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Abstract 

In this paper we analyse, using Monte Carlo simulation, the possible consequences of 

incorrect assumptions on the true structure of the random effects covariance matrix and 

the true correlation pattern of residuals, over the performance of an estimation method 

for nonlinear mixed models. The procedure under study is the well known linearization 

method due to Lindstrom and Bates (1990), implemented in the nlme library of S-Plus 

and R. Its performance is studied in terms of bias, mean square error (MSE), and true 

coverage of the associated asymptotic confidence intervals. Ignoring other criteria like the 

convenience of avoiding over parameterised models, it seems worst to erroneously assume 

some structure than do not assume any structure when this would be adequate. 
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1 Introduction 

Nonlinear mixed-effects (NLME) models are widely used tools for modelling and analysing 

repeated measures and hierarchical data. They allow the study of multiple sources of 
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heterogeneity and/or correlation in data through the inclusion of random effects and explanative 

variables in the model. 

The modelling process using mixed models is highly interactive and conducted in a step-by-step 

way, progressively incorporating hypotheses about the covariance structure, among other 

refinements. Then, it is reasonable to pose the question on the performance of these methods 

when the assumed covariance and/or correlation structures are inappropriate. This is a recurring 

question in the generalised linear models and generalised linear mixed models literature. 

Crowder (1995, 2001) points that the use of an incorrect correlation matrix could cause an 

inconsistency problem, when using the generalized estimating equations (GEE) for analysing 

repeated measures. His results are based on asymptotic theory. Sutradhar and Das (1999) obtain 

similar results and suggest a more robust estimation framework. Similarly, Chaganty (1997) 

introduces an alternative method in order to overcome these pitfalls of the GEE approach. On 

the other hand, the simulation results of Park and Yun Shin (1999) suggest that the GEE 

estimation method is robust under misspecifications of the correlation structure, even for 

moderate sample sizes. In this paper, we try to make some similar insights on the performance 

of a nonlinear mixed effects fitting procedure, the Lindstrom and Bates (1990) approach (from 

now LB method or approximation), that is widely used by practitioners.  

A common approach to data analysis under the perspective of nonlinear mixed models consists 

in specifying the model and estimating their parameters using maximum likelihood or restricted 

maximum likelihood. A full likelihood analysis of NLMEs often requires difficult numerical 

integration or linear approximation methodology. The LB method is based on a Taylor-series 

expansion of the likelihood around successive approximations to the values of the fixed 

parameters and random effects. It consists in a two-step iterative process alternating between 

maximization of the log likelihood, given the above-mentioned values, and the generation of new 

parameter values using the linear mixed-effects methodology. The algorithm is based on the 

assumption that the intra-individual covariance matrix does not depend on the fixed 

parameters. This assumption can be justified by the fact that the matrix obtained by 
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differentiation of the objective function respect to the random effects, varies somewhat slowly 

with respect to fixed effects (Bates and Watts, 1980). 

We present two simulation studies, each one consisting itself in two differentiated parts. In the 

first part of each simulation study, the consequences of fitting inappropriate restricted models 

were investigated. In the second part, the reverse case was investigated: the fitting process was 

performed under unrestricted conditions but data were generated according to some true 

structuring patterns. In the first simulation study, data were generated according to a model 

inspired in the breast cancer data analysed in El Halimi et al. (2003).  In order to guess the 

general validity of the conclusions, the second simulation study was performed under a model 

based on the classical (in mixed models literature) Soybean genotypes dataset analysed, for 

example, in Pinheiro and Bates (2000) and in Davidian and Giltinan (2004). 

In sections 2 and 3 we describe the design and the results of the first simulation study (breast 

cancer scenario) with some detail. The second simulation study (Soybean genotypes simulation 

scenario) is reported in section 4. 

2 Simulation design 

In the first series of simulations, the base model was: 

 
[ ] [ ]

[ ]
1 1 2 2

2 2

3 3

exp( )
(

1 exp

iji i
ij ij

ij i

i

t
y e

t
δ η δ η

δ η
δ η

+ ⋅ − +
= + − +  +   +  

 [1] 

where the observations yij correspond to the simulated tumoural volume of subject i 

(i=1,...,m=38) at time tij (j=1,...,ni=25), the random effects ηi =(η1i, η2i, η3i)’ are assumed to be 

normal with zero mean and covariance D and eij is a within-subject error, assumed normal with 

zero mean and variance σ2. The model and the (pseudo-)data generation process are described 

with more detail in El Halimi et al.(2004). 
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In the entire simulation study, data were generated from model [1] with “known” population 

values for the fixed effects taken as  (δ1, δ2, δ3)’=(5.051236, 13.86703, 0.8486555)’. The random 

factor vectors, (η1i, η2i, η3i)’, were generated according to a centred multivariate normal and the 

residuals eij were also generated according to a normal model with zero mean.  

In the first part of the simulation study, the covariance matrix or the generated random factors 

was, always: 

51.88633 -1.0498620 -0.05460614

15.8465000 -0.04587260

 0.01362791

D

     =      

 

and residuals were always independent with variance always characterized by the same 

dispersion parameter, σ = 0.939921. 

Each one of generated data tables was processed to fit a nonlinear mixed model like [1] via the 

LB method, assuming in the fitting process one of the following structures of the covariance 

matrix of random effects:  

i. Independent random effects: thus, their covariance matrix is diagonal, and is denoted as 

D_ind. 

ii. Block-diagonal: the first two random effects, (η1i,η2i,)’, have equal variance and are 

independent of the third one, η3i. This can be rephrased by saying that the covariance 

matrix of the random effects D can be partitioned into four blocks as follows: 
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The (η1i,η2i,)’ form a 2×2 block of random effects with compound symmetry covariance 

matrix, and the η3i forms another 1×1 block with an unstructured covariance matrix. 
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The corresponding covariance matrix is denoted as D_bck in the results. 

iii. Unstructured covariance matrix: a general covariance matrix for the random effects (i.e. 

random effects have an arbitrary covariance structure) is assumed. This case is denoted 

as D_unst. 

Each one of the preceding assumptions on the covariance structure of the random effects was 

combined, in the fitting process, with one of the following assumptions for the residuals 

correlation structure, used to model the within-group correlation: 

i. Independent residuals, 

ii. Autoregressive, AR(1), residuals, and 

iii. Autoregressive moving average of order 1, MA(1), residuals. 

The fitting conditions defined by D_unst and independent residuals were introduced to have a 

reference condition. 

In the second part of this simulation study, the simulated data sets were generated according to 

three possible “true” structures of the random effects covariance matrix (instead of the general 

matrix D of the first part of the simulation study) that were combined with each one of three 

possible correlation structures for the residuals. 

The possible structures for the covariance matrix were: 

i. Uncorrelated random effects: 

41.889  0.00000 0.000000000

_  0.000 17.25313 0.000000000

 0.000  0.00000 0.004827908

D ind

     =         . 

ii. Block-diagonal: 



 6

20.25  0.00 0.0000

_  0.00 20.25 0.0000 .

 0.00  0.00 0.0064

D bck

     =        

 

iii. Unstructured covariance matrix: 

48.00  -1.00 -0.05

_ -1.00  16.00 -0.05

-0.05  -0.05  0.02

D unst

     =       

. 

The residuals were always generated according to a stationary gaussian process with zero mean, 

but with correlation specified by one of the following structures: 

i. Uncorrelated: for each individual i , 1( , ) 0, 1, , 1.ij iijcor e e j n+ = = −…  

ii. Auto-regressive of order 1, AR (1): 

( , ) , , 1, , ; with 0.2740697.j k
ij iikcor e e j k nφ φ−= = =…  

iii. Moving average of order 1, MA(1):  

1
21 1 1 1
1

( , ) , where ; with 0.2095072.(1 )ij ij ijij ijcor e e e e uα α αα+ −= = + =+  

To sum up, there were 18 simulation experimental conditions. In the first part of the simulation 

study, data always generated according to the same parameters (defining an unstructured 

covariance matrix for the random factors and uncorrelated residuals) were analysed according to 

3x3=9 possible structure assumptions. In the second part of the study, data were generated 

according to 9 possible dependency structures for random factors and residuals, but always 

analysed assuming an unstructured covariance matrix and no residuals correlation. 

The simulated random effects were generated according to an expression equivalent to 

i iLHη = , where Hi stands for a standardised version of the vector of random effects, generated 

from a normal distribution with zero mean and unit variance, and L stands for the lower 
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triangular matrix resulting from the Cholesky decomposition of a covariance matrix D with one 

of the possible structures cited previously. The simulated residuals for each individual were 

generated by an expression equivalent to i ie uσ= Γ , where iu  stands for a standardized vector 

of independent and identically distributed residuals, generated from the normal distribution 

with zero mean and unit variance; and Γ  is the correlation matrix with the possible structures 

also cited and discussed above.  

In order to obtain each new simulated response in accordance with model [1], each generated 

vector of random factors and residuals was added to the expected response. The generation 

process is described with more detail in El Halimi et al.(2004). For each one of the 18 

experimental conditions, the entire process was repeated N = 1000 times.  

For each generated data table, a nonlinear mixed model was fitted using the nlme S-Plus 

library, providing a set of (simulated) estimated values ˆ ˆˆ, , Dδ η  and σ̂  obtained according to 

the LB method. The bias and the mean square error (MSE) of these estimators was estimated 

from each series of 1000 simulated values, together with the true coverage of the associated 

asymptotic confidence intervals, always computed at a nominal 95% level. 

For some simulated data tables the LB estimation methods did not converge. In these cases, we 

discarded the problematic pseudodata set and generated a completely new table, until 

convergence was reached. The possible consequences of this strategy are discussed in El Halimi 

et al.(2004). 

3 Simulation results 

a. Results for fixed effects 

Table 1 and Figure 1 display the simulation results for fixed effects in the first series of 

simulations, where the means over 1000 simulations of δ1 are close to the true value for all 

simulations runs. The bias is negative and significantly different from 0, but considerably small 
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(especially when the residuals are independent). This suggests that, on average, they will 

slightly underestimate the true parameter value, and shows a similar tendency under each one of 

the covariance structure of random effects. The same patterns are also seen for the coverage 

probability measures and the average widths of the intervals. All simulations produce nearly 

identical results in terms of MSEs. With respect to its true coverage probability, the results are 

quite similar when the model is fitted under the D_unst and D_ind model assumptions; both 

achieving the same maximum coverage, 93.8%, when the residuals are assumed independent, but 

the observed coverages are also quite similar under the other assumptions for the residuals. The 

coverages for D_bck demonstrate the imprecise nature of the corresponding intervals, with a 

maximum coverage of 85.5% under the assumption of independent residuals and similar but 

lower coverages under the remaining assumptions on the residuals. In all conditions the intervals 

are appreciably equitailed, in the sense that the non coverage cases are nearly symmetrically 

distributed, approximately one half of the times the true parameter value is at left of the 

confidence interval, and the other half of the times at right. 

For the δ2 parameter the results shown in Table 1 suggest also a negative bias. Again, the bias 

and the MSE values are nearly identical, except for (D_bck, AR (1)) conditions, where the MSE 

is roughly 50% larger than under other conditions. The coverage results are nearly inverted: the 

confidence intervals have its lowest coverage when the covariance matrix of random effects has 

the D_ind and D_unst structures, and the largest for the D_bck structure, achieving maximum 

coverage, 98.2%, under (D_bck, Independent) and (D_bck, MA(1)) conditions. The confidence 

intervals are highly asymmetric, and the interval widths are similar in all conditions, except 

under D_bck, characterized by large interval lengths. 

With respect to bias, the estimates of δ3 are good and not affected by wrong assumptions on the 

structures of random effects and residuals. On the other hand, the confidence intervals are very 

sensible (and always very incorrect) to these assumptions. The interval widths are similar, and 

the intervals exhibit considerable asymmetry. The maximum coverage, 79.3%, occurs at D_bck 
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Figure 1. Breast cancer simulation scenario. Box-plots of 1000 simulation replicates of fixed effect estimates

under different structures of D and correlation structures  (First part of the simulation study) 

/ MA(1) conditions. 

In general, all the confidence intervals for the fixed-effects parameters seem to be more affected 

by the structure of the covariance matrix random effects than by the correlation structure of the 

residuals. 

The results of the second part of the simulation study are summarized in Table 2 and in Figure 

2. In all cases, the point estimates of δ remain virtually unaffected by the choice of the residuals 

correlation structure and are slightly affected by the choice of the random effects covariance 

structure. Table 2 confirms that the averages of the fixed effects estimates are close to the true 

parameters for all simulations. 

The 

true 
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coverage of the confidence intervals based on the LB-method is not always adequate, even under 

a correct specification of the covariance structure of random effects and residuals. It depends, 

mainly, on the specific model parameters. In any case, regarding each one of the assumed 

random effects covariance structures, we remark that the confidence interval coverage 

probabilities change with the structure of the matrix D and perform poorly when D_bck is used 

to generate data. On the other hand, it seems not to be considerably affected by the correlation 

structure of residuals. 
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Table 1: Simulation results for the breast-cancer model under different dependence structures for random effects and residuals (simulation study 1st part) 

 δ1 

Structure of D Residuals Mean Bias±C.IBias MSE PROB. LOW COV. PROB PROB. UPP Average width 
Independent 4.890293 -0.160943±0.07338365 1.426302 2.1% 93.8% 4.1% 4.470603 

AR(1) 4.836839 -0.2143969±0.07536222 1.522899 3.1% 92.1% 4.8% 4.407850 D_ind 
MA(1) 4.891355 -0.1598807±0.07399343 1.446481 3.6% 92.3% 4.1% 4.490843 

Independent 4.981798 -0.06943841±0.0750465 1.469406 6.1% 85.5% 8.4% 3.605085 
AR(1) 4.820172 -0.2310643±0.08055745 1.740972 6.8% 81.2% 12% 3.515189 D_bck 
MA(1) 4.973567 -0.07766946±0.07423818 1.439237 7.1% 85.2% 7.7% 3.607577 

Independent 4.959736 -0.09150034±0.07311737 1.398627 2.9% 93.8% 3.3% 4.469127 
AR(1) 4.743657 -0.3075795±0.07441145 1.534507 2.6% 92.1% 5.3% 4.376982 D_unst 
MA(1) 4.882728 -0.168508±0.07377075 1.443608 2.3% 93.3% 4.4% 4.443382 

 δ2 
Independent 13.6556 -0.2114322±0.04648119 0.6065372 2.9% 86.9% 10.2% 2.419676 

AR(1) 13.7077 -0.1593291±0.0499392 0.6739253 3.3% 87.7% 9% 2.387804 D_ind 
MA(1) 13.5767 -0.2903252±0.04663594 0.6487374 3% 86.5% 10.5% 2.415387 

Independent 13.68257 -0.1844598±0.04613696 0.5875683 0.5% 98.2% 1.3% 3.661344 
AR(1) 13.61481 -0.2522202±0.06957238 1.322329 1.4% 92% 6.6% 3.599156 D_bck 
MA(1) 13.67776 -0.1892706±0.04545654 0.5731596 0.3% 98.2% 1.5% 3.66568 

Independent 13.62828 -0.2387503±0.04928767 0.6887295 2.9% 86.6% 10.5% 2.461421 
AR(1) 13.64761 -0.2194167±0.05337408 0.7889661 4.2% 83.3% 12.5% 2.372432 D_unst 
MA(1) 13.56978 -0.2972548±0.05398211 0.8461577 2.3% 84.6% 13.1% 2.474254 

 δ3 
Independent 0.8713735 0.02271801±0.001403027 0.001028008 22.3% 77.3% 0.4% 0.08177437 

AR(1) 0.8749249 0.02626941±0.001611147 0.001365113 26.4% 73.6% 0% 0.08163308 D_ind 
MA(1) 0.8736767 0.02502116±0.00139684 0.001132438 29.2% 70.8% 0% 0.08218339 

Independent 0.8697888 0.02113329±0.001365946 0.0009318155 20.8% 79% 0.2% 0.08095256 
AR(1) 0.8763528 0.02769726±0.002709488 0.002676234 29.5% 69.6% 0.9% 0.08205351 D_bck 
MA(1) 0.8697713 0.02111575±0.001477302 0.001013409 20.6% 79.3% 0.1% 0.08339257 

Independent 0.8751281 0.02647256±0.001485831 0.001274902 27% 72.9% 0.1% 0.08439246 
AR(1) 0.8813267 0.03267124±0.002452305 0.002631287 36.8% 62.7% 0.5% 0.08965067 D_unst 
MA(1) 0.8784579 0.02980238±0.001465699 0.001446835 31.3% 68.5% 0.2% 0.08541293 
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Figure 2. Breast cancer simulation scenario. Box-plots of 1000 simulation replicates of fixed effect estimates

under different structures of D and correlation structures (Second part of the simulation study) 
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Table 2: Simulation results for the breast-cancer model under different dependence structures for random effects and residuals (simulation study 2nd part) 

 δ1 
Structure of D Residuals Mean Bias±C.IBias MSE PROB. LOW COV. PROB PROB. UPP Average width 

Independent 4.972995 -0.0782413±0.06598653 1.138428 2.9% 93.6% 3.5% 4.055087 
AR(1) 4.950308 -0.100928±0.06366188 1.064118 2.2% 94% 3.8% 4.022737 D_ind 
MA(1) 4.902534 -0.1487024±0.06559291 1.14095 2.2% 93% 4.8% 4.03939 

Independent 4.78057 -0.2706657±0.04801458 0.672774 1.7% 91.1% 7.2% 2.871522 
AR(1) 4.809881 -0.2413553±0.04955735 0.696912 1.4% 91.3% 7.3% 2.919448 D_bck 
MA(1) 4.821342 -0.2298941±0.0468499 0.623634 0.6% 92.7% 6.7% 2.896072 

Independent 4.887868 -0.1633685±0.07022588 1.309161 2% 93.2% 4.8% 4.305583 
AR(1) 4.852252 -0.1989843±0.0699953 1.313658 1.9% 93.7% 44% 4.342266 D_unst 
MA(1) 4.904378 -0.1468583±0.06974602 1.286572 2.7% 93% 43% 4.352609 

 δ2 
Independent 13.86703 -0.1537563±0.04941836 0.6587233 3.9% 87.4% 8.7% 2.531632 

AR(1) 13.69579 -0.1712411±0.04902582 0.6543568 3.8% 87.7% 8.5% 2.524353 D_ind 
MA(1) 13.67516 -0.1918734±0.05365122 0.7853511 5.2% 84.9% 9.9% 2.533162 

Independent 13.5189 -0.3481297±0.06002156 1.05804 4.5% 79.6% 15.9% 2.691222 
AR(1) 13.48332 -0.3837145±0.06705982 1.316677 5.2% 76.9% 17.9% 2.679371 D_bck 
MA(1) 13.48008 -0.3869503±0.06071217 1.108259 3.6% 81% 15.4% 2.689977 

Independent 13.57039 -0.2966377±0.05084926 0.760386 3.3% 82.8% 13.9% 2.447999 
AR(1) 13.60609 -0.260937±0.05064817 0.7351727 3.6% 84.2% 12.2% 2.458311 D_unst 
MA(1) 13.61227 -0.2547586±0.05246764 0.7807756 3.3% 83.9% 12.8% 2.448161 

 δ3 
Independent 0.8665674 0.017912±0.001100081 0.000636 29.3% 70.1% 0.6% 0.05623834 

AR(1) 0.8666122 0.017959±0.001068346 0.000619 26.5% 72.9% 0.6% 0.05705633 D_ind 
MA(1) 0.8662308 0.017575±0.001220561 0.000696 25.4% 74.1% 0.5% 0.06123209 

Independent 0.8779196 0.029264±0.001440842 0.001396 40.1% 59.8% 0.1% 0.06746345 
AR(1) 0.8766831 0.028028±0.001481441 0.001481 37% 62.4% 0.6% 0.07307422 D_bck 
MA(1) 0.8486555 0.028395±0.001471719 0.001369 38.3% 61.2% 0.5% 0.07119195 

Independent 0.8842841 0.035628±0.03562864 0.002110 32.4% 67.5% 0.1% 0.09821503 
AR(1) 0.8779992 0.029343±0.001854973 0.001755 24.6% 75.3% 0.1% 0.1018569 D_unst 
MA(1) 0.8486555 0.031735±0.001841488 0.001887 26.8% 72.9% 0.3% 0.09997221 
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b. Results for variance components 

Figure 3 summarizes the main results of the first series of simulations, those testing the impact 

on the LB method on the random components when different, inadequate, structures of the 

covariance matrix of random effects and/or correlation structures of the residuals are imposed. 

Figure 3 displays the results for the ML estimations of the terms of the random factors 

covariance matrix, D, and for the standard deviation of the residuals, σ. The bias and the 

overall distribution of the estimates of the components of D, and the coverage of the 

corresponding asymptotic confidence intervals, depends on the parameter in question and on the 

imposed covariance of random effects, more than on the correlation structure of the residuals. In 

general terms, the inference on the components of D is even less robust than the inference on 

the fixed effects, but adequate under the (correct) assumption of unstructured covariance 

matrix. For all components of D, the coverage in the D_unst case always lies near the nominal 

95% level, while the coverages under D_bck are very erratic and affected by both, the 

covariance of the random effects and the correlation of residuals. Clearly, this assumption on the 

structure of the covariance matrix is too strong when it is incorrect. 

As expected, the results for the estimator of the standard deviation of the residuals, σ, show a 

clear dependency on the correlation structure of the residuals, rather than that of the random 

effects. The coverage of the asymptotic confidence intervals for this parameter are always very 

inadequate and range from 49.3% in the (D_bck, MA(1)) case to 42.9% in the (D_unst, AR(1)) 

case, with 45.3% of coverage under (D_unst, independent) conditions. 

The results corresponding to the estimation of the random part in the second series of 

simulations are displayed in Figures 4 to 7, which are box-plots of the estimates of the variance 

components (D and σ) for all simulation runs. They can be interpreted in the same way as 

Figure 3. As expected, the median values of all the components of D change considerably with 

the true values of D used in the simulations, and the variability of the estimations of the D 

components changes considerably with the different assumed structures of D, especially for D23 
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and D33, but both the point estimates and the confidence intervals are correct when the process 

of estimation is performed assuming an unstructured covariance matrix and not its exact 

structure. The precision of the estimates of the covariance matrix is nearly not affected by 

incorrectly assuming independent residuals instead of the adequate correlation model for the 

residuals. 

Finally, the variability of the point estimates of the parameter σ is affected by the true values 

and the dependence structure of both, the random effects and the residuals, but not its bias nor 

the true coverage of the asymptotic confidence intervals, that are quite correct in all conditions. 

That is, again the results are acceptable when the estimation process is performed under the 

assumption of unstructured covariance matrix and independent residuals, instead of assuming 

its correct structure. 
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Figure 3. Breast cancer simulation scenario. Box-plots of 1000 simulation replicates of random components estimates

under different structures of D and correlation structures (first part of the simulation study) 
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Figure 4. Breast cancer simulation scenario. Box-plots of 1000 simulation replicates of random effects

covariance estimates under D_ind and different correlation structures (simulation study 2nd part) 

Figure 5. Breast cancer simulation scenario. Box-plots of 1000 simulation results of random effects

covariance estimates under D_bck and different structures of correlation (simulation study 2nd part) 
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Figure 6. Breast cancer simulation scenario. Box-plots of 1000 simulation replicates of random effects

covariance estimates under D unst and different structures of correlation (simulation study 2nd part) 

Figure 7. Breast cancer simulation scenario. Box-plots of 1000 simulation σ estimates under

different variance-covariance structures of random effects and different residual correlation

structures (simulation study 2nd part) 
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4 Soybean genotypes simulation 

a. Simulation design 

To give some insight on the "representativeness" of the above simulations and results, we performed a 

complementary simulation study based on the Soybean genotypes data and model, reported in 

Davidian and Giltinan (1995, p.7) and reanalysed by Pinheiro and Bates (2000). Using the same 

notation than in model [1], the base model to be simulated was: 

 1 1

2 2 3 31 exp ( )/
i

ij ij

iji i

y e
t

δ η

δ η δ η

 + = +    + + − +     
 [2] 

where ijy  represents the average leaf weight in plant i, i = 1, …, 48, at time tij. The random effects 

'
1 2 3( , , )i i iη η η η=  are (0, D) and the eij are (0, σ2) and are independent of the ηi. The following 

"population" parameters were taken, 

( )'
1 2 3( , , ) 19.26, 55, 8.4

25 2.50 4.00

8.00 2.32 ; 1.

2.00

D

δ δ δ δ

σ

= =

     = =     

 

The simulation study was also divided in the same two parts; the first one devoted to the 

consequences of fitting inappropriate restricted models (the same than in section 2) and the second one 

to the consequences of fitting under unrestricted conditions when data were generated according to 

some true structuring patterns. More concretely, the simulated datasets were generated according to 

each one of the nine possible combinations of the following covariance matrices for the random effects 

and correlation structures for the residuals: 

i. Independent random effects: 
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25 0 0

_ 0 7.749999 0

0 0 0.8843354

D ind

     =        

 

ii. Block-diagonal: independent subgroups of random effects: 

9 0 0

_ 0 9 0

0 0 9

D bck

     =        

 

iii. Unstructured covariance matrix: 

31.5574859 0.2019679 0.1767219

_ 0.2019679 20.1967910 0.2272130

0.1767219 0.2272130 5.0491977

D Unst

     =        

 

and 

i. Independent residuals: for each individual i , 1( , ) 0, 1, ,ij iijcor e e j n+ = = …  

ii. Auto-regressive process of order1, AR(1): 

 ( , ) , , 1, , ;  where -0.6195506j k
ij iikcor e e j k nφ φ−= = =…  

iii. Moving average of order 1, MA (1):  

 1
21 1 1 1
1

( , ) , where ; and  -0.9942504.(1 )ij ij ijij ijcor e e e e uα α αα+ −= = + =+  

For each one of the 18 simulation experimental conditions, 1000 data sets where generated according 

to the nonlinear mixed model [2] 

b. Simulation results 

Table 3 and Figure 8 summarise the results on the fixed parameters for the first part of this simulation 

study. The results depend on each specific parameter. 
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For the first parameter, δ1, the differences between all simulation conditions with respect to mean, bias 

and mean square error (MSE) of the point estimates are small. The biases are negative and 

significantly different from zero, though small. The MSE values are also similar and small. 

The main factor affecting the observed coverage of the confidence intervals is the (erroneously) 

assumed structure of the random effects covariance matrix. As may be expected, the best values are 

obtained for D_unst, with a maximum of 93.4% for D_unst combined with independent residuals. The 

worst observed coverages correspond to D_bck, with the lowest coverage, a 82%, corresponding to 

D_bck and MA(1) residuals. The confidence intervals are always markedly asymmetrical, with an 

inflated PROB.UPP value (that is, there is a clear tendency for the intervals to be located entirely at 

right of the true parameter value). The mean width of the intervals is in accordance with the coverage, 

with the shortest intervals corresponding to the D_bck case. 

For the δ2 and δ3 parameters, the results on the mean value, bias and MSE of the point estimates are 

very similar to those reported for δ1, with small, though significant, negative bias in all conditions. On 

the other hand, and not in complete agreement with intuition, the results on confidence intervals are 

nearly completely reversed. The best coverages are obtained under the D_bck assumption, with a 

maximum for D_bck and AR(1) residuals (97.2% for δ2 and 95% for δ3). The lowest coverages 

correspond to D_unst, with the minimum coverage associated to D_unst and independent residuals. 

The intervals are still markedly asymmetrical, with PROB.UPP inflated values. 

Still for the fixed parameters, the results of the second part of the simulation study are summarized in 

Table 4 and Figure 9. As a general rule, the point estimates of the fixed effects remain virtually 

unaffected by the fact of performing the analysis under the assumption of independent residuals when, 

in fact, there is some kind of residuals correlation structure, and are only slightly affected by the 

assumption of unstructured random effects covariance, when in fact random effects have a given 

structure. Table 4 confirms that the averages of the fixed effects estimates are close to the true 

parameters for all simulations. The true coverage of the confidence intervals based on the LB-method 

is not always adequate, even under a correct specification of the covariance structure of random effects 
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and residuals. It depends on the specific model parameters, much more than in the true covariance 

structure of the random effects and even less in the correlation structure of the residuals. 

Finally, Figure 10 summarises the results on the random effects for the first part of the simulation 

study, while Figures 11 to 14 summarise the results for the second part of the study. They consist in 

box-plots of the generated simulation estimates of the components of D and of σ, jointly with the 

estimated coverages of the asymptotic confidence intervals, at a 95% nominal level. As in the 

preceding simulation study, the worst results correspond to the case of inappropriately modelling 

under inadequate restricted structures (Figure 10) while the opposite situation has a much lesser 

impact. 
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Figure 8. Box-plots for the results of 1000 simulations. Fixed effects estimates assuming different 

structures of the covariance matrix, D, and residuals correlation, for Soybean genotypes simulation 

scenario 
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Table 3: Simulation results for the Soybean genotypes model assuming different dependence structures for random effects and residuals  

 δ1 
Structure of D Residuals Mean Bias±C.IBias MSE PROB. LOW COV. PROB PROB. UPP Average width 

Independent 18.96579 -0.2942132±0.04566504 0.628838 1.4% 90.3% 8.3% 2.71004 
AR(1) 18.98863 -0.2713718±0.0459879 0.630425 1.8% 89.5% 7.3% 2.677696 D_ind 
MA(1) 18.93715 -0.3228456±0.04659189 0.6687423 1.1% 89.3% 9.6% 2.69196 

Independent 19.04051 -0.2194925±0.04767421 0.6392217 2.6% 84.3% 13.1% 2.27268 
AR(1) 19.00413 -0.2558707±0.04589219 0.6131549 3.9% 82.3% 13.8% 2.201651 D_bck 
MA(1) 18.96176 -0.2982434±0.04525658 0.6199689 3.4% 82% 14.5% 2.174162 

Independent 18.9922 -0.2678027±0.04541789 0.6081411 0.9% 93.4% 5.7% 2.914135 
AR(1) 19.01046 -0.249541±0.04591368 0.6104688 1.8% 92.1% 61% 2.915253 D_unst 
MA(1) 18.9591 -0.3009036±0.04629004 0.6477652 1.1% 91.5% 7.4% 2.919399 

 δ2 

Independent 54.6048 -0.3951971±0.03267328 0.4337932 0.7% 82.4% 16.9% 1.810568 
AR(1) 54.59309 -0.4069145±0.02901113 0.4402066 0.5% 82.2% 18.9% 1.580207 D_ind 
MA(1) 54.63169 -0.3683053±0.03034018 0.3750298 0.6% 81.3% 18.1% 1.631354 

Independent 54.69015 -0.3098519±0.03242608 0.3694356 0.2% 95.7% 4.1% 2.498229 
AR(1) 54.77096 -0.2290404±0.02927588 0.2753406 0.3% 97.2% 2.5% 2.332616 D_bck 
MA(1) 54.7555 -0.244497±0.03025544 0.2971096 0.5% 96.1% 3.4% 2.386578 

Independent 54.49707 -0.5029284±0.03486202 0.5689889 0.3% 79.5% 20.2% 1.951757 
AR(1) 54.5315 -0.4684997±0.03326956 0.5073296 0.7% 81.5% 17.8% 1.970419 D_unst 
MA(1) 54.52909 -0.4709094±0.03280285 0.5015743 0.6% 82.3% 17.1% 1.969598 

 δ3 
Independent 8.29996 -0.100040±0.01870675 0.10101 3.3% 87.2% 9.5% 0.9827692 

AR(1) 8.307381 -0.092619±0.01537698 0.106427 2.8% 85.3% 9.8% 0.8019704 D_ind 
MA(1) 8.360465 -0.03953548±0.01578645 0.06637007 3.7% 89% 7.3% 0.8353948 

Independent 8.277938 -0.1220619±0.01854038 0.1042895 1.8% 87.3% 10.9% 0.9880616 
AR(1) 8.336482 -0.0635182±0.01532168 0.0650818 2.8% 89.5% 7.7% 0.816669 D_bck 
MA(1) 8.350087 -0.04991292±0.01623579 0.07083428 3.9% 86.3% 9.8% 0.8251872 

Independent 8.089291 -0.310709±0.01931481 0.193554 0.6% 77.6% 21.8% 1.131231 
AR(1) 8.090309 -0.3096906±0.01855465 0.1854363 0% 80.7% 19.3% 1.129665 D_unst 
MA(1) 8.09188 -0.3081204±0.01824214 0.1814758 0% 81.5% 18.5% 1.13002 
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Figure 9. Box-plots for the results of 1000 simulations. Unrestricted fixed effects estimates for data generated

under different structures of the covariance matrix, D, and residuals correlation. Soybean genotypes scenario 
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Table 4: Simulation results for Soybean genotypes model. Data generated according to different of covariance matrix and correlation structures 

 δ1 
Structure of D Residuals Mean Bias±C.IBias MSE PROB. LOW COV. PROB PROB. UPP Average width 

Independent 19.05448 -0.2055249±0.04558582 0.582638 1.1% 94% 4.9% 2.909964 
AR(1) 19.09658 -0.1634161±0.04548594 0.564198 1.7% 94% 4.3% 2.843851 

D_ind 

MA(1) 19.0362 -0.2238025±0.04533821 0.557341 1.2% 94.1% 4.7% 2.855609 
Independent 19.09566 -0.1643445±0.0300166 0.261311 1% 92.8% 6.2% 1.868798 

AR(1) 19.08624 -0.1737575±0.02823867 0.237560 1.3% 92.7% 6% 1.752299 
D_bck 

MA(1) 19.08849 -0.1715104±0.02834895 0.238407 1.9% 92.4% 5.7% 1.782298 
Independent 18.91455 -0.3454477±0.05340997 0.861153 1.2% 91.4% 7.4% 3.247077 

AR(1) 19.00475 -0.2552507±0.05040407 0.725822 1.3% 93.6% 5.1% 3.202265 
D_unst 

MA(1) 18.92533 -0.3346746±0.05407979 0.7842382 0.9% 92.2% 6.9% 3.183286 
 δ2 

Independent 54.67918 -0.3208238±0.03182381 0.3662928 1% 88.9% 10.1% 1.9651 
AR(1) 54.73897 -0.2610341±0.02950031 0.2942236 0.5% 88.4% 11.1% 1.74265 

D_ind 

MA(1) 54.68726 -0.3127378±0.03052397 0.3277257 0.2% 89% 10.7% 1.8092 
Independent 54.69736 -0.302641±0.03325201 0.3791255 0.9% 89% 10.1% 2.040034 

AR(1) 54.75664 -0.2433551±0.02997396 0.2928587 1% 90.7% 8.3% 1.830022 
D_bck 

MA(1) 54.7616 -0.2384041±0.03278227 0.3363042 1.6% 88.6% 9.8% 1.908499 
Independent 54.396 -0.6039978±0.0450599 0.8928133 0.4% 84.1% 15.5% 2.78491 

AR(1) 54.57017 -0.4298255±0.04226079 0.6491889 0.4% 88% 11.6% 2.619695 
D_unst 

MA(1) 54.45269 -0.5473101±0.04403028 0.7451547 0.5% 86.8% 12.8% 2.654754 
 δ3 

Independent 8.161801 -0.23820±0.01635497 0.126298 0.6% 80.9% 18.5% 0.9480518 
AR(1) 8.256304 -0.143697±0.01252 0.06137 0.9% 85% 14.1% 0.7293738 

D_ind 

MA(1) 8.232626 -0.167374±0.01353964 0.073253 0.7% 83.8% 15.5% 0.7712214 
Independent 8.190489 -0.209511±0.01543366 0.105838 0.7% 83.7% 15.6% 0.9447332 

AR(1) 8.270736 -0.129264±0.01142019 0.050625 0.2% 87.2% 12.6% 0.706781 
D_bck 

MA(1) 8.274229 -0.125771±0.012046 0.053553 0.5% 89% 10.5% 0.7573112 
Independent 8.007475 -0.392525±0.02390434 0.302671 0.1% 79.5% 20.4% 1.46326 

AR(1) 8.170378 -0.229622±0.0220047 0.178643 0.3% 86.9% 12.8% 1.343985 
D_unst 

MA(1) 8.166625 -0.2333746±0.02343736 0.1807237 0.5% 89% 10.5% 1.357662 
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Figure 10. Random components estimates assuming different structures of the covariance matrix, D, and 

residuals correlation, when data are generated according to an unstructured covariance and uncorrelated 

residuals. Soybean genotypes scenario 



 29
 

10
20

30
40

D_ind

D
11

cor_0 cor_AR1 cor_MA1

correlations

-1
0

0
5

10

D_ind

D
12

cor_0 cor_AR1 cor_MA1

correlations

-4
0

2
4

D_ind

D
13

cor_0 cor_AR1 cor_MA1

correlations

0
5

10
15

D_ind

D
22

cor_0 cor_AR1 cor_MA1

correlations

-2
-1

0
1

D_ind

D
23

cor_0 cor_AR1 cor_MA1

correlations

0.
0

1.
0

2.
0

D_ind

D
33

cor_0 cor_AR1 cor_MA1

correlations

99.7%

99.8%

99.6%

99.1% 99.4%

99.7%

99.4%

99.3%

99.8%

99.5% 99.8%

99.9%

98.9%

99.8%

99.9%

99.7% 99.5%

99.6%

2
6

10
14

D_bck

D
11

cor_0 cor_AR1 cor_MA1

correlations

-8
-4

0
2
4

D_bck

D
12

cor_0 cor_AR1 cor_MA1

correlations

-2
0
1
2
3

D_bck

D
13

cor_0 cor_AR1 cor_MA1

correlations

0
5

10
15

D_bck

D
22

cor_0 cor_AR1 cor_MA1

correlations

-2
0

1
2

D_bck

D
23

cor_0 cor_AR1 cor_MA1

correlations

0.
0

1.
0

2.
0

D_bck

D
33

cor_0 cor_AR1 cor_MA1

correlations

9 9 .8%

99 .9%

99 .4%

99 .7%
99 .2%

99 .6%

99 .1%

99%

99 .8%

99 .6%
99 .8%

99 .7%

99 .6%

99 .5%

100%

99 .7%
99 .8%

99 .8%

Figure 11. Random effects covariance estimates assuming unstructured covariance and uncorrelated

residuals for data generated with independent random effects and different error correlation

structures for Soybean genotypes scenario 

Figure 12. Random effects covariance estimates assuming unstructured covariance and uncorrelated

residuals for data generated with blocked structure of D and different error correlation structures for

Soybean genotypes  
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Figure 13. Random effects covariance estimates assuming unstructured covariance and uncorrelated

residuals for data generated with unstructured D and different error correlation structures for

Soybean genotypes scenario 

Figure 14. Box-plots of 1000 simulation σ estimates assuming unstructured covariance and

uncorrelated residual for data generated with different structures D and different residuals

correlation patterns for Soybean genotypes scenario 
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5 Discussion and conclusions  

Though preliminary, the results of the two simulation studies reported in this paper suggest a 

general picture of the consequences of misspecifying the structure of the covariance matrix of 

the random effects and the residuals correlation, when fitting nonlinear mixed models. 

The bias and MSE of the model parameters point estimates are not, in general, greatly affected 

by these misspecifications. The LB method performs well with respect to these measures and in 

a quite robust way. The more problematic results concern the true coverage of the asymptotic 

confidence intervals for the parameters, in agreement with similar studies devoted to the effects 

of invalid assumptions on the distributional form of random effects and/or residuals, like El 

Halimi et al. (2004). Even for moderately large sample sizes and large number of observations 

inside each experimental unit, frequently the true coverage does not correspond to the nominal 

level, and many times is smaller. Especially for fixed parameters, the observed coverage is not 

adequate even under valid assumptions. In any case, and ignoring other criteria like the 

convenience of avoiding over parameterised models, it is worst to erroneously assume some 

structure for the covariance matrix of the random effects than do not assume any structure 

when this would be adequate. 

Finally, it is worth pointing that the results greatly depend on the specific parameters of the 

model (and on specific parameterisations of the same model), so it is difficult to take general 

conclusions. 

Acknowledgements 

The research was supported by Instituto de Salud Carlos III FIS, grant 00/1130; and by 

Generalitat de Catalunya, grant 2001/SGR/00067. 



 32

References 

Bates, D.M., Watts, D.G., 1980. Relative curvature measures of nonlinearity. J. R. Statist. Soc. 

B, 42, 1-25. 

Chaganty, N. R., 1997. An alternative approach to the análisis of longitudinal data via 

generalizad estimating equations. J. Statist. Planng. Infer., 63, 39-54. 

Crowder, M., 1995. On the use of a working correlation matrix in using generalized linear 

models for repeated measures. Biometrika 82, 407-410. 

Crowder, M., 2001. On repeated measures análisis with misspecified covariance structure. J. R. 

Statist. Soc. B, 63, 55-62. 

Davidian, M., Giltinan, D.M., 1995. Nonlinear Models for Repeated Measurement Data. 

Chapman & Hall, London. 

Davidian, M., Giltinan, D.M., 2004. Extending the linear mixed effects model. Worked 

examples. (http://www4.stat.ncsu.edu/~davidian/#papers. Given as part of the JABES 

Editor's session at the 2004 International Biometric Conference, Cairns, Queensland, 

Australia, July 2004.) 

El Halimi, R., Ocaña, J, Ruiz De Villa, M.C., Escrich, E., Solanas, M., 2003. Modelling tumor  

growth data using a non-linear mixed-effects model. InterStat. 

http://jscs.stat.vt.edu/InterStat/ARTICLES/2003/abstracts/0309002.html-ssi 

El Halimi, R., Ocaña, J., Ruiz de Villa, M.C., 2004. A simulation study on the robustness of 

parametric inference in a nonlinear mixed modelling context. Mathematics Preprint 

Server, http://www.mathpreprints.com/math/Preprint/ocana/20040503/1/. 

Lindstrom, M.J., Bates, D.M., 1990. Nonlinear mixed effects models for repeated measures data. 

Biometrics. 46, 673-687.  

Park, T., Yung Shin, D., 1999. On the use of working correlation matrices in the GEE approach 

for longitudinal data. Commun. Statist.- Simulation, 28, 1011-1029. 

Pinheiro, J.C., Bates, D.M., 2000. Mixed-Effects Models in S and S-Plus. Springer, Berlin. 

Sutradhar, B.C, Das, K., 1999. On the efficiency of regresión estimators in generalised linear 

models for longitudinal data. Biometrika, 86, 459-465. 

Wolfinger, R.D., Lin, X., 1997. Two Taylor-series approximation methods for nonlinear models. 

Computational Statistics & Data Analysis, 25, 465-490. 


