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Abstract 
In this paper we describe the results of a simulation study performed to elucidate the robustness 

of the Lindstrom and Bates (1990) approximation method under non-normality of the residuals, 

under different situations. Concerning the fixed effects, the observed coverage probabilities and 

the true bias and mean square error values, show that some aspects of this inferential approach 

are not completely reliable. When the true distribution of the residuals is asymmetrical, the true 

coverage is markedly lower than the nominal one. The best results are obtained for the skew 

normal distribution, and not for the normal distribution. On the other hand, the results are 

partially reversed concerning the random effects. Soybean genotypes data are used to illustrate 

the methods and to motivate the simulation scenarios. 

 

1. Motivation and Introduction  

The nonlinear mixed effects model is used to represent data in pharmacokinetics (Davidian and 

Giltinan, 1995), breast cancer dynamics (El Halimi et al., 2003), growth curves in Soybean 

genotypes data (Pinheiro and Bates, 2000) and other areas, where the within-individual model is 

a function of individual-scientific, scientifically meaningful parameters. It is well known that 

maximum likelihood estimation for nonlinear mixed effects models leads to a cumbersome 

integration problem, because random parameters appear inside the nonlinear expectation 
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function. To avoid this problem, several approximation have been proposed. The parametric 

approach to non-linear mixed-effects modeling using the LB-method (Lindstrom and Bates, 

1990) is, essentially, based on the standard assumption of normality of the errors and random 

effects. But these assumptions may not always be realistic or, in any case, difficult to verify as 

they are not directly observed. In this paper we investigate the impact of the non-normality 

conditions on estimating fixed and random components parameters, via a Monte-Carlo 

simulation study by considering the Soybean genotypes model reported in Davidian and 

Giltinan (1995) and analyzed by Pinheiro and Bates (2000). Typical profiles are displayed in 

Figure 1, where the response of leaf weight are plotted by subject.  

The goal of the study was to compare the growth patterns of two soybean genotypes, a 

commercial variety, Forrest (F) and an experimental strain, Plan Introduction #416937 (P). 

Data were collected during three years, from 1988 to 1990. At the beginning of the growing 

season in each year, 16 plots were planted with seeds; 8 plots with each genotype. Each plot was 

sampled eight to ten times at approximately weekly intervals. At each sampling time, six plants 

were randomly selected from each plot, leaves from this plant were weighted, and the average 

leaf weight per plant (in g) was calculated for each plot. Different plots in different sites were 

used in different years. The logistic model derived from Pinheiro and Bates (2000) is an 

appropriate characterization of leaf weight response, where the parameter may vary across 

subjects. 
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where  represents the average leaf weight/plant in subject , , at time t . The 

random effects  are (0, D) and the e

ijy i 1, , 48i = ij

'
1 2 3( , , )i i iη η η η= ij are (0, σ2) and are independent of the 

. The association of the fixed effects δ  with the random effects vector is represented by the iη
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linear function above, where the subject-specific parameters δ  are independent across i . But, 

as some of the analyses presented in El Halimi et al. (2003) and the profile of qq-norm of 

residuals (under homogeneity assumption) displayed in Figure 2  suggest,  this assumption may 

not always be realistic. These violations of the assumptions of the model pose questions on the 

validity of the inferences made during the modeling process. As a first approach to answering 

these questions, we performed a simulation study emulating the conditions of the soybean 

genotypes studies described above. 

i

2. Simulation study on the distributional assumptions 

We carried out several simulation studies in which data were generated according to the 

soybean genotypes model given in equation (1.1), with known “population” or “true” parameter 

values. For fixed effects, these values were taken as δ = (19.26, 55, 8.4)’. For random effects, the 

covariance matrix was 
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8.00 2.32 .
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The random effects were generated according to an expression equivalent to , where h 

stands for a standardised version of the vector of random effects (common for all i) , generated 

from a normal distribution with zero mean and unit variance, and L stands for the lower 

triangular matrix resulting from the Cholesky decomposition of a covariance matrix D. These 

values were chosen near to the estimated values given by the splus 2000 implementation of LB-

method (nlme function) and according to the maximum likelihood variant of the estimation 

procedure. The residuals or errors were generated in similar way, first as i.i.d standardised 

values and subsequently converted to values with standard deviation σ (in this particular cases 

σ=1) and according to the following marginal distributions: 

i Lhη =

N- Normal distribution, which represent the case where the usual assumption of 

normality on the errors is valid. 
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SN- Skew normal distribution with location parameter (a typical or central value that 

best describes the data, its effect is to translate the graph, relative to the standard 

normal distribution) ζ , scale parameter (its effect is to stretch out the 

graph)  and shape parameter (its effect is to allow the distribution to take a 

variety of shapes, depending on its value) , as described in Azzalini (1986). 

-0.05=

0.2ψ =

0.02ϕ =

NPM- Non-parametric gaussian kernel estimated from experimental data with the 

optimal bandwidth implemented in S-plus for the gaussian kernel by Venables (1997) 

(width.SJ function). 

E- Exponential distribution. 

G- Gamma distribution. 

The last two distributions (G and E) were used to represent a situation  where the true 

distribution of errors is not symmetrically distributed and has heavier tails than 

expected from a normal distribution. 

 

For each possible distribution of the residuals, series of 1000 simulated data sets were generated 

and processed to fit a nonlinear mixed model like (1.1), via the LB-method, maintaining the 

same starting values for ML estimation procedure. The resulting set of parameter estimates for 

each series was used to compute the summaries used to evaluate the performance of the 

inferential methods, like true coverage of the confidence intervals or the true estimator biases. 

3. Results 

Figures 3 to 5 contain box-plots for the “mixed” parameter estimates (fixed and random 

components) from all simulation runs. For each box-plot, the character in the abscises axis 

represents the simulated distribution residuals, while the simulated distribution of random 

effects was maintained normal. The horizontal continuous straight line represents the true value 

of the corresponding parameter. Thus, in this way, the box-plots give a graphical idea of the 

bias, standard deviation and dispersion of the “mixed” effects estimators, under different 

possible distributions. 
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Table 1 contains simulation summary statistics for the fixed-effects parameters estimates. In this 

table,  if δ  stands for a fixed effect or parameter estimate at the k-th simulation replication and 

δ

ˆ
k

T for the true value of the parameter (value used to generate the data), the summary measures 

for the estimators of the fixed effects are defined as: 

MEAN: denotes the average of each series of 1000 estimates, 1000

1

1 ˆ
1000 kk

δ
=∑ , 

BIAS: corresponds to the simulation estimate of bias, that is, MEAN – δT, the bias of a statistic 

indicates, on average, how much the estimator will over- or underestimate the “true” parameter 

value. 

B ia sC .Ι : denotes approximate confidence intervals for bias, 
2
ˆBIAS

1000

S
δ

α± Ζ

(

, where  is the 

normal critical value at a 95% confidence level and 

αΖ

)21000

1
ˆ MEAN /kk
δ

=
−2

ˆ 999
δ
=∑S .  

MSE: is the mean squared error, ∑ , is a measure of its accuracy that takes 

into account both, bias and standard error.  

( )21000

1
ˆ /1000Tkk
δ δ

=
−

COVERAGE-PROBABILITY: denotes the observed coverage of t-based 95% confidence 

intervals computed using the model-based standard errors and t-distribution critical values 

based on 362 degrees of freedom ( the intervals provided by the nlme function), 

PROB. LOW (PROB. UPP): denotes the proportions of δT lower (upper) than the lower 

(upper) bound of the confidence intervals (that is, they correspond to non-coverage 

probabilities). 

Finally, Average width: denotes the arithmetic average of the 1000 observed lengths of the 

asymptotic intervals described above. 

 

For the δ1 parameter, from Figure 3 and Table 1 we infer that virtually there are not differences 

between the results for the five distributions under consideration, with respect to coverage, bias 

and MSE. For this last measure, the results are similar with values ranging between 0.54 and 

0.67. None of the confidence interval coverages attain the nominal 95% value, but there is 

acceptable robustness, with coverages ranging from 94% under the sN residuals distribution to 
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91.5% under the exponential distribution. The NN case has a 92.1% coverage. The last column 

of Table 1 also shows very homogeneous results with respect to the width of the intervals. 

Additionally, the intervals are appreciably equitailed.  

 

For the δ2 parameter, the results shown in Table 1 demonstrate a negative bias indicating that, 

on average, the true parameter value is underestimated. The bias and MSE values are nearly 

identical for this parameter, except for the sN distribution, in which these measures are 

considerably smaller. The confidence intervals perform poorly in all cases, except for the sN 

residuals distribution. The coverage ranges from 79.9% for the exponential distribution (and 

84.6% for the gamma distribution) to 93.5% for the sN distribution, with a poor 83.2% value for 

normal residuals. In correspondence with the coverages, the widths of the intervals show a 

similar tendency, with the best (shorter) value obtained under the sN distribution. The intervals 

have appreciably unequal tails, except for the sN case. 

  

For the δ  parameter, we find that under model (1.1) and using the LB-method, the true 

parameter value is also systematically underestimated. We remark that the sN residuals 

distribution gives also the best results, not only from the point of view of the MSE values 

(0.06), but also from the point of view of coverage probability (90.7%) and equitaildness, but 

lower than the nominal 95% level. In all cases, the coverage probabilities are poor, ranging 

between 78.8% (exponential) to 90.7% for (sN), with 80% in the normal case, indicating a low 

robustness of the LB-method for this parameter. Again, all intervals have similar mean lengths 

and are not equitailed, except for the sN distribution, which is also associated to the best values.  

3

 

These simulations confirm that the LB-method is not very efficient, even under normal 

conditions. But, in contrast with other simulation studies, like El Halimi et al. (2004) which is 

inspired in breast cancer data, a surprising result is that the best results for fixed effects are 

obtained when the errors are skew normal (sN). On the other hand, this result is not maintained 

for random components (D and σ). Concretely, the results for these model components are 
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displayed in Figures 4 to 5. Estimation under the nonlinear Soybean genotypes model tells a 

vastly different story. Here, all simulation conditions underestimate the random components of 

D, except the estimates under the sN distribution, which provide reasonable unbiased estimates, 

but perform considerably worse in terms of coverage probabilities, especially for the D33  

parameter (24.5% of coverage probability). In almost all cases the coverage probabilities are 

lower than their nominal value for D12, D13 and D33 and exceed their nominal value otherwise. 

Figure 5 displays the results for the parameter σ. Its estimation becomes less precise for the 

NPM and sN distributions, while the different measures of dispersion are in close agreement for 

E and G, and the magnitude of the variability is different otherwise. Regarding the coverage 

probabilities, results ranging from 99.3% for N to 0% for sN are observed. 

4. Conclusions and discussion 

Under the model (1.1) and according to the observed coverages for confidence intervals with a 

95% nominal coverage, the results indicate that the LB-method is not robust when the 

normality assumptions of errors are violated, and even under normal conditions. In fact, the ML 

procedures seem not adequate even under normal conditions and for a large number of 

observations per subject and a large number of subjects. 

 

The same results are also observed concerning the precision (length) of the intervals, and the 

bias and MSE of the point estimates. The performance of all these inferential methods is highly 

variable and dependent on the concrete simulated distributions and the concrete model 

parameters, in a complex and difficult to forecast way. 
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Table 1: summary results for fixed effect parameters estimates for 1000 simulations 

Fixed effect parameter : Maximum likelihood (ML) 1δ

COVERAGE- PROBABILITY 

(ASYMP. INTERVALS) 
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MEAN Bias±C.IBias MSE 

PROB 

LOW 

PROB. PROB. 

UPP 

Average 

width 

N N 18.99208 -0.2679243±0.04776559 0.665096 1% 92.1% 6.9% 2.876276 

N sN 19.15177 -0.1082278±0.04559323 0.552286 1.9% 94% 4.1% 2.798492 

N NPM 19.04983 -0.2101692±0.04359019 0.5382893 1.2% 93.8% 5% 2.87612 

N E 18.95573 -0.3042746±0.04281623 0.6537758 0.9% 91.5% 7.6% 2.897845 

N G 18.96339 -0.2966082±0.04650596 0.6504091 0.5% 91.6% 7.9% 2.899373 

Fixed effect parameter : Maximum likelihood (ML) 2δ

N N 54.52249 -0.4775082±0.03030467 0.4668351 0.1% 83.2% 16.7% 1.95098 

N sN 54.96844 -0.03156185±0.02606712 0.1776974 2.7% 93.5% 3.8% 1.591223 

N NPM 54.56497 -0.4350315±0.03086829 0.4370394 0.1% 83.7% 16.2.9% 1.927866 

N E 54.50822 -0.491783±0.03020465 0.5211324 0.3% 79.9% 19.8% 1.974908 

N G 54.53612 -0.4638765±0.0309442 0.4641885 0.2% 84.6% 15.2% 1.97972 

Fixed effect parameter : Maximum likelihood (ML) 3δ

N N 8.100563 -0.2994368±0.01805612 0.1744442 0% 80% 20% 1.117007 

N sN 8.290249 -0.1097514±0.0133505 0.05839522 0.6% 90.7% 8.7% 0.8053575 

N NPM 8.166408 -0.2335917±0.0178202 0.1371466 0% 84.5% 15.5% 1.124151 

N E 8.079644 -0.3203559±0.01745259 0.1958706 0.1% 78.8% 21.1% 1.140723 

N G 8.100581 -0.2994189±0.01805035 0.1743792 0.1% 80.3% 19.6% 1.137076 
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Figure1: Growth curves in Soybean genotypes data  

 10



 

 

 

 

 

Quantiles of Standard Normal

re
si

du
la

s

-3 -2 -1 0 1 2 3

-6
-4

-2
0

2
4

Quantiles of Standard Normal

de
lta

_1

-2 -1 0 1 2

-1
0

-5
0

5
10

Quantiles of Standard Normal

de
lta

_2

-2 -1 0 1 2

-5
0

5

Quantiles of Standard Normal

de
lta

_3

-2 -1 0 1 2

-2
-1

0
1

2

Figure 2: qq-norm of residuals and random effects for Soybean data 

 

 11



 

 

 

16
17

18
19

20
21

ML-method

de
lta

_1

N sN NPM E G

Distributions

53
54

55
56

ML-method

de
lta

_2

N sN NPM E G

Distribution

7.
0

7.
5

8.
0

8.
5

9.
0

ML-method

de
lta

_3

N sN NPM E G

Distributions

Figure 3: Box- plot of fixed effects of simulation results for soybean genotypes model  

 

 12



10
20

30
40

50

ML-method

D
11

N sN NPM E G

Distributions

-1
0

0
5

10

ML-method

D
12

N sN NPM E G

Distribution

-2
2

4
6

8

ML-method

D
13

N sN NPM E G

Distributions

0
5

10
15

ML-method

D
22

N sN NPM E G

Distributions

0
2

4
6

ML-method

D
23

N sN NPM E G

Distributions

0
1

2
3

4
5

ML-method

D
33

N sN NPM E G

Distributions

71.5%70.8%69.2%24.5%80%

98.9%99.3%92.1%98.4%99.7%99.7%999%98.6%99.9%

85.8%85.2%82.7%48.2%86.8%80.6%79.8%61.4%81.1%99.1%99.3%99%98.9%98.6% 81.3%

95.8%

Figure 4: Box-plots for variance-covariance parameters of Soybean genotypes model 

 13



0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ML-method

si
gm

a

N sN NPM E G

Distributions

8 7 4 %8 8 . 3 %8 4 . 5 %

0 %

9 9 . 3 %

Figure 5: Box-plots for sigma parameter of genotype model  

 14


	ON THE CONSEQUENCES OF MISSPECIFING ASSUMPTIONS CONCERNING RESIDUALS DISTRIBUTION IN A REPEATED MEASURES AND NONLINEAR MIXED MODELLING CONTEXT
	Abstract
	Motivation and Introduction
	Simulation study on the distributional assumptions
	Results
	Conclusions and discussion

	Acknowledgements
	References

