corresponds to yearly 

follicular phase 2 (frequency of the cycle is each 1 hour and 20 minutes);  and, finally, 

in the third  series that corresponds to the follicular late phase 2 (frequency of each 

cycle is each 40 minutes). That is meant that the cyclical secretion of LH is more 

frequent in the late phase then in the early one. 

If the samples were taken with more frequency, probably, there would be 

observed the rhythms with a shorter cycle period. 

From this research we can make a conclusion that the spectral analysis is an 

important tool for improving of the fundaments of the secretion physiology of the 

luteinizing hormone. Moreover it is indicated as well what should be the frequency in 

the sampling in order to observe the picks of the hormone secretion. 
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