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Abstract

Inherent variability of chemical sensors makes it necessary to calibrate chemical detection

systems individually. This shortcoming has traditionally limited usability of systems based on

Metal Oxide gas sensor arrays and prevented mass-production for some applications. Here,

aiming at exploring calibration transfer between chemical sensor arrays, we exposed five

twin 8-sensor detection units to different concentration levels of Ethanol, Ethylene, CO, or

Methane. First, we built calibration models using data acquired with a master unit. Second,

to explore the transferability of the calibration models, we used Direct Standardization to

map the signals of a slave unit to the space of the master unit in calibration. In particular,

we evaluated the transferability of the calibration models to other detection units, and within

the same unit measuring days apart. Our results show that signals acquired with one unit can

be successfully mapped to the space of a reference unit. Hence, calibration models trained

with a master unit can be extended to slave units using a reduced number of transfer samples,

diminishing thereby calibration costs. Similarly, signals of a sensing unit can be transformed

to match sensor behavior in the past to mitigate drift effects. Therefore, the proposed

methodology can reduce calibration costs in mass-production and delay recalibrations due to

sensor aging. Acquired dataset is made publicly available.

Keywords: Chemical sensors, Calibration transfer, MOX sensors, electronic nose, Direct

Standardization, Public Dataset

Email address: jfonollosa@ibecbarcelona.eu (J. Fonollosa)

Preprint submitted to Sensors and Actuators B: Chemical March 11, 2016



1. Introduction1

Devices composed of an array of unspecific chemical gas sensors coupled with machine2

learning algorithms have been proposed to solve large diversity of tasks, although such devices3

found limited use beyond laboratory settings and they are still far from fulfilling industry4

requirements [1, 2]. Inherent variability of chemical gas sensors degrades the performance of5

calibration models when transferred to other sensing systems [3]. Hence, calibration needs to6

be performed for each system individually, even if the chemical detection platform includes the7

same number and type of sensors. As a result, mass-production is unfeasible and calibration8

transfer between systems has been identified as one of the main obstacles towards wide-spread9

deployment [4].10

Unlike sensor drift and robustness, which were studied thoroughly during the last decade11

[5, 6, 7, 8, 9, 10], calibration transfer between chemical gas sensor arrays received much less12

attention from the research community, even though calibration is an expensive and time-13

consuming process. An efficient calibration transfer methodology would map the spaces of14

two sensing systems by means of a small set of transfer samples. Such transformation would15

enable the use of a calibration model built for one instrument (master) to build another16

calibration model for the slave instrument. As the number of transfer samples would be17

smaller than the number of calibration samples, such methodology would reduce the cost of18

calibrating new systems, thereby alleviating the road to industrial applications for systems19

based on chemical sensor arrays.20

Calibration transfer techniques have been explored in spectroscopic instruments to pre-21

serve models in time or update the models after hardware replacement. The different strate-22

gies that are found in the literature can be divided in two groups [11]. First, standardization23

methods attempt at mapping system space at measurement time back to system space during24

calibration. Direct Standarization (DS) and Piecewise Direct Standardization (PDS) are two25

prominent examples of methodologies of this group [12, 13]. Second, other methodologies aim26

at removing variation in the responses of different instruments (or the same instrument at27

different measurement times) to cancel out dissimilarity, such as Orthogonal Signal Correc-28

tion (OSC) and Generalized Least Squares Weighting (GLSW) [14, 15, 16, 17]. The success29

of calibration transfer techniques made them suitable for being extended to other sensory30
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systems.31

Pioneering studies on calibration transfer between chemical detection systems were fo-32

cused on classification problems. In early 2000s, Balaban et al. used two commercially33

available systems based on polymeric sensors to measure milk samples [18]. They explored34

three methodologies to transform data acquired with one sensing unit to the space of another35

unit: Simple coefficient, coefficient with intercept, and a matrix transformation (which ac-36

tually is equivalent to DS). They found that the latter was the most satisfactory approach.37

Tomic et al. used five units of a quartz micro balance sensor array [19]. They tested an38

approach that includes a linear regression to compensate each sensor individually, and a mul-39

tivariate approach based on partial least squares regression that compensates the whole set40

of sensors. Both methodologies could successfully remove signal shift, showing slightly better41

performance the univariate method. In another study, again Tomic et al. attempted calibra-42

tion transfer for milk sample classification [20]. They used a hybrid device that combined43

two sensing principles: field-effect transistors and Metal Oxide (MOX) gas sensors. They44

explored how to compensate the entire replacement of the sensor array that took place be-45

tween two series of measurements. Multiplicative drift correction and component correction46

showed similar performance to transfer the signals from the slave unit to the space of the47

master unit. More recently, Shaham et al. showed the feasibility of mapping responses from48

sensor arrays composed of different technologies: quartz microbalance and conducting poly-49

meric sensors [21]. They evaluated principal components regression, partial least squares,50

neural networks and tessellation-based linear interpolation. The best results were obtained51

with neural networks, although the quality of the result was dependent on the direction of52

the mapping.53

Only recently calibration transfer techniques have been used in regression tasks. In con-54

trast to classification tasks, regression is a more challenging problem, but also offers a more55

sensitive measure of the quality of the calibration transfer. Lei Zhang et al. presented a56

methodology for on-line calibration transfer [22]. They built six twin units: a master unit57

and five slave units. Each unit was composed of four MOX gas sensors along with tempera-58

ture and humidity sensors. They fit univariate linear regression curves between each of the59

slave units and the master unit to transform the signals acquired with slave units to the space60

of the master unit. Although the units were exposed to formaldehyde, benzene and toluene,61
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only the former was used as reference for calibration transfer. Their results show that a sim-62

ple homogeneous linear transformation provides good signal mapping between sensing units.63

In another study by Deshmukh et al., the authors proposed calibration transfer between two64

chemical sensor arrays by means of box-behnken design and robust regression [23]. Two65

twin systems with six MOX gas sensors each were built and tested simultaneously. Artificial66

neural network models were built with the master unit to predict the concentration of four67

compounds relevant for the paper industry: hydrogen sulfide, methyl mercaptan, dimethyl68

disulphide, and dimethyl sulphide. The authors showed that the calibration model developed69

for the master system, built upon 100 calibration samples, can be transferred to the slave unit70

using a smaller set of 27 transfer samples, resulting in a faster calibration of the slave system.71

Finally, in a very recent work, Yan and Zhang developed three twin devices that included72

eight MOX sensors each [24]. They employed windowed piecewise direct standardization to73

transform the variables from the slave device to match the master unit. They tested their74

approach on six regression tasks: acetone, hydrogen or ammonia mixed with synthetic air or75

exhaled air. Although the complexity of the generated dataset, the authors did not merge76

different compounds and backgrounds in the tasks, building regression models for one single77

compound.78

The above mentioned approaches confirm the feasibility to map, by means of a set of79

transfer samples, the signal spaces of different sensing units. This transformation enables80

the model built with calibration samples acquired with the master unit to be used with81

the slave device, thereby reducing calibration costs. Nevertheless, previous methodologies82

that considered regression tasks, to the best of the authors’ knowledge, did not explore83

cross-sensitivity to other volatiles. Basically, although the sensing units were exposed to84

different volatiles, for each compound, a regressor was trained separately using the samples85

of the selected compound to quantify its concentration, and the resulting models were not86

tested with the other volatiles. This can yield to overoptimistic results as the models may87

predict high concentration levels of the calibrating gas when samples composed of other88

compounds are presented. Moreover, previous contributions did not consider repetitions89

of the same sensing unit in time. Hence, whether transferred models degrade in time or90

whether calibration transfer techniques can be applied to the same device periodically to91

alleviate drift effects remain open questions. Finally, some of the previous datasets do not92
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exactly replicate the scenario of building calibration models for standalone sensing units.93

Datasets were generated by placing the different units together on the experimental setup,94

acquiring the data for all the devices (master and slave units) simultaneously. This is not95

realistic since, in industrial production, one may need to calibrate slave devices while the96

master unit is not available. As a result, changes in uncontrolled environmental conditions97

(temperature and relative humidity) may increase sensor response variability between units.98

In other experimental setups, twin units shared sensor conditioning electronics, and therefore,99

sensing units cannot be considered completely independent devices.100

The goal of the present work is to study calibration transfer between MOX sensor arrays101

on a realistic scenario that also includes sensor drift. In contrast to previous approaches, our102

methodology relies on a multiclass regression model that is trained and tested using samples103

of different compounds, and therefore, incorporates prediction errors due to miss-classification104

and cross-sensitivity. To target this goal, we generated a complete dataset that was acquired105

by exposing five stand-alone sensing units to 4 gases at 10 different concentration levels in106

a period of 22 days. A total of 640 measurements was performed to obtain, to the best of107

our knowledge, the largest dataset designed for calibration transfer purposes. Furthermore,108

the acquired dataset is made available to the research community for further study and109

benchmark of methodologies 1. The remainder of the paper is organized as follows. We110

present the experimental setup (Section 2) and the methodology to generate the dataset111

(Section 3), followed by the results (Section 4) and the conclusions of this work (Section 5).112

1The dataset will be made publicly available upon acceptance of the manuscript
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2. Experimental setup113

2.1. Detection units114

Conductometric gas sensors, and in particular MOX sensors, are a popular choice due to115

their cost-efficient design, easy operation, sensitivity, fast response, and number of volatiles116

that can be detected [25]. Moreover, several options can be found in the market, facilitating117

sensor integration in arrays. The sensing principle of MOX sensors relies on the absorption or118

desorption of a gas on the sensitive layer, which induces a change in the sensor conductivity.119

The composition of the sensing layer and the operating temperature of the sensor, which is120

usually controlled with a built-in heater, determine its sensitivity to the different volatiles. A121

MOX sensor operating at a different temperature behaves differently and can be, effectively,122

considered as a new virtual sensor. Hence, in order to increase the receptive range of detection123

systems, usually, different types of sensors (and/or sensors working at different temperatures)124

are included in the arrays. Although different types of sensors are designed to detect different125

target volatiles, the non-specificity of the sensors makes them sensitive to wide spectrum of126

analytes.127

In order to obtain different sensing units with similar specifications, we implemented five128

independent, stand-alone chemical detection platforms following the same design. Each plat-129

form can hold 8 MOX sensors and integrates custom-designed electronics for sensor control130

and signal conditioning. In particular, each sensing unit included 4 different types of commer-131

cially available sensors (Figaro USA Inc., Glenview, USA) to generate multivariate responses132

to the different presented stimuli. The control electronics allowed setting the operating tem-133

perature of each sensor individually by means of a pulse width modulated signal applied to134

the heater of each sensor. Table 1 shows the sensor types included in each sensing unit along135

with the corresponding mean voltage induced in the heater. Note that the repetitions of the136

same sensor type are operating at different temperatures. As a result, each channel (CH) of137

the sensing units holds a sensor with unique configuration (sensor type and voltage in the138

heater). To minimize the variability within the different units, the configuration was repeated139

in all the units: the sensors of the same type and operating temperature were always placed140

on the same channel of the respective boards.141

In summary, following the same system design and implementation, we designed and built142
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5 detection units composed of 8 MOX sensors each.143

Table 1: Types of MOX sensors (provided by Figaro Inc.) and corresponding voltage induced in the heater.

Channel Sensor type Voltage in sensor heater

0 TGS2611 5.65 V

1 TGS2612 5.65 V

2 TGS2610 5.65 V

3 TGS2602 5.65 V

4 TGS2611 5.00 V

5 TGS2612 5.00 V

6 TGS2610 5.00 V

7 TGS2602 5.00 V

2.2. Gas mixing station and data acquisition144

Variations in the composition of gas mixtures induce changes in the MOX sensor’s con-145

ductivity. We developed an experimental setup to acquire continuously the conductivities of146

a 8-sensor array while the gas conditions are controlled. The complete setup consists of a147

data acquisition platform, a power control module, and a chemical delivery system. For an148

accurate and reproducible data generation, the system was fully operated by a computerized149

environment.150

The gas delivery system was based on three independent fluidic branches, each of them151

controlled by a Mass Flow Controller (MFC) system. The first fluidic branch was used to152

control the flow of dry air, whereas the other two branches were free to be connected to any153

pressurized gas cylinder. The gases were supplied by Airgas Inc. in calibrated pressurized gas154

cylinders. The three branches met together to obtain the desired gas mixtures. MFC were155

set to induce the desired concentration levels while keeping the total flow at 400 ml/min.156

The sensor array was placed in a 60−ml sealed chamber with 8 openings in its bottom that157

fit with the standard TO-5 package. Finally, the resulting mixture passed through the mea-158

surement chamber continuously before being collected by the exhaust system. The sensors’159

conductivities were acquired continuously at 100 Hz throughout the complete experiment.160
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Figure 1: Experimental setup with one of the detection units. By means of a set of three MFC the total

flow was kept constant at 400 ml/min in the measurement chamber, while different concentration levels of

Ethanol, Methane, Ethylene, and Carbon Monoxide were presented to the sensor unit. We built 5 stand-

alone sensor units following the same design. Each unit is composed of eight MOX sensors and was tested

individually.

Figure 1 shows a diagram of the experimental setup along with one of the implemented161

detection units.162

Hence, by means of a set of three MFCs and the acquisition system, the sensor array was163

exposed to controlled gas conditions, while the sensors’ conductivities were recorded. At the164

end of the measurement, we acquired 8 time-series that were indicative of the presented gas165

conditions.166

2.3. Experimental protocol167

The same experimental protocol was followed to measure the response of the 5 chemical168

detection platforms. Each day, a different unit was tested, which included the presentation169

of 40 different gas conditions, presented in random order. In particular, the board under test170

was exposed to 10 concentration levels of Ethanol, Methane, Ethylene, and Carbon Monoxide.171

The gas mixtures were generated with calibrated gas cylinders at different concentrations:172

1000 ppm for Carbon Monoxide and Methane, and 500 ppm for Ethylene and Ethanol. Table173

2 shows the tested concentration levels for each volatile. Moreover, the sensory units were174
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tested several times over a period of 22 days (see Table 3).175

Table 2: Tested analytes and corresponding concentration setpoints. Each volatile was presented at 10

concentration levels.

Analyte Concentration levels (ppm)

Ethylene 12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5, 100.0 , 112.5, 125.0

Ethanol 12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5, 100.0 , 112.5, 125.0

Carbon Monoxide 25.0, 50.0, 75.0, 100.0 , 125.0 ,150.0, 175.0, 200.0, 225.0 , 250.0

Methane 25.0, 50.0, 75.0, 100.0 , 125.0 ,150.0, 175.0, 200.0, 225.0 , 250.0

Table 3: Days in which each detection platform was tested.

Days tested

Unit 1 4,10,15,21

Unit 2 1,7,11,16

Unit 3 2,8,14,17

Unit 4 3,9

Unit 5 18,22

The design of the experiment was the same for the four tested volatiles: First, a constant176

flow of air (carrier gas) circulated through the sensing chamber for 50 s. This step constitutes177

a preliminary stabilization phase, which served to measure the baseline of the sensor response.178

Second, the carrier gas was mixed with the selected volatile at the desired concentration level.179

The resulting gas mixture circulated during 100 s. Finally, the vapor was purged out from180

the test chamber by re-circulating only clean air during the subsequent 450 s. Therefore, the181

total duration of each experiment was 600 s. Once the recovery phase was complete, a new182

measurement could restart. The order of the concentration levels and the order of the tested183

volatiles were selected randomly for each experiment and day.184

In summary, the acquired dataset, which was generated over the course of 22 days, includes185

640 different measurements, distributed in five sensing units exposed to four volatiles at ten186

different concentration levels each volatile.187
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3. Methodology188

3.1. Calibration models189

We evaluated the ability of calibration models built with one chemical detection unit190

(master) to predict the concentration level of samples presented to other (slave) sensing191

units. In order to build the calibration models, we concatenated the response of the 8192

sensors contained in the same unit. The acquired signals were downsampled to 300 samples193

per measurement to alleviate computational costs. This would be equivalent to acquire the194

sensors’ responses at a sampling frequency of 0.5 Hz. Hence, for each measurement, we195

concatenated 2400 features in a vector.196

The calibration models were trained to identify the presented compound and its con-197

centration level. Using functions in scikit-learn library [26], we built two-layer calibration198

models: First, a Support Vector Machine (SVM) classifier was trained to predict the gas199

type presented to the sensor array. The models were trained to classify the four different200

classes (gas types) using one-versus-all approach. We opted for SVM-based classifiers due201

to their proven success in gas classification problems [27]. Moreover, in a previous study202

that we carried out using the same design for the detection unit, we explored the ability of203

different classifiers to predict the presence-absence of ethylene in different backgrounds [28].204

LDA, k-NN, Perceptron, and SVM did show similar classification accuracy when trained and205

tested under the same conditions. However, SVM classifiers seemed to show higher flexibil-206

ity to correctly classify samples at lower concentration levels than the calibration samples.207

Other works that explored several models to classify data from MOX sensor arrays also re-208

sult in similar performances for different models. For example, detection of potato soft rot209

was explored using a set of 12 MOX gas sensors. Predictive models based on LDA, MARS,210

RBF SVM, Random forests and C5.0 were built. With similar performance, RBF SVM and211

LDA appeared to be the best suited models for early discrimination of healthy controls from212

infected samples [29].213

Second, we trained four Support Vector Regression (SVR) to estimate the concentration214

of each compound. The output of the classifier determined which regression model was215

employed to estimate the concentration of an unknown sample. Therefore, the predicted216

output, as well as the presented sample, can be represented in a 4-component vector, which217
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is a convenient representation to compute prediction error. In fact, the error of the predicted218

sample was computed by means of the Euclidean distance from the presented sample:219

Error = dist
(
~xpresented, ~xpredicted

)
(1)

We selected one sensing unit as master device and we utilized the measurements performed220

in one day to build a calibration model. From the 40 available measurements, we selected 20221

measurements as calibration samples. In particular, the concentration levels 2,4,6,8, and 10222

for each of the compounds were used to build the calibration model. Therefore, the classifier223

was trained with 20 calibration samples, and 5 samples were utilized to train each regression224

model. The models were trained such that a 5-fold cross-validation error was minimized.225

The rest of the concentration levels (1,3,5,7, and 9) were set aside to test the performance226

of the model within the same board and repetition (test samples). In order to perform the227

calibration transfer between sensing units (transfer samples), we only considered a subset of228

the calibration samples: concentration levels 4 and 8. Therefore, in contrast to the master229

unit which is calibrated using 20 calibration samples, a slave unit would be calibrated using230

only 8 transfer samples (2 from each compound). This represents a 60 % reduction of the231

required number of samples to calibrate a new unit.232

3.2. Direct Standardization233

Direct Standardization is a multivariate transfer technique by which one sample in the new234

space (sample measured with the uncalibrated system) is mapped to the reference space (same235

sample measured with the reference instrument). The relationship of the transformation is236

given by:237

Smaster = SslaveF (2)

where Smaster and Sslave are the response matrices of the transfer samples (also called238

standardization samples) acquired with the master and the slave devices. Both response239

matrices have as many rows as transfer samples used to perform the transformation, and as240

many columns as the number of features of each sample. Then, the transformation matrix241

F can be estimated from the pseudo-inverse matrix of the transfer samples. Finally, new242

samples can be transformed to the reference space by means of the transformation matrix.243
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DS assumes that all the variations in the signals are caused by the variability of the244

sensing devices. However, since the experiment setups to deliver chemical samples also suffer245

from some uncertainty, any variation in the sample concentration will be incorporated in246

the transformation matrix as well. Moreover, DS also assumes a linear relationship between247

the signals from both instruments. Despite such limitations, DS is a transfer technique that248

has been successfully applied to near-infrared spectroscopy. The reader is referred to the249

literature for more details [30, 31].250
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4. Results251

4.1. Sensor variability252

For each measurement, we acquired 8 signals that embody the response of the sensor253

array to the presented gas conditions. Figure 2 shows that the acquired signals indeed follow254

the changes in the composition of the gas sample. Moreover, different stimuli induce different255

sensors’ responses.256

Although the design of the detection platforms is the same for all the boards, the variabil-257

ity of sensors disperses the responses of the sensing units. Note, for example, that baseline258

shifts are more prominent between different boards (see Fig. 2b) than the baseline shifts259

within the same board (see Fig. 2a), even if the experiments were more distant in time (17260

days compared to two consecutive days). Also, the sensitivity of the sensors of the same type261

varies from one unit to another (see channels 4,5,6 in Fig. 2b). Therefore, from a simple262

visual inspection of the acquired signals, one can confirm the variability of the sensors, both263

across units of the same type and across time.264

We utilized the model of Clifford-Tuma [32, 33] to quantify the sensor variability. Based265

on experimental observations, the model describes the sensor resistance (RS) as a function266

of the gas concentration (c) and the sensor resistance in air (R0). At operating temperature,267

the model can be simplified to [34, 35]:268

log
(R0 −RS

RS

)
= log(s) + βlog(c) (3)

where both, s and β are parameters that depend on the analyte under test and the sensor’s269

operating temperature.270

Using the ten concentration levels of each compound that we acquired each day for each271

sensor, we fitted the sensors’ responses according to Eq. 3. Therefore, for each sensor, we272

obtained 64 pairs of values that are indicative of the variation on the sensor’s behavior across273

units and across time. Figure 3 shows the estimated value for β for the five sensors placed274

in the channel 3 of the sensing boards. The fitted functions for the five sensors are also275

presented for CO and Ethylene. The sensitivity to the different volatiles can be considered276

as the chemical signature of the sensor. However, from Fig. 3 one can conclude that the277
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(a) Reproducibility within the same unit

(b) Reproducibility within different units

Figure 2: Acquired time series for different detection units under different gas conditions. The sensors are

able to follow the changing gas conditions (dashed vertical lines indicate start/stop of selected gas release).

Each volatile induces a different response to the sensor array. Although the design of each sensing unit is the

same, the acquired signals differ significantly from one board to another (note prominent baseline shifts and

different sensor sensitivities to the same stimuli in the bottom panel).
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Figure 3: Clifford-Tuma model was used to fit acquired data and estimate s and β for each sensor and

volatile. Top panel shows β for the five sensors of the same type placed in the channel CH3 of the five units.

Each sensor is identified by the unit it belongs to (see label Unit 1 − 5). Parameter β is presented for the

four gases (grouped in colors) and for the number of repetitions of each condition. Bottom panels show fitted

models along with acquired data, confirming the quality of the fit. Each color represents a different sensor

of the same type. The slope of each linear fit corresponds to a β value presented in the top panel.

behavior of the sensors changes across boards and also within the same sensor, since each278

repetition was measured days apart.279

4.2. Signal mapping280

We collected data with a master unit and compared the acquired data with the signals281

from a slave unit exposed to the same conditions. Figure 4 shows the captured signals with282

the master unit and the slave unit when Ethylene at 10 concentration levels was presented.283

From a visual inspection, one can confirm the variability between captured signals for sensors284

of the same type: For example, the steady state corresponding to the highest concentration285

level (125 ppm) for the master unit would correspond to a much lower concentration level286

(50 ppm) for the slave unit. This mismatch between sensors’ sensitivities would limit the287

prediction ability of the calibration models. However, after applying DS, with only two288

transfer samples, the responses captured with the slave unit are successfully mapped to the289

space of the master unit.290
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Figure 4: Signals captured for a sensor of the same type (CH7) using a master unit (left) and a slave

unit (middle) exposed to Ethylene at different concentration levels. The sensitivity of the sensors differs

significantly from unit to unit. The signals captured with the slave unit after DS transformation (right) are

mapped to the signals captured with the master.

To visualize the captured signals before and after DS transformation, and compare the291

signal spaces of slave and master unit, we projected captured signals using Principal Com-292

ponent Analysis (PCA) for data visualization at a lower dimension space. We applied PCA293

on the data captured with a master unit (see Fig. 5). The first two Principal Components294

for the master unit were plotted. Then, using the same data projection, data acquired with295

a slave unit was added to the plot. One can conclude that the data is grouped in clusters296

for each compound. Every cluster spreads out from a region that represents clean air to297

higher concentration levels. Moreover, data acquired with the slave unit results in clusters298

with different sizes and angles from the origin. However, after DS transformation, the data299

from slave unit is better aligned with respect to the master datapoints. This confirms the300

ability of DS to map slave data to the space of a master unit using only two transfer samples301

per volatile.302

4.3. Calibration transfer303

Transfer between devices304

We built a calibration model selecting a sensing unit as master device and using only cal-305
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Figure 5: PCA transformation of the signals captured with the master unit (green). Signals from the slave

unit (blue) are represented using the same projection. After DS, data captured with the slave unit (red) is

successfully transformed to the space of the master unit.

ibration samples. The prediction ability of the model was evaluated using the test samples306

that were acquired the same day with the master. We also evaluated the calibration models307

with the test samples but acquired with the rest of the devices (slave). We repeated the308

process until all the units and repetitions were selected to build a calibration model (master)309

and tested with the rest of the devices and repetitions. For each configuration, we computed310

the cross validation error (internal error in training), the error with the test samples of the311

same unit and day, and the error with the samples acquired with other units. To evaluate the312

error with other units, we input the raw signals as they were acquired and the signals after313

DS transformation. Figure 6 shows the distributions of obtained prediction errors after 200314

repetitions (samples acquired with unit 5 when exposed to methane were discarded as acqui-315

sition issues resulted in corrupted signals). Since the ranges of presented concentrations were316

not the same for each volatile, errors in the volatiles that were presented at higher concen-317

trations bias the total prediction error. In order to balance the contribution of each volatile318

to the prediction error, the prediction errors were normalized to the maximum concentration319

level presented for each gas. Therefore, in Fig. 6, prediction errors are presented as a relative320

error with respect to the maximum concentration for each volatile. Table 4 details the first321
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and third quartiles of the distribution of errors in ppm for each volatile.322

Several conclusions can be drawn from Fig. 6 and Table 4. First, the trained models show323

good generalization since the differences between the error in internal validation and the324

error with test samples are not significant. Second, the ability of the calibration models to325

predict the concentration of new samples decays when the measurements are performed with326

other sensing units. Although for some repetitions one still obtains errors in the predictions327

of the same order than when using the master unit, there are noticeable occasions in which328

the errors increase dramatically. These high concentration errors result in uncertainty on329

the quality of the prediction in test. However, after a DS transformation, using only two330

transfer samples, the prediction ability is improved. Actually, prediction errors after DS331

transformation are comparable to the errors obtained with test samples (with the master332

unit). The median of the error decreases from 17% to 4.7% when DS is applied. The latter is333

only slightly higher than the error obtained measuring the same day with the master: 3.9%,334

which provides a performance limit for the prediction accuracy of the models.335

In order to confirm the flexibility of our approach, we evaluated the same methodology336

using a different calibration model and several calibration transfer techniques. First, we used337

Principal Least Squares (PLS) instead of SVR models. Obtained classification accuracies338

showed that SVR outperforms PLS when testing the models with the same unit (12% for339

PLS versus 3.9% for SVR). However, the accuracy of the predictions when the models are340

transferred to another unit becomes similar for both classifiers (19.2% for PLS, and 17.0%341

for SVR). This result indicates that the variability between boards is prominent with respect342

to the choice of the regression model. Finally, when DS was introduced to perform data343

transfer, accuracies similar to same-unit same-day predictions were recovered: 12.6% for344

PLS and 4.7% for SVR. This confirms the ability of DS to recover the prediction accuracy345

of different classifiers when extended to other boards.346

Second, we explored the ability of other calibration transfer techniques. In particular,347

we evaluated PDS, OSC, and GLSW that are already implemented in the PLS Toolbox348

[36]. Following the same methodology, and using SVR regression, we compared the obtained349

accuracy to DS. Table 5 shows first/third quartiles of the distribution of errors in ppm for350

each volatile. Prediction errors for the tested calibration transfer strategies show that the351

selection of the strategy does not change dramatically prediction accuracies. Best accuracy352
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Figure 6: Prediction error distribution of the calibration models when evaluated with data from master/slave

units. Error in training (internal validation using samples from the master unit). Prediction error using unseen

test samples acquired with the master unit. Prediction error testing samples acquired with slave units, before

and after DS transformation. Errors were normalized to the highest concentration level presented for each

volatile. Whiskers represent the limit for samples that are further than 3 times the interquartile range from

the lower/upper quartiles.

predictions were obtained with DS and PDS. Although the simplicity of DS transformation353

and its rapid execution in a microprocessor, results confirm the ability of DS to map two354

sensor spaces.355

Transfer within the same device356

We tested whether DS can be used to alleviate sensor drift. Similarly to results presented357

in Fig. 6, we applied the signal transformation to measurements acquired with the same unit358

but measured days apart. In particular, we built the calibration models with the calibration359

Table 4: Prediction errors for each volatile in training, testing on the same unit, testing on slave units, and

testing on slave units after DS. [First Quartile, Third Quartile]

(ppm) CO Ethanol Ethylene Methane

Train [7.8,19] [2.6,4.3] [1.6,3.4] [2.9,5.8]

Same unit [11,21] [2.3,9.3] [2.2,3.4] [3.2,8.1]

Other unit [36,97] [16,40] [12.5,32] [9.9,29]

Other unit + DS [13,27] [4.7,9.4] [2.7,5.5] [5.2,14]
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Table 5: Prediction errors for each volatile, testing on slave unit after different transfer strategies. [First

Quartile, Third Quartile]

(ppm) CO Ethanol Ethylene Methane

DS [13,27] [4.7,9.4] [2.7,5.5] [5.2,14]

PDS [12,29] [4.6,11] [2.7,5.3] [5.2,13]

OSC [14,40] [6.5,15] [4.2,12] [6,14]

GLSW [15,36] [3.5,11] [3.4,7.4] [9,16]

samples acquired one day (one unit). To quantify the accuracy of the prediction models, we360

tested the models with test samples acquired the same day than the calibration samples, and361

also with samples acquired other days. Figure 7 shows prediction errors in training and using362

samples acquired other days. One can conclude that DS transformation results in prediction363

error drop.364

We also evaluated the feasibility of a transferred calibration model to be transferred again.365

In other words, we explored whether calibration models can be concatenated in a sequential366

chain of calibration transfers. To test multiple transfer of calibrations, we selected a master367

unit (Unit #3) and a slave unit (Unit #1). First, the calibration model built with the master368

was transferred to the slave unit. Second, the calibration model was transferred again to369

compensate drift within the same slave unit. Figure 8 shows the prediction error of the slave370

unit when the master calibration model is used to predict new samples, with and without371

DS transformation. The prediction error is significantly increased when the model is directly372

used to evaluate samples from another board, and it remains at approximately 30 % for all373

the tested time period. However, if the signals are mapped by means of DS transformation,374

the prediction errors remain of the same order than in the master unit. Therefore, master375

calibration models can be transferred to slave units, which in turn can be transferred at376

desired time intervals to counterattack sensor drift.377

Continuous monitoring applications378

In the previously explored scenarios, either when calibration transfer was evaluated be-379

tween different sensing units or within the same unit, we considered that the complete signals380

were available. However, such assumption is not realistic for continuous monitoring applica-381

tions, in which the sensing unit is measuring continuously the environment and a reference382
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Figure 7: Prediction error distribution of the calibration models when evaluated with samples from the same

unit acquired at different times. The sensor array, after some time, can be considered as another virtual

device with deviated specifications with respect to the original system. Error in training (internal validation

using training samples). Prediction error using unseen test samples acquired the same day than the training

samples. Prediction error testing samples acquired days apart (before and after DS transformation). Errors

were normalized to the highest concentration level presented for each volatile. Whiskers represent the limit

for samples that are further than 3 times the interquartile range from the lower/upper quartiles.

Figure 8: Prediction error when the master calibration model is transferred several times. The master model

is transferred to a slave unit, and the resulting model is transferred again to mitigate drift effects. When the

signals are mapped with a DS transformation, the prediction errors retain the error of the master unit.
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Figure 9: Prediction error distribution of the calibration models for continuous monitoring scenarios. Baseline

and transient parts of the signal are not considered. Error in training (internal validation using samples from

the master unit). Prediction error using unseen test samples acquired with the master unit. Prediction error

testing samples acquired with slave units, before and after DS transformation. Errors were normalized to

the highest concentration level presented for each volatile. Whiskers represent the limit for samples that are

further than 3 times the interquartile range from the lower/upper quartiles.

is not presented before measuring a new sample. Therefore, baseline and transient portions383

of the signal are not acquired systematically at the beginning of each new measurement. To384

simulate monitoring tasks, we only considered the steady state portion of the signal and we385

repeated the same methodology to evaluate the calibration transfer between units. Figure 9386

shows prediction errors when baseline and transient portions of the signal are omitted. It can387

be seen that the prediction errors increase up to 8 times the highest concentration level. Al-388

though DS transformation reduces prediction error, the calibration models do not guarantee389

an accuracy within the same order of magnitude of the presented concentrations.390
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5. Discussion and conclusions391

We built five twin sensing units that included eight MOX gas sensors each. We exposed the392

units to the same chemical conditions such that each day the device under test was exposed393

to 40 mixtures of air with Ethylene, CO, Ethanol, or Methane at 10 concentration levels394

each. The result is a dataset that is unique since it was generated with 5 standalone sensing395

units that were exposed to the gas conditions separately, with several repetitions across time.396

Therefore, the generated dataset is suitable to study sensor diversity, calibration transfer397

techniques between units and time drift effects. Moreover, the dataset is made publicly398

available.399

We explored sensor tolerance by fitting sensor responses to the Clifford-Tuma model and400

comparing the obtained sensitivities. Our results show a mismatch between the responses401

of sensors of the same type. In particular, sensor mismatch becomes prominent in baseline402

shifts. Actually, such sensor variability is confirmed by the sensor manufacturer. MOX gas403

sensors provided by Figaro [37] exhibit significant tolerance on sensor resistance measured404

in air (baseline) and sensitivity: According to the TGS2602 data sheet, for example, sensor405

baseline ranges between 10KΩ−100KΩ and the relative change in sensor resistance at 10 ppm406

of Ethanol ranges between 0.15 − 0.5Ω/Ω.407

Our results showed that the mismatch between sensors limits calibration models trans-408

ferability from a master unit to a slave unit. We built hierarchical calibration models that409

included a classifier to determine the gas type and regressors to estimate the concentration410

level of the presented chemical compounds. Such calibration models allowed us to quantify411

the quality of calibration transfer considering the combined task of compound identification412

and concentration quantification. We found that calibration models become inefficient when413

are used to evaluate samples acquired with other units. However, DS transformation success-414

fully maps slave signals to the space of the master unit, thereby enabling calibration transfer415

between units.416

We showed that DS successfully applies a signal transformation across twin units and417

within the same unit measuring days apart. This result confirms that calibration transfer418

techniques can be also applied to compensate drift. Actually, a device after some time can be419

considered as another virtual device with deviated specifications with respect to the original420
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system. Hence, one can easily adopt calibration transfer strategies to counteract drift. We421

also showed that calibration transfers can be concatenated and that slave units preserve, with422

no significant increase, prediction errors of the master. This scenario of multiple calibration423

transfers would be very desirable for mass production of units: One could train calibration424

models, which could be transferred between units or within the same unit at different times.425

As a result, a network of standards keeping track of the distance in terms of the number of426

calibration transfers performed from the original master would be available.427

Although DS applies lineal transformation to map signals between units, non-linear be-428

havior captured by the calibration model trained with the master unit is still being transferred429

to the calibration model for the slave unit. We remark, that in fact, calibration models that430

we trained are non-linear (SVM with RBF kernels, for example). We explored the accuracy431

of the transferred models with two transfer samples per compound. Although the number432

of transfer samples could be increased, the cost of the calibration for the slave unit would433

be higher and the expected improvement in the performance is marginal. Actually, in our434

dataset, as shown in the PCA decomposition, the samples corresponding to each gas appear435

aligned. Therefore, two points from the master and the slave spaces will suffice to map the436

signals to the new space. Hence, although the simplicity of DS, we showed that it can be437

used to transfer calibrations between devices and it can help to mitigate drift effects, thereby438

delaying recalibration of the devices as well. However, sensor systems with higher non-linear439

behavior or larger variability between units may need larger number of transfer samples to440

map sensor spaces using a more dense grid of transfer samples.441

We also explored continuous monitoring scenario by considering only steady state portion442

of the signal. The results showed that one needs to include a reference measurement (clean443

air, for example) before sample presentation to successfully map the signals from the slave444

unit to the master space. To deal with continuous inputs, regressors with tapped-delayed445

or non-linear transformation of temporally varying input signals to a higher dimension have446

been proposed [38, 39, 40, 41, 42]. A route to apply calibration transfer in devices that447

sample continuously would be the combination of such approaches with DS transformation.448

Finally, we tested the performance of different popular methods for calibration transfer,449

namely DS, PDS, OSC, and GLSW. Our results indicate that, although the selection of450

the methodology does not change classification accuracy dramatically, DS and PDS are the451
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methods that provide best calibration transfer among units. This result is in agreement452

with recent studies on calibration transfer based on MOX sensor arrays [43] and NIR spec-453

troscopy database [11]. In the mentioned works, DS or PDS also outperform other explored454

calibration transfer methodologies. This may yield to think that DS, or PDS, are the best455

calibration transfer techniques. However, other calibration transfer techniques may provide456

better results when examined on sensing systems with different cross-sensitivity among their457

sensing elements, in calibrations performed with higher number of training samples or train-458

ing conditions, or when the number of transfer samples becomes larger. The best choice for459

calibration transfer is probably database sensitive and providing guidelines for its selection460

requires further study on databases, acquired with sensory systems of different technologies461

and for different classification or regression tasks.462

All in all, for a successful calibration transfer, one needs to acquire transfer samples with463

the slave unit. Provided that the calibration model for the master unit is already available,464

slave units trained with smaller set of transfer samples coupled with DS provide similar465

prediction error than when they are trained with all the set of calibration samples. The lower466

number of samples needed to build a calibration model will reduce the cost of calibration467

of new units, alleviating thereby industrial costs. Moreover, calibration transfer techniques468

could be coupled with other calibration methodologies that aim at reducing calibration costs469

by selecting the best training examples, or with active sampling strategies to adapt operating470

sensor temperature to mirror sensor behaviors [44, 45, 46].471
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