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POINT-BY-POINT RESPONSE TO REVIEWERS 
 
We would like to thank the reviewers for their detailed comments and suggestions for the 
manuscript. We believe that the comments have identified important areas which required 
improvement. Below, you will find a point-by-point description of how each comment is 
addressed in the manuscript. Original reviewer comments are in boldface, responses in regular 
typeface. The new text is underlined while the crossed-out text refers to the deleted original text. 
Two appendixes with R code are included at the end of this document to support the answer to 
some of Reviewer 1’s questions. 
 
We have included a statement in the Acknowledgments: 
  

We would like to thank the reviewers who identified areas of the manuscript that needed 

corrections or modifications. 
 
 

Reviewer Comments: 
 

Reviewer: 1 
 

Comments to the Author 

 

This is an excellent manuscript and it was a pleasure to read. However, some important 

issues require clarification. 
 

A. Comments concerning RSABE 
 

Page 2, lines 45-48: ‘The main objective of this paper is to critically compare the EMA's 

original scaled method based on a replicate TRTR/RTRT design (or, more precisely, an 

adjusted variant intended to preserve the type I error rate, as shown by Labes and Schütz 

[10]) ...’ 

 

The authors did /not/ employ the adjusted variant [10] (also claimed in section 2.2, Page 4) 

but used a different approach. More details will follow. 

 
Thanks for highlighting this topic. As we fully agree, we have performed again all our RSABE 
computations under EMA’s [10] “Method A”. More details follow. 
 
In Methods, Section 2.2 of the article has been re-written accordingly. 
 
Page 5, lines 40-43: ‘Although much better than the unadjusted version, the RSABE 

adjusted EMA method (AdjEMA) surprisingly still seemed to have a slight type I error 

probability inflation, with a 0.054 value.’ 

 
Now, the type I error probability control is perfect. We fully agree with the forthcoming 
comments, although we would like you to consider our comments highlighted in grey. 
 
First of all I would like to thank the authors to provide their R-code for inspection. 

It seems that in the R-code not ‘Method A’ (as suggested by the EMA in the Q&A-

document) was implemented but intra-subject contrasts (as recommended by the FDA and 

Health Canada). If this is the case it would seriously limit its acceptability from a 

European regulatory perspective (i.e., ‘They did not do what we want – so we don’t have 

to care what they suggest...’). That would be a pity. 
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It should be noted that in package PowerTOST, function scABEL.ad() only ‘Method A’ is 

implemented (targeting at the EMA’s approach [10]), which is based on ANOVA. Intra-

subject contrasts can be approximated in the function power.scABEL() by modifiying the 

regulatory setup in the following way: original <- reg_const(regulator="EMA") 

original$est_method 

# [1] "ANOVA" 

modified <- original 

modified$est_method <- "ISC" 

 

Exploring an example: CVwR 30%, RTRT|TRTR, n 24: power.scABEL(alpha=0.05, 

CV=0.3, theta0=scABEL(CV=0.3, regulator="EMA")[["upper"]], regulator=original, 

design="2x2x4", n=24, nsims=1e6) 

# [1] 0.0804 

Inflation of the TIE as reported [10] (Table II first row and Supplementary material 2, 

Table III a, first row). 

 

power.scABEL(alpha=0.05, CV=0.3, theta0=scABEL(CV=0.3, 

regulator="EMA")[["upper"]], regulator=modified, design="2x2x4", n=24, nsims=1e6) 

# [1] 0.084143 

Higher inflation of the TIE since intra-subject contrasts instead of ANOVA are employed. 

Seems that this value is close to the manuscript’s Table 2 for ‘Regulatory EMA’ given with 

0.085. 

 

res <- scABEL.ad(alpha=0.05, CV=0.3, theta0=scABEL(CV=0.3, 

regulator="EMA")[["upper"]], regulator=original, design="2x2x4", n=24, nsims=1e6, 

print=FALSE) alpha.adj.ANOVA <- res$alpha.adj 

cat(res$alpha.adj, res$TIE.adj, "\n") 

# 0.029331 0.050001 

An adjusted α of 0.029331 maintains the TIE at 0.050001. See [10] (Table II first row and 

Supplementary material 2, Table III b, second row). 

res <- scABEL.ad(alpha=0.05, CV=0.3, theta0=scABEL(CV=0.3, 

regulator="EMA")[["upper"]], regulator=modified, design="2x2x4", n=24, nsims=1e6, 

print=FALSE) 

alpha.adj.ISC <- res$alpha.adj 

cat(res$alpha.adj, res$TIE.adj, "\n") 

# 0.026937 0.050001 

If intra-subject contrasts are used, more adjustment (α 0.026937) would be required to 

control the TIE! 

 

power.scABEL(alpha=alpha.adj.ANOVA, CV=0.3, theta0=scABEL(CV=0.3, 

https://mc.manuscriptcentral.com/sim?PARAMS=xik_43rs7AeuybF5XR...a3CCpA8ZxMc

TD6JMiQ7G1EPjN2VMxbrtpFLj2Kf2sqvgt1EpcpygTn9HfRqt2w Página 2 de 6 

ScholarOne Manuscripts 15/4/17 11'30 

 regulator="EMA")[["upper"]], regulator=modified, 

design="2x2x4", n=24, nsims=1e6) 

# [1] 0.053694 

If the adjusted α 0.029331 (from ANOVA) is used, inflation of the TIE is observed if the 

evaluation is done by ISCs. I assume that this is what the authors have done. I disagree 

with the authors that there is ‘a slight type I error probability inflation, with a 0.054 

value’ (as reported in Table 2). This inflation is only due to a setup which is not the one 

proposed in [10] and in my opinion likely would not be acceptable for the EMA. 

 

simRSABE.R line 143 contains this statement: 

scABEL.ad(n = ssize, design = "2x2x4", print = FALSE)$alpha.adj 

Note that: 
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1. The regulatory setting is not modified (as required for ISCs). Hence the adjustment is 

done for ANOVA (as already shown). 

2. The CVwR is not specified. According to the documentation of scABEL.ad() in such a 

case the default CV = 0.3 is used. Consequently all simulations done by the authors for CV 

!= 0.3 are flawed (i.e., too conservative). 

I am considering to ask the maintainer of PowerTOST or the author of scABEL.ad() to 

remove this default and stop the execution if missing(CV) == TRUE. It might have been 

that the authors overlooked this detail and hence, were caught in a trap. 
 
In fact, we were perfectly aware of the default value CV = 0.3. We had some a priori objections 
on the convenience of substituting this constant value (admittedly, representing the worst 
scenario with respect to TIE) with an estimation, subject to statistical error. Additional results 
seem to confirm these concerns. Assigning to CV a value estimated from the data seems to 
inflate the TIE. Please see the answer to the last comment concerning RSABE. 
 

power.scABEL(alpha=alpha.adj.ISC, CV=0.3, theta0=scABEL(CV=0.3, 

regulator="EMA")[["upper"]], regulator=modified, 

design="2x2x4", n=24, nsims=1e6) 

# [1] 0.050004 

If the adjusted α 0.026937 (from ISC) is used, practically no more inflation of the TIE is 

observed. 

 

I analogy for N 48 the TIE of 0.053 in the manuscript’s Table 3 can be explained: 

Adjusted α (ANOVA) 0.028057 (TIE 0.05000) 

Adjusted α (ISC) 0.026489 (TIE 0.05000) 

Adjusted α 0.028057 (from ANOVA) used in the evaluation by ISC: TIE 0.052402 

 

Another important point to note is that the functions provided in PowerTOST simulate 

the respective statistics (log(GMR) and SE) via their associated distributions (normal and 

χ2) and not subjects’ data. This gives (depending on the sample size) a boost in 

performance of 1,000 to 10,000. In the Supplementary material 1 [10] it was shown that 

the in the case of homoscedasticity the agreement with the ‘gold standard’ subject 

simulations is sufficiently good. 

Unfortunately the statistical distributions of ISCs are not directly accessible. See the file 

Implementation_scaledABE_sims.pdf in [R installation]/library/PowerTOST/doc/ 

Therefore, a modified regulatory setup (as described above) is only approximate. 

In order to assess a potential impact of a wrong assumption I performed subject 

simulations and compared results with the other methods: 

CVwR 30%, empiric TIE (assessed at true GMR 1.25), 1 mio simulations each. 

n alpha power.TOST Subj.sim. power.TOST Subj.sim. Manuscript authors' 

(ANOVA) (ANOVA) (ISC) (ISC) Table # R-code 

24 0.050000 0.08040 0.08029 0.084143 0.08357 2 0.085 

24 0.029331 0.05000 0.04991 0.053694 0.05344 2 0.054 0.05397 

24 0.026937 0.050001 0.04967 

48 0.050000 0.08232 0.08208 0.084647 0.08467 

48 0.028057 0.05000 0.04969 0.052402 0.05258 3 0.053 0.05241 

48 0.026489 0.050000 0.050887 

In my opinion the agreement of ISC (by subject simulations and via the modified 

regulatory setup in power.TOST) is sufficient. In 86% of 70 scenarios ([n 12, 18, 24, 30, 36, 

48, 60] and CVwR [20, 25, 30, 40, 50, 60%]) the 95% confidence intervals (binomial test) 

of empiric TIEs overlapped. Runtimes on my machine for all scenario were 249 seconds 

for scABEL.ad() compared to 61 hours for subject simulations. 
 
We fully agree. Now, in all simulations, either subject or distributional, we follow the ANOVA 
approach clarified in the EMA’s 2015 Questions & Answers document.  
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Page 4, lines 14~21: ‘... the type I error probability has only one single maximum, at 

CVwR = 30%. This greatly facilitates adjusting the significance level at α = 0.05. To focus 

on an easy to use method for sponsors, and with chances to be included in the regulations, 

we consider the method already implemented in the function “scABEL.ad” in the R 

package PowerTOST [10]. However, as a consequence of adjusting the significance level, 

the EMA’s scaled method (labeled AdjEMA in the table results) should lose some power.’ 

As shown above the authors used intra-subject contrast (which IMHO, has a low chance of 

regulatory acceptance) and adjust always as if the CVwR would be 30%. The loss in 

power (expressed in a higher sample size) is highest at CVwR 30% [10] but /decreases/ if 

the CVwR is lower or higher (outside the critical region of inflated TIEs no adjustment is 

performed). This is not the case with the authors’ method. Example: Expected GMR 0.9, 

target power 80%, RTRT|TRTR-design; sample size (power). 

CV (%) N EMA power for N with adj. alpha N for adj. alpha % incr. N 20 18 (0.8015) 

0.8015 18 (0.8015) 0.0 

25 28 (0.8116) 0.8069 28 (0.8069) 0.0 

30 34 (0.8028) 0.7251 42 (0.8022) 23.5 

35 34 (0.8118) 0.7728 38 (0.8100) 11.8 

40 30 (0.8066) 0.7800 32 (0.8035) 6.7 

45 30 (0.8112) 0.8112 30 (0.8112) 0.0 

If the alpha would always be adjusted for CVwR 30% (and evaluated by ISCs), the loss in 

power would be substantial 

CV (%) N ISC power for N with adj. alpha N for adj. alpha % incr. N 

20 20 (0.8188) 0.7403 24 (0.8187) 20.0 

25 30 (0.8224) 0.7435 36 (0.8183) 20.0 

30 36 (0.8091) 0.7308 44 (0.8064) 22.2 

35 36 (0.8181) 0.7284 42 (0.8015) 16.7 

40 32 (0.8134) 0.6814 38 (0.8091) 18.8 

45 30 (0.8173) 0.6558 36 (0.8234) 20.0 

Whereas the method proposed by [10] looses power only in the critical region, the authors’ 

approach looses power independent from the CVwR and would require ~20% higher 

sample size in order to compensate this loss. Taking this to the extreme: Beyond CVwR 

50% ABEL behaves similar to TOST (TIE ≤0.05). The authors’ approach would still 

‘compensate’ for an inflated TIE which does not exist. I do not think that this is a 

desirable property. 
 
We are not sure of the convenience of assigning to argument CV of scABEL.ad a value 
estimated from the data –or equivalently in simulations, assigning to it a (transformed to 
original scale) random chi-square value in each simulation replicate. This means substituting a 
fixed constant, 0.3 (which admittedly represents the most pessimistic scenario with respect to 
TIE and so the expected maximum loss in power), with a random value subject to statistical 
error. In our opinion, this deserves further study and possibly additional adjustments in order to 
fully preserve TIE, if possible. 
 
We provide in the APPENDIX 1 (at the end of this document) the script 
“TIE_estimating_CV.R” along with some “Results” (pages 14 to 17), in which some 
preliminary simulations in the 2x2x4 design have been performed. These simulations are based 
on only 10,000 simulation replicates because they require adjusting the significance level in 
each simulation replicate in function of each random generated CV value, and so they are quite 
slow. As a consequence of the low simulation size, the point estimates of the TIE probabilities 
are very imprecise, but their associated confidence intervals suggest TIE inflation in the 
neighbourhood of a simulated CV of 0.3. On the other hand, TIE seems to be under control (but 
apparently too conservative, even at a simulated CV = 0.3 for both formulations, R and T) for a 
fixed significance level coming from scABEL.ad with CV = 0.3.  
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Similar inflation trends are observed in (even slower!) simulations from subjects’ generated data 
when the significance level is adjusted in each simulation replicate, assigning to argument CV 
the estimated coefficient of variation (simulating under homoscedasticity conditions and using 
the pooled estimate). On the other hand, more intensive subject simulations (1,000,000 
replicates) based on a fixed adjusted significance level at CV = 0.3 show less conservative 
results for all simulated CVs, with the resulting TIE probability very close to 0.05 for a 
simulated homoscedastic scenario at CV = 0.3. 
 
So, perhaps it would better to restore the default 0.3 value of the CV argument of scABEL.ad. 
 
 

B. Comments concerning the (modified) TSDs 

 

Page 4, line 45: Change ‘over 80%’ to ‘at least 80%‘. See [17]. However, the flowchart in 

Figure 2 is correct. 

 
Thank you for catching this imprecision. In fact, Section 2.3 has been re-written following your 
comments. So, finally, because the significance level of 0.0294 is not applicable anymore, we 
have removed this paragraph entirely. 
 

Figure 1: The adjusted alpha in the boxes should be 0.0294 instead of 0.094 
 
Thank you for catching this typo error. Now, the significance level has been updated according 
to your algorithm recommendation. In Figure 1, these adjusted significant values are shown. 
 

In general there seems to be an inflation [sic] of capital letters denoting different Two-

Stage methods. I recommend to follow the terminology as given in [5] (i.e., ‘Type 1’ and 

‘Type 2’). You made clear in the text that you modified Potvin et al. Method B and C by 

introducing a futility criterion (limiting the total sample with 150 subjects) and a 

minimum stage 2 sample size. However, in some other parts of the text (and tables) you 

call them simply ‘Potvin B’ or ‘Potvin C’. This might confuse readers – as it did myself. 

Might be picky but the difference is important. The original ‘Potvin B’ for CV 60% and 

N1 36 reaches a total power of 79% (although with large total sample sizes), whereas the 

modified method gives just 31%. I agree that from the producer’s perspective it might be 

desirable to stop a study early. However, from an ethical perspective even starting a study 

with such a low expected power might be questionable (see Fuglsang (2013, 

doi:10.1208/s12248-013-9540-0) and [5]). 

 
We fully agree that this confuses the readers. We are now introducing the terminology you are 
proposing, i.e., type 1 and 2 as follow: 
 
New paragraph (Methods Section 2.3. paragraph 2): 
 
Among adaptive approaches to bioequivalence [15], we focused on those (almost partially) 

mentioned in regulations, considering two “Pocock-like” variants [16], as described by Potvin 
et al. and labelled A, B, C and D [17]. In particular, we studied the Potvin B method as the base 

case, and Potvin C as a sensitive case a Type 1 [5] Potvin B method consisting of using the 

same adjusted α in both stages regardless of whether a study stops in the first stage or proceeds 
to the second stage (Figure 1), and a Type 2 Potvin C method where an unadjusted α may be 

used in the first stage, dependent on interim power (Figure 2). 

 
In general, throughout the whole article, we refer to “Potvin” algorithms as “modified Potvin” 
algorithms. 
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In addition, we have also added a sentence highlighting the convenience of not starting a BE 
study with such a low power. Therefore, in the 3rd paragraph of the Discussion section, we have 
added the following sentence: 
 
However, from an ethical perspective, even starting a study with such a low expected power 

might be questionable [22]. 

 

By exploring the various published methods it is evident that for ‘Type 2’ TSDs the 

highest inflation of the TIE is observed at a combination of small stage 1 sample sizes and 

moderate CVs: 

Potvin Method C [17]: α 0.0294, n1 12, CV 20% (TIE 0.0510; for GMR 0.95 power 84.7%) 

Montague Method D [13]: α 0.0280, n1 12, CV 20% (TIR 0.0518; for GMR 0.90 power 

81.9%) 

Since in the published methods the adjusted α is chosen in such a way that the TIE should 

be controlled over the entire grid of n1/CV-combinations it is is evident that – since all 

methods aim to cover a wide range of n1/CV-combinations – in most cases the (global) 

adjusted α will be more conservative than required for the actual (local) n1/CV-

combination, thus deteriorating power. I strongly suggest that the authors take another 

publication (Xu et al. 2016, doi:10.1002/pst.1721) into account which aimed at resolving 

this problem by recommending different alphas, futility regions, and maximum total 

sample sizes for low to moderate (10–30%) and high (30–55%) CVs. 
 
We agree. We have reviewed/included the reference of Xu et al. 2016 (Section 2.3., paragraph 
8). In addition, we followed your methodology about how to assess the adjusted significance 
level, which is applicable to both modified Potvin methodologies (type 1 and 2 methods). 
Please, see our extended answer to this comment further down in this document. 
 

According to the provided R-code the authors estimated power (and sample size) by the 

exact method (Owen’s Q). In most papers the shifted central t-distribution was used for 

speed reasons – which is an approximation (of the noncentral t-distribution). The 

noncentral t-distribution itself only approximates the exact method. In actual studies 

likely at least the noncentral t-distribution will be employed. Hence, the author’s approach 

reflect what will be used in reality. This is a very good idea indeed but should be stated as 

such in the manuscript. 

 
When we started this article, we were not aware of the R function power.2stage. At that 
moment, we started from the scratch programming both modified Potvin algorithms. To 
calculate the adjusted significance level in this review, we have used this function because it is 
very fast and accurate (using a nct approximation). However, for tables and figures, we have 
used our original R programs because we do adjust ANOVA models by including the 
“sequence-by-stage” interaction factor, following the EMA guidelines. Because our 
methodology is based on an “exact” method, we mention this fact in Section 2.5., second 
paragraph:  
 
In addition, these TSD simulations were done using the “exact” method. 

 

Page 4, lines 57/58 to Page 5 lines 4/5: It is a misconception that [5] suggested that the 

minimum total sample size N should be ≥ 1.5N1. In [5] Birkett and Day [ref. 48] were 

quoted, who recommended N2 ≥ 1.5N1. If I interpret lines 68/69 of the R-code 

auxSimTSD_Potvin.R, max(N, 1.5*n1) was correctly used – so this may be only a typo in 

the manuscript. Please clarify. 

 
We are proposing to enrol in the second stage at least half of the patients used in the first stage, 
so that if, for example, N1=24,  then N2 is of at least 12 subjects (thus, the final N is at least 36 
subjects). 
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The comment of Birkett and Day about “We show the danger of selecting n potentially too close 

to N1 and so our recommendation would be that if N0 = 25, then n should certainly near to 10” 

is based on the assumption that a prior estimate S2 of the true ��is based on literature reviews, 
previous experience and so on, and gives an idea of the overall N, N0. Based on this N0 value, 
they propose choosing an initial sample size n, and N0 is re-evaluated at the interim (N1) look 

based on the estimation of ��, ���. Then N is chosen as the max(N0, N1). But we are reasoning a 
bit differently, as we are not assuming anything on the S2 and just fixing the n as per the 
sponsor’s consideration (though we finally are proposing that it not be too low, e.g., of at least 
12 subjects per sequence in a 2x2 crossover trial). In our article, we are showing that the power 
is always at least 80% for n of at least 6 subjects per sequence, unless CVw is 60% or higher. 

Another difference is that they are assuming that �� is the between-subject variability, but ��� in 
parallel trials is usually a bit higher than in crossover trials (with within-subject variabilities). 
 
In addition, if we are not wrong, we found that in the article: Schütz H. Two-stage designs in 
bioequivalence trials. European Journal of Clinical Pharmacology 2015; 71(3):271-281., Table 
1 shows that other jurisdictions or organizations already follow this approach, N2 ≥ N1/2.  
 
To make this clearer, we have detailed this approach a bit more. 
 
Previous paragraph (Section 2.3.): 
 
However, according to the suggestions made by Schutz [5] and Karalis and Macheras [18,19], 

we considered two additional constraints:  

- A minimum of N ≥ 1.5N1 is required 

- If N = N1 + N2 > 150, the trial fails and it is stopped at the first stage. 

 
New paragraph (Section 2.3.): 
  
We propose a modification to the original Potvin B and C algorithms, including two constraints 

consisting of using a minimum sample size in the second stage (like in other jurisdictions or 

organizations) [5], and a maximum overall number of 150 subjects enrolled [18,19] in ABE 
studies, as follows: 

- A minimum of N ≥ 1.5N1 is required (or N2 ≥ 0.5N1) 

- If N = N1 + N2 > 150, the trial fails and it is stopped at the first stage. 
 

I agree that in many papers the expected total sample size E[N] is used to compare the 

performance characteristics of methods. However, by their very nature in TSD the 

distribution of total sample sizes is bimodal. In Xu’s methods it might be even trimodal 

(i.e., studies where N1+N2 exceeds max.n do not stop in the 1st stage but are performed 

with max.n). Hence, E[N] is of limited value (as is the median). Even the mode would 

provide little (if any useful) information. The manuscript is the first work I am aware of 

which reports the standard deviation of E[N]. Given what I wrote before, the authors 

should reconsider whether it makes sense to report it. See also the attached code 

TSD_Examples.R which generates sample size distributions for various methods. Don’t 

worry about the runtime: Couple of seconds. 

See the 3rd example obtained by the code: Type 1, alpha 0.0294, GMR 0.95, CV 30%, N1 

24, target power 80%, N2.min 36, N.max 150: 

E[N] 47.0. This might give a completely false impression. Of the 100,000 simulated studies 

not a single one (!) had a total sample size in the range 26 to 58. 

Similar the authors’ example in Table 2, Potvin C (is this the original ‘method C’ but with 

exact power instead of the shifted t?). I got E[N] 39.8 with a SD of 16.9. Hence, E[N]±2SD 

stretches from 6–74. Note that since N1=24 this is not meaningful. 
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Yes, we fully agree. We should avoid using the E[N] because the distribution of our modified 
Potvin methods is bimodal (not trimodal, because studies exceeding N=150 are discarded, and 
the second stage is not reached). In fact, we’ve replicated your figure where this bimodality is 
shown by adding Figure 5 in the article [note that this figure is based on N2>=N1/2 (or 
N>=1.5N1) instead of N2>=1.5N1]. Instead, we have removed Table 3, where RSABE was 
evaluated based on E[N]. 
 
We also refer to this figure in the Discussion, as follows (5th paragraph): 
 
In addition, the expected total sample size E[N] is usually used to compare the performance 
characteristics of different TSD methods. However, by their very nature in TSD, the distribution 

of total sample sizes N is bimodal, mainly due to the imposition of N ≥ 1.5N1. For example, 

using our modified Potvin B, with αadj = 0.03018396 at each stage, GMR = 0.95, CVw = 0.3, 
N1 = 24, and target power 80%, we obtain a E[N] of 40 subjects, but with 24 and 36 subjects 

having more likelihood of occurrence (Figure 5). As the average is skewed towards two sample 

values, we believe that the median of N is more useful to compare different TSD methods. 
 
We also believe that the Me[N] suffers somehow from the same problem, but having a reference 
on a central trend is very useful to compare different TSD methodologies, and TSD versus 
RSABE too, so we are using the Me[N] instead of the E[N], despite its limitation.   
 
This figure has been run using our own algorithms for consistency reasons, though we’ve 
double checked that these results are quite similar to using the function power.2Stage. 
 

A note on the Type I Error in TSDs. Kieser & Rauch [15] lament that [17] used Pocock’s 

one-sided α 0.0294 instead of the ‘correct’ two-sided 0.0304. However, this argument is 

flawed. 0.0304 (as is 0.0294) is not some kind of a ‘natural constant’. Since the published 

TSDs are based on different frameworks, the adjusted alpha is entirely empiric and has to 

be estimated in simulations. The fact that 0.0294 ‘worked’ in Potvin B was no more than a 

lucky punch (and we see a slight inflation in Method C). It is unfortunate that Potvin et al. 

did not further consider Method D – which could control the TIE with an adjusted α of 

0.0280 and would have avoided the current skepticism by European regulators towards 

‘Type 2’ TSDs. See also http://bebac.at/lectures/Prague2016-2.pdf 

Generally any futility criterion reduces the TIE. Hence, the methods by Karalis/Macheras 

are not problematic in this respect. On the other hand, a rule dictating a minimum stage 2 

sample size is expected to /increase/ the TIE (studies which would have needed just a few 

more subjects are forced to larger sample size – effectively shrinking the CI and 

increasing the probability of passing BE). In other words, if a framework is modified (like 

the authors did) it is of utmost importance to find a suitable adjusted α! You must not 

assume that what ‘worked’ in one framework would work in another one as well. 

Example (GMR 0.95, N1 12, CV 20%, target power 80%, adj. α 0.0294, exact method; TIE 

assessed at true GMR 1.25, 1 mio sim’s): 

Type 2 (Potvin C): 0.05122 (slight inflation of the TIE; significantly >0.05). 

additionally Nmax 150: 0.05122 (same because with this CV Nmax has no impact). 

additionally N2 ≥ 1.5N1: 0.05302 (larger TIE which is even above Potvin’s ‘negligible‘ 

inflation of 0.052). 

Given that, the authors should assess the TIE for all combinations of n1/CV. I suspect that 

the adjusted α of 0.0294 will not control the TIE in all scenarios. If this is the case, a 

suitable one should be provided. I know, that this can be a cumbersome task. My 

algorithm: 

1. Start with an arbitrary adjusted α. Maybe ~0.0265 is a good starting point. 

2. Evaluate the TIE over the entire grid with a low number of sim’s. Use "nct" instead of 

"exact" (since 40times faster). Depending on the speed of the machine 20,000–50,000 are 

enough. 
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3. Filter for the combinations of n1/CV where the TIE is at last 95% of the maximum TIE 

observed in the grid. Another approach is to filter for combinations of n1/CV where the 

TIE is significantly >0.05. 

4. Only for these combinations assess the TIE with 1 mio sim’s. Find the n1/CV with the 

highest TIE. 

5. Set up a range of alphas close to the one which was used before (slightly lower to slightly 

higher). I generally use 10 values. Estimate the resulting TIEs (1 mio sim’s each). 

6. The TIE-surface is nonlinear. Try a linear and quadratic fit. Use the one with the lower 

AIC. Back- calculate the adjusted alpha which gives TIE = 0.05. 

7. Evaluate the entire grid with this new adjusted α (1 mio sim’s each). "nct" is good 

enough. If you want to play it safe, repeat for the highest TIEs with "exact" (generally the 

TIE will differ only in the 4-5th decimal figure). 

8. If you do not find a TIE which is larger than 0.05 (plus a certain threshold), stop. 

Otherwise, degrease the adjusted α and start over with step 4. 

It is important to use a narrow ‘mesh size’ in order not to miss the global maximum. I 

routinely use 2 (both for n1 and the CV). 

Whereas in ‘Type 1’ TSDs the region of max. TIEs resembles a ‘ridge’, in ‘Type 2’ the 

region can be flat (studies passing in stage 1 are at least partly evaluated with α 0.05). See 

http://bebac.at/lectures/Prague2016-1.pdf (slides 14/15). 

I strongly suggest to explore different alphas for ‘Type 1’ and ‘Type 2’ designs. ‘Type 2’ 

designs always need more adjustment than ‘Type 1’. Maybe you find the R-package 

Power2Stage useful. Should be /much/ faster than your current R-code. 
 
We want to thank you for such a detailed algorithm, which has served to obtain the adjusted 
alpha for our modified Potvin type 1 and 2 algorithms. We look for adjusted significance levels 
covering a wide range of n1/CVw because we believe that this can help regulators, since they 
can widely rely on the protection of patients against false positive results. Though sponsors can 
sometimes have an intuition about the true CVw value, since they might have the results of a 
previous bioavailability trial, we believe that it is important not to have any assumptions about 
the potential CVw true value. Therefore, we have found an adjusted significance level for a wide 
range of CVw.  
 
The following paragraph has been included in Section 2.3., paragraph 8: 

The adjusted significance level of α = 0.0294, used by Potvin et al. [13,16,17,18] at each stage, 

did not always control the overall type I error rate at a maximum 0.05 (e.g., when using our 

modified Potvin C algorithm with N1 = 12 and considering a true unknown CVW = 20%, the 

false positive rate would be inflated to 0.053). Like in Xu et al. [20], we did look for a 

significance level by strictly controlling the type I error rate below 0.05, which was useful for 
our specific modified Potvin B and C methodologies. Because the sponsor is unaware of the 

true CVW value, we looked for a significance level which was applicable to a broad set of N1 

and ���, {N1/CVW} (scenarios shown in Section 2.5.). 

We used the method implemented in the function “power.2stage” (via non-central t-

distribution) in the R package Power2Stage. The treatment effect was evaluated at the frontier 

1.25, and assuming an expected GMR = 0.95 and a target power of 80%.  

A short statement for assessing the adjusted significance level, αadj: 

(1) Define a grid with a set of {N1/CVW}  

(2) Start with an arbitrary, e.g. αadj = 0.0290 

(3) Obtain the empirical probability of type I error, Pr{TIE}, over the grid (m = 30,000 

simulation trials per scenario). Filter for the scenarios where Pr{TIE} is at least 95% of 

the max(Pr{TIE}) observed in the grid, let’s say {N1/CVW}TIE≥P95% 
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(4) For {N1/CVW}TIE≥P95%, find the N1/CVW with max(Pr{TIE}) (m = 1,000,000) 

(5) Set up a range of αj close to the one used before, �� ∈ 
���� ± ������…� (e.g. by δ 

increments of 0.0001 units). By using the N1/CVW associated to max(Pr{TIE}), estimate the 

Pr{TIE} of all αj (m = 1,000,000) 

(6) Adjust linear α = glin(Pr{TIE}) and quadratic α = gquad(Pr{TIE}) models, with and without 

the intercept. Choose the model with the lowest Akaike information criterion value (AIC) 

(7) Use this model to predict a new αadj, where αadj = g(0.05)  
(8) Evaluate the entire grid of {N1/CVW} with this new αadj (m = 1,000,000) 

(9) If Pr{TIE} < 0.05 for all {N1/CVW}, STOP and select this new αadj; Otherwise, start again 

over with step (4) 

We provide in APPENDIX 2 (at the end of this document) the script “Modified 
Potvin_Alpha.R” (pages 18 to 21). 

Also, we have included a paragraph in the Discussion (2nd paragraph): 
 
Statistical power is used to evaluate the performance of adaptive methodologies in ABE clinical 

trials. A power of at least 80% is desirable when considering N1 subjects at the first stage, and 

assuming an expected but unknown within-subject coefficient of variation, CVw. In turn, this is 
always conditioned to not exceed the overall type I error rate of 0.05 for true bioinequivalent 

drugs. In our modified Potvin B and C methods, we found adjusted significance levels covering 

a wide range of N1 and CVw combinations (i.e., αadj = 0.03018396 and αadj = 0.02806472 at 

each stage for Potvin B and C, respectively). This is useful to regulators, since they can widely 

rely on the protection of patients against false positive results. However, for a specific actual 

(local) N1 and CVw combination, the power is slightly downgraded, although it is always above 

80% in cases of true bioequivalence. 

 
 
Only cosmetics: 

I suggest to order columns of N in Table 1: Min 5% Median 95% Max  

 
We have updated Table 1 according to your comments. 
 

Page 5, line 5: Change ‘MSO R’ to ‘Microsoft R Open’. 
 
We have updated the previous wording in Section 2.5. (first paragraph): “The results described 

in the next sections are based on simulations using 64 bits R and Microsoft R Open 64 bits R 

and MSO R”  
 

Given my comments in (A) and (B) I suggest that you re-calculate what have lead to 

Figures 1 and 2.  
 
Thank you. Done. 
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Reviewer: 2 
 
Comments to the Author 

 

1) Please amend the title to read, `European Scaled Average Bioequivalence.......' 

 
Thank you for this comment, following your suggestion we propose this new title: 
 
Two-Stage Designs versus European Scaled Average Designs in Bioequivalence Studies for 

Highly Variable Drugs: Which to Choose? 

 
2) Page 4, Line 43: There are some known statistical issues with this approach from 

Potvin's methods. The authors should consider and determine whether these should 

impact the simulations and whether additional scenarios should be considered. See 

Patterson and Jones (2016), 2ed., Chapter 6. 

 
We are addressing in this review some statistical issues regarding Potvin's methods. As 
suggested by Reviewer 1, we have re-evaluated the local significance level at each stage as per 
our modifications to the original Potvin algorithms. Therefore, Section 2.3 “Two-stage 
modified Potvin B and C designs” have been re-written. In addition, we also discuss a bit 
further the consequences of imposing some futility rules to the original Potvin methods 
(paragraphs 2 and 3 in the Discussion). Finally, we show the bimodality of the empirical 
distribution of the sample size N, along with the discussion/limitations of using the E[N] as the 
main indicator to compare the different Potvin methods (paragraph 5 in the Discussion).  
 

3) Page 5, Line 5: BE trials in excess of this N=150 have been conducted. The authors - see 

Patterson, Zariffa, Howland et al. (2001) European Journal of Clinical Pharmacology, 57, 

663-670. 
 
Yes, you are right. In this article we consider that it is more ethical to have a decision rule(s) for 
stopping at an interim analysis if it involves too many subjects with a low power. Likely, these 
studies should not even be initiated.  
 
We have made the following changes in the Discussion to include your comment. 
 

Current version on paragraph 3: 
 
Patterson et al. [23] explored the sample size N that provides 90% power (for true 

bioequivalent drugs) in cases of HVD. They showed that by using 2x2 crossover designs with 
conventional ABE limits of 0.8-1.25 and CVw of 60% or above, the required sample size 

exceeds 150 subjects (replicate designs require smaller sample size). Using adaptive designs, 

we avoid conducting studies with such a large sample size by imposing a futility criterion so 

that we can stop the trial at an interim look with only N1 subjects. According to Karalis and 

Macheras [19], we added a constraint to the original TSD methods, specifically by not 

recruiting more than 150 subjects overall. In practice, this is a futility criterion, as sponsors 
should not conduct ABE studies using TSDs that require such a high number of subjects. For 

example, in the case of a true bioequivalent drug with 0.95 ≤ ��� ≤ 1.05, and for highly 

variable drugs with an estimated within-subject coefficient of variation above 58% at the 

interim analysis, the final sample size needed for achieving a power of 80% at the second stage 

already exceeds 150 subjects. At first glance, this constraint represents some global loss of 

power, but this possibility of cancelling a study for futility may ultimately be considered a 
positive trait, since the sponsor is unaware of the true treatment effect value during the 

planning phase, and the overall sample size could unnecessarily soar above this threshold for a 

scenario of true bioinequivalence. 
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And we have included the reference of Patterson SD, Zariffa N, Montague TH, Howland K. 
 

4) Page 8, Line 52: The authors should remove the cost-benefit analysis statement. The 

cost of even very large BE studies (N>150) is negligible relative to the costs of a clinical 

development program. 

 
Thank you. You are right, so we have removed this sentence. 
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APPENDIX 1. TIE_estimating_CV.R 
 
library(PowerTOST) 
 
standardBELim <- log(1.25) 
prTIE.confid <- 0.95 
# Critical two-tailed normal z value: 
zPrTIE <- qnorm((1 - prTIE.confid) / 2, lower.tail = FALSE) 
 
# ************************ rsabe.test ****************************** 
# From estimates (in log-scale) of formulation effect and R and T variance,  
# perform two variants of the scaled bioequivalence tests (EMA) with adjusted  
# significance level. Adjusting is performed by means of 'scABEL.ad'.  
# In the first test, the argument 'CV' of 'scABEL.ad' corresponds to the 
# CV estimates (taken from the input argument 'estims'); in the second test 
# it corresponds to the constant (pesimistic with respect to TIE) 0.3 value. 
#  
# Arguments: 
# estims       : a numeric vector of length 3, estimates of formulation effect, 
#                R variance and T variance, respectively, all at logartihmic scale 
# n            : sample sizes, with the same meaning as in functions like CI.BE or 
#                scABEL.ad 
# nominalAlpha : nominal significance level, defaults to 0.05 
# adjAlphaCV0.3: adjusted significance level with CV = 0.3 in scABEL.ad (for  
#                efficiency reasons, in simulations it is advisable to provide it 
#                previously computed outside rsabe.test, otherwise it is computed 
#                inside the function) 
rsabe.test <- function(estims, n, nominalAlpha = 0.05, adjAlphaCV0.3) 
{ 
  # Point estimate constraint to declare BE: 
  if (abs(estims[1]) > standardBELim) { 
    return(c(FALSE,FALSE)) 
  } 
  # Point estimate of GMR, in original scale: 
  peGMR <- exp(estims[1]) 
  # Point estimates of CV, in original scale: 
  cv <- mse2CV(estims[-1]) 
  common.cv <- mse2CV(0.5 * sum(estims[-1])) 
  # Adjust the significance level assuming CV = 0.3, if argument 'adjAlphaCV0.3' is 
  # not provided (advisable providing it for efficiency reasons) 
  if (missing(adjAlphaCV0.3)) { 
    adjAlphaCV0.3 <- scABEL.ad(alpha = nominalAlpha, design = "2x2x4", n = seqSizes, print 
= FALSE)$alpha.adj 
    if (is.na(adjAlphaCV0.3)) { 
      adjAlphaCV0.3 <- nominalAlpha 
    } 
  } 
  # Adjusted significance level, according to CV = data or simulation estimate 
  adj.alpha <- scABEL.ad(alpha = nominalAlpha, CV = cv, design = "2x2x4", n = n, print = 
FALSE)$alpha.adj 
  if (is.na(adj.alpha)) { 
    adj.alpha <- nominalAlpha 
  } 
  # Confidence interval from adjusted significance level based on CV = estimate from data  
  ci <- CI.BE(alpha = adj.alpha, pe = peGMR, CV = common.cv, n = n, design = "2x2x4") 
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  # Confidence interval from adjusted significance level based on CV = 0.3  
  ciAdj0.3 <- CI.BE(alpha = adjAlphaCV0.3, pe = peGMR, CV = common.cv, n = n, design = 
"2x2x4") 
  beLims <- scABEL(cv[1]) 
  return(c((beLims[1] <= ci[1]) && (ci[2] <= beLims[2]), 
           (beLims[1] <= ciAdj0.3[1]) && (ciAdj0.3[2] <= beLims[2]))) 
} 
 
# Generate estimates (in log-scale) of formulation effect and R and T variance 
# from their sampling distributions 
generate.estims <- function(simSize = 10000,  
                            formulEff = log(1.25), varsW.RT = c(0.3,0.3),  
                            seqSizes = c(12,12))  
{ 
  N <- sum(seqSizes) 
  ddf <- N - 2 
  c2 <- 0.25 * sum(1 / seqSizes) 
  varW <- 0.5 * sum(varsW.RT) 
  result <- rbind( 
    rnorm(simSize, mean = formulEff, sd = sqrt(c2 * varW)), 
    rchisq(simSize, df = ddf) * varsW.RT[1] / ddf, 
    rchisq(simSize, df = ddf) * varsW.RT[2] / ddf 
  ) 
  # rownames(result) <- c("fEff", "s2WR", "s2WT") 
  return(as.data.frame(result)) 
} 
 
# ************************ simul.rsabe ****************************** 
# Simulate to obtain the proportion of bioequivalence declarations  
# for two variants of the scaled bioequivalence test (EMA) with adjusted  
# significance level. Adjusting is performed by means of 'scABEL.ad'.  
# In the first test variant, the significance level is adjusted "on the fly" 
# from each one of the simulation generated CV estimates, assigning it to  
# argument 'CV' of 'scABEL.ad'; in the second variant, it is always the  
# constant (pesimistic with respect to TIE) 0.3 value. 
#  
# Arguments: 
# simSize      : number of simulation replicates, defaults to 10000 
# GMR          : simulated population geometric means ratio between T and R, 
#                defaults to 1.25 
# CV_W.RT      : a numeric vector o length 2, simulated within-subject coefficients 
#                of variation of R and T at original scale, as proportions. 
#                Defaults to c(0.3,0.3) 
# seqSizes     : a numeric vector o length 2, sample sizein each sequence, 
#                defaults to c(12,12) 
# nominalAlpha : nominal significance level, defaults to 0.05 
# adjAlphaCV0.3: adjusted significance level when CV = 0.3 in scABEL.ad (if 
#                not provided, it is computed inside the function, only once) 
simul.rsabe <- function(simSize = 10000,  
                        GMR = 1.25, CV_W.RT = c(0.3,0.3),  
                        seqSizes = c(12,12), 
                        nominalAlpha = 0.05,  
                        adjAlphaCV0.3) 
{ 
  formulEff <- log(GMR) 
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  varsW.RT <- CV2mse(CV_W.RT) 
  if (missing(adjAlphaCV0.3)) { 
    adjAlphaCV0.3 <- scABEL.ad(alpha = nominalAlpha, design = "2x2x4", n = seqSizes, print 
= FALSE)$alpha.adj 
    if (is.na(adjAlphaCV0.3)) { 
      adjAlphaCV0.3 <- nominalAlpha 
    } 
  } 
  prTIE <- rowSums( 
    vapply( 
      generate.estims(simSize = simSize, formulEff = formulEff, varsW.RT = varsW.RT, 
seqSizes = seqSizes), 
      FUN = rsabe.test, FUN.VALUE = c(FALSE, FALSE),  
      n = seqSizes, nominalAlpha = nominalAlpha, adjAlphaCV0.3 = adjAlphaCV0.3 
    ) 
  ) / simSize 
  prTIE <- rbind(prTIE, 
                 matrix(prTIE, ncol = 2, nrow = 2, byrow = TRUE) +  
                   outer(c(-zPrTIE, zPrTIE), sqrt(prTIE * (1 - prTIE) / simSize), "*")) 
  colnames(prTIE) <- c("CV = estimated from data", "CV = 0.3") 
  rowName <- paste0(round(prTIE.confid * 100, 0), "%", " conf.int", sep = "") 
  rownames(prTIE) <- c("Pr{BE} estimate",  
                       paste0("lower ", rowName, sep = ""), 
                       paste0("upper ", rowName, sep = "")) 
  return(prTIE) 
} 
 
# Significance level adjusted assuming constant default CV = 0.3 
adj.alpha <- scABEL.ad(alpha = 0.05, CV = 0.3, design = "2x2x4", n = c(16,16), print = 
FALSE)$alpha.adj 
if (is.na(adj.alpha)) { 
  adj.alpha <- 0.05 
} 
 
# For these GMRs and CVs, the probability of declaring BE should be (near) 0.05 or smaller. 
# Simulations are very slow because the significance level is adjusted in each simulation 
replicate 
 
set.seed(17393) 
simul.rsabe(10000, seqSizes = c(16,16), GMR = 1.25, CV_W.RT = c(0.2,0.2), adjAlphaCV0.3 
= adj.alpha) 
 
set.seed(17393) 
simul.rsabe(10000, seqSizes = c(16,16), GMR = 1.25, CV_W.RT = c(0.29,0.29), 
adjAlphaCV0.3 = adj.alpha) 
 
set.seed(17393) 
simul.rsabe(10000, seqSizes = c(16,16), adjAlphaCV0.3 = adj.alpha) # GMR = 1.25, CV_W.R 
= CV_W.T = 0.3 
 
set.seed(17393) 
simul.rsabe(10000, seqSizes = c(16,16), GMR = scABEL(0.31), CV_W.RT = c(0.31,0.31), 
adjAlphaCV0.3 = adj.alpha) 
 
set.seed(17393) 
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simul.rsabe(10000, seqSizes = c(16,16), GMR = scABEL(0.4), CV_W.RT = c(0.4,0.4), 
adjAlphaCV0.3 = adj.alpha) 
######################################################## 
 

RESULTS: 
 
> adj.alpha <- scABEL.ad(alpha = 0.05, CV = 0.3, design = "2x2x4", n = c(16,16), print = 
FALSE)$alpha.adj 
if (is.na(adj.alpha)) { 
  adj.alpha <- 0.05 
} 
 
> set.seed(17393) 
> simul.rsabe(10000, seqSizes = c(16,16), GMR = 1.25, CV_W.RT = c(0.2,0.2),  
              adjAlphaCV0.3 = adj.alpha) 
                   CV = estimated from data   CV = 0.3 
Pr{BE} estimate                   0.0485000 0.02740000 
lower 95% conf.int                0.0442896 0.02420044 
upper 95% conf.int                0.0527104 0.03059956 
>  
> set.seed(17393) 
> simul.rsabe(10000, seqSizes = c(16,16), GMR = 1.25, CV_W.RT = c(0.29,0.29),  
              adjAlphaCV0.3 = adj.alpha) 
                   CV = estimated from data   CV = 0.3 
Pr{BE} estimate                  0.05570000 0.04060000 
lower 95% conf.int               0.05120499 0.03673178 
upper 95% conf.int               0.06019501 0.04446822 
> 
> set.seed(17393) 
> simul.rsabe(10000, seqSizes = c(16,16), adjAlphaCV0.3 = adj.alpha)  
              # GMR = 1.25, CV_W.R = CV_W.T = 0.3 
                   CV = estimated from data CV = 0.3 
Pr{BE} estimate                  0.06290000 0.046500 
lower 95% conf.int               0.05814154 0.042373 
upper 95% conf.int               0.06765846 0.050627 
> 
> set.seed(17393) 
> simul.rsabe(10000, seqSizes = c(16,16), GMR = scABEL(0.31), CV_W.RT = c(0.31,0.31),  
              adjAlphaCV0.3 = adj.alpha) 
                   CV = estimated from data   CV = 0.3 
Pr{BE} estimate                  0.05740000 0.04290000 
lower 95% conf.int               0.05284102 0.03892849 
upper 95% conf.int               0.06195898 0.04687151 
>  
> set.seed(17393) 
> simul.rsabe(10000, seqSizes = c(16,16), GMR = scABEL(0.4), CV_W.RT = c(0.4,0.4),  
              adjAlphaCV0.3 = adj.alpha) 
                   CV = estimated from data   CV = 0.3 
Pr{BE} estimate                  0.04960000 0.03350000 
lower 95% conf.int               0.04534458 0.02997328 
upper 95% conf.int               0.05385542 0.03702672 
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APPENDIX 2. Modified Potvin_Alpha.R (looks for the best alpha) 
 
library(Power2Stage) 
library(lattice)  
library(plyr) 
 
#FUNCTION POTVIN B (in each stage (row) of the object "d", n_sim simulations are 
performed) 
 
######################################################## 
potvin = function(type, d, nmax, n_sim, targetpower, pmethod) { 
  #min.n2 <- 0 
  sapply(1:nrow(d), function(x) { 
    return(power.2stage(method = type, alpha = c(d[x,"alpha1"],d[x,"alpha2"]),  
                        n1=d[x,"n1"], GMR=0.95, CV=d[x,"CV"], targetpower = targetpower, pmethod 
= pmethod, 
                        Nmax = nmax, min.n2=d[x,"min.n2"], theta0=d[x,"t_effect"], #theta0: True 
unknown GMR (t_effect); theta0=1.25 for T1E; theta0=0.95 for power 
                        npct = c(0.05, 0.5, 0.95), nsims = n_sim , setseed = 123)) 
  } 
  ) 
} 
######################################################## 
 
a = function(alpha1, alpha2, CV, n1, potvin_type) { 
    min.n2 <- sapply(n1, function(x) if((x/2) %% 2 != 0) (x/2)+1 else x/2) 
    d_T1E <- expand.grid(t_effect=1.25, CV=CV, n1=n1, alpha1=alpha1, alpha2=alpha2) 
    d_T1E <- cbind(d_T1E, min.n2 = rep(min.n2,each=length(d_T1E["t_effect"])*length(CV))) 
     
    #EXECUTING SIMULATIONS FOR T1E AT t_effect=1.25 (n_sim = 30,000) 
    #pmethod = c("nct", "exact") 
    res_T1E <- potvin(type=potvin_type, d=d_T1E, nmax=150, n_sim=30000, targetpower=0.8,     
pmethod = "nct") 
    T1E <- res_T1E["pBE",] 
    T1E <- t(matrix(as.numeric(T1E), nrow=length(CV), ncol=length(n1))) 
    rownames(T1E) <- n1 
    colnames(T1E) <- CV 
     
    #T1E HIGHER OR EQUAL THAN QUANTILE 95% (n_sim = 1,000,000) 
    T1E95 <- T1E[T1E >= quantile(T1E, 0.95)] 
    index <- which(T1E >= quantile(T1E, 0.95), arr.ind=TRUE) 
    n195 <- as.numeric(rownames(T1E)[index[,1]]) 
    min.n295 <- sapply(n195, function(x) if((x/2) %% 2 != 0) (x/2)+1 else x/2) 
    d95 = data.frame(t_effect=1.25, CV=as.numeric(colnames(T1E)[index[,2]]), n1=n195, 
alpha1=alpha1, alpha2=alpha2, min.n2=min.n295) 
    res_T1E95 <-  potvin(type=potvin_type, d=d95, nmax=150, n_sim=1000000, 
targetpower=0.8, pmethod = "nct")   
    T1E_high <- 
data.frame(cbind(d95[,2],d95[,3],d95[,4],d95[,5],as.numeric(res_T1E95["pBE",]))) 
    colnames(T1E_high) <- c("CV", "n1", "alpha1", "alpha2", "pBE") 
     
    #MAX TIE (n_sim = 1,000,000) 
    max_T1E <- T1E_high[T1E_high[,"pBE"]==max(T1E_high["pBE"]), ]  
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    #REDEFINING NEW ALPHA LEVELS (ARBITRARILY 5 VALUES BELOW AND 5 
VALUES UPPER THE PREVIOUS ALPHA VALUE) AND PREPARING SIMULATIONS 
    new_alpha <- seq(alpha1-0.0005, alpha1+0.0005, by = 0.0001) 
    n_d <- data.frame(t_effect=1.25, CV=max_T1E["CV"], n1=max_T1E["n1"], 
alpha1=new_alpha, alpha2=new_alpha, 
                      min.n2 <- if((max_T1E["n1"]/2) %% 2 != 0) (max_T1E["n1"]/2)+1 else 
max_T1E["n1"]/2) 
    colnames(n_d) <- c("t_effect","CV", "n1", "alpha1", "alpha2", "min.n2") 
     
    #EXECUTING SIMULATIONS AT A t_effect=1.25 AND FOR A RANGE OF ALPHA1 = 
ALPHA2 (n_sim = 1,000,000) 
    res_new_t1e <- potvin(type=potvin_type, d=n_d, nmax=150, n_sim=1000000, 
targetpower=0.8, pmethod = "nct") 
    valpha1 <- sapply(1:ncol(res_new_t1e), function(x) res_new_t1e[["alpha",x]][1]) 
    valpha2 <- sapply(1:ncol(res_new_t1e), function(x) res_new_t1e[["alpha",x]][2]) 
    res_new_d_T1E <- data.frame(CV = unlist(res_new_t1e["CV",]), 
                                n1 = unlist(res_new_t1e["n1",]), 
                                alpha1 = valpha1, 
                                alpha2 = valpha2,  
                                min.n2 = unlist(res_new_t1e["min.n2",]),  
                                T1E = unlist(res_new_t1e["pBE",])) 
   
    d_power <- res_new_d_T1E   
    d_power$t_effect <- 0.95 # To calculate the power 
    res_power <- potvin(type=potvin_type, d=d_power, nmax=150, n_sim=1000000, 
targetpower=0.8, pmethod = "nct") 
    valpha1_power <- sapply(1:ncol(res_power), function(x) res_power[["alpha",x]][1]) 
    valpha2_power <- sapply(1:ncol(res_power), function(x) res_power[["alpha",x]][2]) 
    res_d_power <- data.frame(  CV = unlist(res_power["CV",]), 
                                n1 = unlist(res_power["n1",]), 
                                alpha1 = valpha1_power, 
                                alpha2 = valpha2_power,  
                                min.n2 = unlist(res_power["min.n2",]),  
                                power = unlist(res_power["pBE",])) 
     
    newd <- merge(res_d_power, res_new_d_T1E, by=c("n1", "CV", "alpha1", "alpha2", 
"min.n2"), all.x = TRUE, sort = FALSE)     
 
    #AIC models 
    l.models1 <- lm(alpha1 ~ 0 + T1E, data = newd) 
    l.models2 <- lm(alpha1 ~ T1E, data = newd) 
    q.models1 <- lm(alpha1 ~ 0 + T1E + I(T1E^2), data = newd) 
    q.models2 <- lm(alpha1 ~ T1E + I(T1E^2), data = newd) 
    newd1 <- data.frame(AIC.l1=AIC(l.models1), AIC.q1=AIC(q.models1), 
AIC.l2=AIC(l.models2), AIC.q2=AIC(q.models2),  
                        min.AIC=min(AIC(l.models1), AIC(q.models1), AIC(l.models2), 
AIC(q.models2))) 
    p <- data.frame(alpha1=NA, T1E=0.05) 
    if (newd1$min.AIC == newd1$AIC.l1) { 
        a_aic <- predict(l.models1, p) 
    }  
    else if (newd1$min.AIC == newd1$AIC.l2) { 
        a_aic <- predict(l.models2, p) 
    }  
    else if (newd1$min.AIC == newd1$AIC.q1) { 
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      a_aic <- predict(q.models1, p) 
    }  
    else a_aic <- predict(q.models2, p)  
     
 return(list(max_T1E=max_T1E, sensitivity=newd, new_alpha_aic=a_aic)) 
} 
######################################################## 
 
# Given the first iteration given with the "function a", the function result looks for the best alpha 
 
result <- function(x) { 
  success <- FALSE 
  new_alpha1 = as.numeric(res[["new_alpha_aic"]])  
  new_alpha2 = as.numeric(res[["new_alpha_aic"]]) 
  res <- a(new_alpha1, new_alpha2, CV, n1, potvin_type)  
  while (!success) { 
    if (res[["max_T1E"]]["pBE"] <= 0.05) {  
      cat("Predicted alpha1=alpha2 with min(AIC) of lm(alpha ~ 0 + T1E) and lm(alpha ~ 0 + 
T1E + I(T1E^2)","\n", 
          "lm(alpha ~ T1E) and lm(alpha ~ T1E + I(T1E^2)","\n", 
          "for the particular CV and n1 corresponding to max(T1E) from the cartesian product of", 
"CV=", CV, "and", "n1=", n1,"\n", 
          "Predicted alpha1=alpha2=", res[["max_T1E"]]$alpha1, "\n", 
          "with max empirical T1E =",res[["max_T1E"]]$pBE[1],"\n", 
          "ensuring that the predicted alpha protects all T1Es for cartesian product of n1 and CV 
below 0.05 ") 
      success <- TRUE  
    } else { 
      new_alpha1 = as.numeric(res[["new_alpha_aic"]]) 
      new_alpha2 = as.numeric(res[["new_alpha_aic"]]) 
      res <- a(new_alpha1, new_alpha2, CV, n1, potvin_type) 
    }  
  }   
  return(res) 
  break 
} 
######################################################## 
 
# Parametrizaton 
 
# Potvin B: alpha1=alpha2=0.03018396 
# Potvin C: alpha1=alpha2=0.02806472 
alpha1=0.03018396 
alpha2=0.03018396 
CV <- c(0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6) 
n1 <- c(12, 18, 24, 30, 36, 48, 60) 
potvin_type = "B" 
 
#APPLYING POTVIN METHOD (FUNCTION a - Apply reviewer algorithm - first iteration 
only) 
 
res <- a(alpha1, alpha2, CV, n1, potvin_type)  
 
# Given the first iteration given with the "function a" which returns data.frame "res", the 
"function result" looks for the best alpha 
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#LOOKING FOR THE BEST ALPHA ("function result") WHICH CONTROLS T1E FOR 
ALL COMBINATIONS OF CV AND n1 
 
adj_alpha <- result(res) 
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Two-Stage Designs versus European Scaled Average Designs in Bioequivalence 

Studies for Highly Variable Drugs: Which to Choose? 
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Abstract 
 

The usual approach to determine bioequivalence for highly variable drugs is scaled 

average bioequivalence, which is based on expanding the limits as a function of the 

within-subject variability in the reference formulation. This requires separately 

estimating this variability, and thus using replicated or semi-replicated crossover 

designs. On the other hand, regulations also allow using common 2×2 crossover designs 

based on two-stage adaptive approaches with sample size re-estimation at an interim 

analysis. The choice between scaled or two-stage designs is crucial and must be fully 

described in the protocol. Using Monte Carlo simulations, we show that both 

methodologies achieve comparable statistical power, though the scaled method usually 

requires less sample size, but at the expense of each subject being exposed more times 

to the treatments. With an adequate initial sample size (not too low, e.g., 24 subjects), 

two-stage methods are a flexible and efficient option to consider: They have enough 

power (e.g., 80%) at the first stage for non-highly variable drugs and, if otherwise, they 

provide the opportunity to step up to a second stage that includes additional subjects. 
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Two-Stage Designs (TSD), Group sequential designs (GSD), Highly Variable Drugs 

(HVD), Significance Level Adjustment 

--------------------------------------------------------------------------------------------------- 

 

1. Introduction 

 

Average bioequivalence (ABE) studies are conducted to demonstrate in vivo either that 

two products, say “test” T and “reference” R, are pharmaceutically equivalent (in the 

US) or that their rate and extent of absorption [1-3] are close enough to serve as 

alternative pharmaceutical products (in the EU). The most common measure of the rate 

of absorption is the bioavailability measure “maximum observed concentration” 

(Cmax), while the “area under the concentration curves” (AUC0-t and AUC0-∞) [4] are 

the most common bioavailability measures for the extent of absorption. To demonstrate 

ABE, regulatory guidelines recommend a single dose 2×2 crossover design, RT/TR that 

evaluates T and R on healthy volunteers. The most commonly used criterion to test (at a 

significance level of α = 0.05) for ABE is the “interval inclusion rule”, which is based 

on a 90% symmetric confidence interval for the formulation effect, say the mean 

difference between the bioavailabilities of formulations T and R at a log-transformed 
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scale. It is based on the Student’s distribution, assuming data normality. In order to 

declare ABE, the back-transformed confidence interval for the geometric means ratio 

(GMR) should lie fully within the ABE limits of 0.80−1.25 (=1/0.80), corresponding to 

±0.223 on the logarithmic scale [2,5]. 

 

Highly variable drugs (HVD) are characterized by high within-subject variability in the 

rate and/or extent of absorption of its active principle. This hinders researchers from 

declaring ABE when it really holds, unless unacceptably large sample sizes are used. 

Most regulations classify a drug as HVD if the within-subject coefficient of variation of 

the reference formulation R (CVWR) is 30% or greater on the original scale. The 

percentage of HVD is not negligible. Davit et al. [6] collected data from all in vivo 

bioequivalence studies reviewed by the FDA’s Office of Generic Drugs from 2003 to 

2005, and they concluded that 31% of the studies (57/180) corresponded to highly 

variable drugs, many of them around CVWR = 30%. 

 

If HVD is suspected, the European Medicines Agency (EMA) allows linearly scaling 

the Cmax margins as a function of the R variability to a maximum plateau of 0.6984-

1.4319, and it further allows application of the interval inclusion rule over these 

expanded limits [2]. Similarly, the FDA also allows researchers to re-scale the AUC 

limits [1,3]. These scaled approaches require the use of high order crossover designs 

like the replicated TRTR/RTRT or semi-replicated TRR/RTR/RRT designs [2,7,8]. 

However, these scaled methods, as defined by FDA and EMA regulations, do not 

adequately preserve the type I error rate in the neighborhood of CVWR = 30% [9,10]. 

Thus, the proportion of non-ABE products erroneously declared as ABE is higher than 

its desired nominal value.  

 

Regulators also allow using two-stage adaptive designs (TSD) with unblinded interim 

sample size re-estimation [2,5,11,12] based on the usual 2×2 crossover RT/TR design. 

Bioequivalence may be declared at the interim look with N1 subjects; otherwise, the 

sample size can be increased on the basis of the estimated within-subject variability at 

the first stage, then ABE is tested again at a second stage with cumulated data N = N1 + 

N2. Two-stage designs preserve the type I error rate [13] by adjusting significance 

boundaries at each stage in various ways that are not fully specified in the regulations 

[14,15].  

 

In turn, the planned sample size is crucial because it may lead to underpowered studies, 

as there is a high uncertainty about the assumed GMR and/or variability.  

 

The main objective of this paper is to critically compare the EMA's original scaled 

method based on a replicate TRTR/RTRT design (or, more precisely, an adjusted variant 

intended to preserve the type I error rate, as shown by Labes and Schütz [10]) with two 

TSD methods based on the usual RT/TR crossover design.  

 

Section 2 describes the compared methods and details the simulation methodology. 

Section 3 shows the results; and Section 4 discusses them in order to recommend the 

most appropriate approach. 
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2. Statistical methodology 

 

2.1. 2010 Regulatory EMA reference scaled average bioequivalence approach (RSABE) 

(for Cmax only) 

 

Replicate TRTR/RTRT designs allow separately estimating the CVWR [9] and can easily 

be re-arranged for comparison with a 2×2 crossover design (needed for two-stage 

designs) once the first two periods are sliced (see Section 2.3).  

 

We focus on the EMA regulation because the FDA’s approach is based on scaled limits 

which are discontinuous at CVWR = 30%. This discontinuity is associated with a sharp 

peak of type I probability around this CV value, which threatens its validity.  

 

On the original scale, the null hypothesis of bioinequivalence is tested against an 

alternative of bioequivalence, as follows: 

 

��:	���	 ≤ 	0.80	or	���	 ≥ 	1.25 

��:	0.80 < ��� < 	1.25. 
 

In the Reference Scaled Average Bioequivalence (RSABE) approach, the ABE limits 

are a function, say ������, of the unknown population within-subject R coefficient of 

variation ����, so the hypotheses being tested differ from the standard ones enunciated 

above: 

 

��:	���	 ≤ 	1/������(����)	or	���	 ≥ 	������(����) 
��:	1/������(����) < ��� < 	������(����). 

 

If ���� < 30%, ������(����) = 1.25; so the ABE limits are the usual 0.8−1.25. If 

���� lies between 30% and 50%, the ABE limits grow as	������(����) = 

� !	{#���$%&'(����
( + 1)}, with #��� = 0.76. Otherwise, from ����= 50%, 

������(����) = 1.4319; so the ABE limits stay constant at 0.6984 (= 1/1.4319). 

 

A short statement of the EMA testing decision criterion is: 

 

(1) Obtain the GMR estimate,	���0 = �12 , where 34 is the estimated formulation effect 

3, the mean difference of test and reference products of the corresponding log 

Cmax scale; 

(2) Point estimate constraint: If ���0  is outside the limits 0.8-1.25, do not declare 

bioequivalence and stop; 

(3) Obtain the estimate of the within-subject coefficient of variation of the reference 

product, ��5�� = 	$�6789
: − 1, where <=��

(  is the estimated value of the reference 

residual standard deviation in the logarithmic scale; 

(4) Obtain the 90% confidence interval for GMR around its estimate ���0 , �>?��0 =
�[∅2B,∅2D]	, where ∅2F and ∅2G are the estimated lower and upper limits of the 

confidence interval in the logarithmic scale, at a confidence level of 1 − 2H for α = 

0.05 

(5) If �>?��0  is fully included in the ������(��5��) limits, declare ABE (reject ��), 

otherwise do not declare ABE. 
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Note that the limits ������I��5��J are random, not fixed constants like 0.8 or 1.25, 

since they depend on the random quantity ��5��, which is not fixed in advance. 

 

Muñoz J. et al. [9], among others, showed that the above decision criterion does not 

adequately control the type I error probability, or false positive rate (say, if 

bioequivalence is erroneously declared when in fact it does not hold) in the 

neighborhood of ���� = 30%.  

 

2.2. Significance level adjustment on the Regulatory EMA scaled approach 

 

As has been previously stated, the 2010 former EMA RSABE procedure does not 

control completely the type I error probability. To focus on an easy to use method for 

practitioners, and with chances to be included in the regulations, we considered the 

method already implemented in the function “scABEL.ad” in the R package 

PowerTOST [10]. As a consequence of adjusting the significance level, the EMA’s 

scaled method (labeled AdjEMA in the table results) may lose some power. But this 

(small in general) loss of power is worth because it converts a potentially invalid 

procedure (with respect to the type I error probability) in a fully correct one. 

 

As a function of the reference coefficient of variation, the type I error probability has 

only one single maximum at CVWR = 30%. Consequently, though somewhat 

conservatively, we let the argument “CV” of scABEL.ad at its default value of 0.3. The 

alternative strategy of estimating the coefficient of variation from data and assigning 

this (random function of data, unknown in advance) value to the argument CV induces 

some type I error probability inflation. 

 

In accordance with EMAs Questions & Answers guideline [11], section 10, the 

estimation of the required parameters was based on the ANOVA procedure labelled as 

“Method A” in this document, and not in the intra-subject contrasts, as are for example 

allowed in the FDA regulation for scaled average bioequivalence. 

 

2.3. Two-stage modified Potvin B and C designs 

 

We consider two adaptive two-stage designs (TSD) with one interim analysis (at the 

first stage) with N1 subjects to either (1) establish equivalence early; or (2) stop for 

futility; or (3) recruit an additional group of N2 subjects to repeat the bioequivalence 

assessment at a second stage with N = N1 + N2 subjects. Each stage is based on a 2×2 

crossover balanced RT/TR design, and so the within-subject variability ��� should be 

estimated by means of the pooled variability of R and T. Unlike the scaled approach, 

two-stage hypotheses always rely on the standard fixed limits 0.8–1.25.  

 

Among adaptive approaches to bioequivalence [15], we focused on those (almost 

partially) mentioned in regulations, considering two “Pocock-like” variants [16], as 

described by Potvin et al. and labelled A, B, C and D [17]. In particular, we studied a 

Type 1 [5] Potvin B method consisting of using the same adjusted α in both stages 

regardless of whether a study stops in the first stage or proceeds to the second stage 

(Figure 1), and a Type 2 Potvin C method where an unadjusted α may be used in the 

first stage, dependent on interim power (Figure 2). 
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Both methods calculate N2 as the minimum even number of additional subjects required 

for having a total sample size of N, which achieves a conditional power of at least 80% 

for declaring bioequivalence at the second stage. This is conditional on the estimated 

within-subject coefficient of variation ��5� at the first stage for an assumed true GMR 

of 0.95. 

 

Potvin A was discarded, as it did not adjust the significance boundaries; Potvin D was a 

more conservative variant of Potvin C, and therefore not recommended because it 

requires larger average sample sizes than Potvin C [13]. 

 

We propose a modification to the original Potvin B and C algorithms, including two 

constraints consisting of using a minimum sample size in the second stage (like in other 

jurisdictions or organizations) [5], and a maximum overall number of 150 subjects 

enrolled [18,19] in ABE studies, as follows: 

 

- A minimum of N ≥ 1.5N1 is required (or N2 ≥ 0.5N1) 

- If N = N1 + N2 > 150, the trial fails and it is stopped at the first stage. 

 

In any case, regardless of the method used, at least 12 evaluable subjects should be 

included in the first stage [1,11].  

The adjusted significance level of α = 0.0294 used by Potvin et al. [13,16,17,18] at each 

stage did not always control the overall type I error rate at a maximum 0.05 (e.g., when 

using our modified Potvin C algorithm with N1 = 12 and considering a true unknown 

CVW = 20%, the false positive rate would be inflated to 0.053). Like in Xu et al. [20], 

we did look for a significance level by strictly controlling the type I error rate below 

0.05, which was useful for our specific modified Potvin B and C methodologies. 

Because the sponsor is unaware of the true CVW value, we looked for a significance 

level which was applicable to a broad set of N1 and ���, {N1/CVW} (scenarios shown in 

Section 2.5.). 

We used the method implemented in the function “power.2stage” (via non-central t-

distribution) in the R package Power2Stage. The treatment effect was evaluated at the 

frontier 1.25, and assuming an expected GMR = 0.95 and a target power of 80%.  

A short statement for assessing the adjusted significance level, αadj: 

 

(1) Define a grid with a set of {N1/CVW}  

(2) Start with an arbitrary, e.g. αadj = 0.0290 

(3) Obtain the empirical probability of type I error, Pr{TIE}, over the grid (m = 30,000 

simulation trials per scenario). Filter for the scenarios where Pr{TIE} is at least 

95% of the max(Pr{TIE}) observed in the grid, let’s say {N1/CVW}TIE≥P95% 

(4) For {N1/CVW}TIE≥P95%, find the N1/CVW with max(Pr{TIE}) (m = 1,000,000) 

(5) Set up a range of αj close to the one used before, HK ∈ MHNOK ± QKRKS�…U (e.g. by δ 

increments of 0.0001 units). By using the N1/CVW associated to max(Pr{TIE}), 

estimate the Pr{TIE} of all αj (m = 1,000,000) 

(6) Adjust linear α = glin(Pr{TIE}) and quadratic α = gquad(Pr{TIE}) models, with and 

without the intercept. Choose the model with the lowest Akaike information 

criterion value (AIC) 

(7) Use this model to predict a new αadj, where αadj = g(0.05)  
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(8) Evaluate the entire grid of {N1/CVW} with this new αadj (m = 1,000,000) 

(9) If Pr{TIE} < 0.05 for all {N1/CVW}, STOP and select this new αadj; Otherwise, start 

again over with step (4) 

 

As the 2010 EMA guideline uses a Type 1 TSD method [2], we used the modified 

Potvin B as the main TSD approach and the modified Potvin C as a sensitive case. 

 

2.5. Simulation methods 

 

The results described in the next sections are based on simulations using 64 bits R and 

Microsoft R Open. The main outputs are: type I error rate, power and the number of 

trials stopping at the first stage for the TSD approach. For most scenarios, m = 100,000 

datasets were generated, but m = 1,000,000 for those devoted to estimating the most 

crucial type I error probabilities, i.e., for simulated GMRs just on the bioequivalence 

limit. 

 

In the simulations, we considered all combinations of 3 factors: sample size, true GMR 

and true within-subject variability under the homoscedasticity assumption that		��� =
	���� = ���V (from now on, we use CVW and CVWR interchangeably, provided the 

assumed simulated homoscedasticity). The sample sizes were N1 = 12, 18, 24, 30, 36, 

48 and 60 subjects for RSABE methods and at the first stage for TSD methods, always 

considering a balanced design, i.e.: 6, 9, 12, 15, 18, 24 and 30 subjects per sequence. 

The simulated population GMR values were 0.95, 1.00, 1.12, 1.25 and 1.31; with the 

first three corresponding to scenarios under true bioequivalence (alternative hypothesis), 

and the last two corresponding to the true non-bioequivalence (null hypothesis). In fact, 

this statement is exactly true for the TSD approach, where the bioequivalence limits are 

the constants 0.80−1.25; see the next paragraph for clarification in the RSABE case. 

Finally, the simulated within-subjects coefficients of variation were 10%, 20%, 25%, 

30%, 40%, 50% and 60%. A coefficient of variation of 30% or higher indicates an 

HVD. Section 3 reports only the results for a subset of the simulated values on sample 

size, true GMR, and true coefficient of variation. In addition, these TSD simulations 

were done using the “exact” method. 

Provided that TSD and RSABE are based on different definitions of bioequivalence, 

comparing them is quite difficult. In order to have a reference case for comparison, we 

took the simulated true GMR values “on the frontier” of each approach (constant 1.25 in 

TSD or a function ������ in RSABE for varying simulated ���� values), which 

should provide similar proportions of bioequivalence declaration (near 0.05) if both 

approaches are adequately controlling the user’s risk.  For GMRs that are progressively 

inside or outside the corresponding bioequivalence regions, these probabilities should 

also be comparable. To define these concordant simulation scenarios, we reasoned at the 

logarithmic scale. The constant simulated GMR values in the TSD approach are 0.95, 

1.00, 1.12, 1.25 and 1.31, and they correspond to formulation effects on the logarithmic 

scale of −0.0513, 0, 0.1133, 0.2231 and 0.2700, respectively. With respect to the 

(frontier) 0.2231 value, these formulation effects correspond to proportions λ = −0.230,  

0,  0.508,  1 and  1.210, respectively. Then, λ = 1 refers to values on the frontier, |λ| < 1 

to scenarios of true bioequivalence, and |λ| > 1 to scenarios of bioinequivalence. 

Therefore, the same λ value defines concordance in TSD and RSABE scenarios: the 

population GMRs in the original scale were taken as exp{λ 0.2231} in the TSD 
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approaches, and for all simulated ���� values; while in the RSABE approach, they 

were taken as exp{λ 0.2231} for ���� < 30%, as � ! XY#���$%&'(����
( + 1)Z for 

CVWR values between 30% and 50%, and as exp{λ 0.3590} for a ���� ≥ 50%. 

 

For simplicity, the simulated GMRs in the next sections will always be labeled as 0.95, 

1.00, 1.12, 1.25 and 1.31; but it should be remembered that these values in the RSABE 

case correspond only to the simulated coefficients of variation below 30%. 

 

Following the EMA Questions & Answers guideline [11], adjusted ANOVA models for 

analysis of the combined second stage data included the following terms: stage, 

sequence, interaction sequence*stage, subject nested in sequence*stage, period nested in 

stage, and formulation.  

 

3. Simulation results 

 

The adjusted significance level predicted for the modified Potvin B was assessed at αadj 

= 0.03018396 at each stage; For the modified Potvin C, the adjusted significance level 

predicted was assessed at αadj = 0.02806472 (Figures 1 and 2). 

 

Both adaptive TSD modified Potvin B and C methods performed similarly in respect to 

the power achieved and the required median sample size Me[N] (Table 1). Because 

almost all simulated studies required stepping up to a second stage and resulted in large 

final sample sizes, it was not advisable to start with a too small sample size, like N1 = 

12, in scenarios with  high variability (��� ≥ 30%).  

 

On the other hand, when N1 ≥ 24, the global power (including both stages) was at least 

80% when variabilities were raised up to 40%. Additionally, those sample sizes 

increased the likelihood of stopping for bioequivalence at the first stage. For the high 

value of ��� = 60%, results were poor, with power always below 80%.  

 

For the RSABE EMA method, a crucial variability value is at the threshold ��� =
30%, where there is a maximum type I error peak. Table 2 shows that for a true ��� of 

1.25 the highest false positive rate is 0.085, confirming the already known risk control 

problems of the EMA scaled approach. On the other hand, the RSABE adjusted EMA 

method (AdjEMA) accurately respected the nominal 0.05 level. Both TSD approaches 

also respected the type I error at 0.05. In addition, for a sample size of N1 = 24, all 

methods with a type I error close to the nominal 0.05 level provide satisfactory and 

similar powers on bioequivalent drugs (GMR = 0.95, 1.00, and 1.12). The apparently 

larger sample sizes required by TSD methods should be relativized: with half periods, 

they did not double mean size and reached a bioequivalence statement at the first stage 

in a notable proportion of times (approximately 41%, 47% and 24%).  

 

Figure 3 shows a more comprehensive picture of the extended N1 and ��� values for a 

bioequivalent scenario fixed at GMR = 0.95. When N1 = 12, TSD methods showed 

higher power than the RSABE adjusted EMA method for ��� > 20%, requiring 

relatively larger global sample sizes of Me[N] = 44 and around 70 for ��� =
30%	and		40%, respectively. For N1 = 24 the RSABE adjusted EMA method showed a 

similar trend as both TSD methods; and for N1 = 36, both methods showed power above 

80%, for a true ��� below 60%. For a true ��� ≥ 60%, the power for both TSD 
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methods seriously suffered from the futility criterion of not allowing studies with more 

than 150 subjects, though for the RSABE adjusted EMA the power was still above 80%.  

 

Figure 4 explores the power for different true levels of bioequivalence: GMR = 0.95, 

1.00, and 1.12. It is remarkable that for a true value of GMR = 1.12, no methods reached 

80% power for any HVD with ��� ≥ 30%. 

 

4. Discussion 

 

Bioequivalence studies are the pivotal clinical studies submitted to regulatory agencies 

to support the marketing applications of new generic drug products. High levels of 

within-subject variability make it difficult to assess bioequivalence through standard 

procedures using reasonable sample sizes, thus delaying treatment. After many years of 

discussion, some agencies issued regulations describing those methods. In general, their 

approach is based on bioequivalence limits being scaled as a function of the reference 

formulation variability. This is the reference scaled average BE (RSABE) approach of 

the EMA regulation issued in 2010 [2]. Although also mentioned in the regulations, 

adaptive two-stage designs (TSD) are not used nearly as much as the widespread scaling 

methods, despite having some appealing characteristics. Deciding on the study’s 

experimental design is crucial and must be done in advance (e.g., including it in the 

study protocol), generally without full knowledge of the within-subject variability. We 

compared two variants of well-known adaptive methods and an RSABE adjusted (type I 

error) EMA approach. Both methods showed similar statistical power, but the RSABE 

adjusted scaled method required less sample size, although at the expense of exposing 

subjects twice as long as TSD methods. For initial sample sizes of at least 24 subjects, 

TSDs are a good option to consider, as they have a power of around 80% at the first 

stage for non-highly variable drugs while at the same time they offer the opportunity for 

stepping up to the second stage (including additional subjects) for truly bioequivalent 

products. 

 

Statistical power is used to evaluate the performance of adaptive methodologies in ABE 

clinical trials. A power of at least 80% is desirable when considering N1 subjects at the 

first stage, and assuming an expected but unknown within-subject coefficient of 

variation, CVw. In turn, this is always conditioned to not exceed the overall type I error 

rate of 0.05 for true bioinequivalent drugs. In our modified Potvin B and C methods, we 

found adjusted significance levels covering a wide range of N1 and CVw combinations 

(i.e. αadj = 0.03018396 and αadj = 0.02806472 at each stage for Potvin B and C, 

respectively). This is useful to regulators since they can widely rely on the protection of 

patients against false positive results. However, we understand that for a specific actual 

(local) N1 and CVw combination, the power might be slightly downgraded, although it is 

always above 80% in case of true bioequivalence. 

 

Patterson et al. [21] explored the sample size that provides 90% power (for true 

bioequivalent drugs) in case of HVD. They showed that by using 2x2 crossover designs 

with conventional ABE limits of 0.8-1.25 and CVw of 60% or above, the required 

sample size exceeds 150 subjects (though replicate designs require smaller sample size). 

Using adaptive designs, we avoid conducting studies with such a large sample size by 

imposing a futility criterion so that we can stop the trial at an interim look with only N1 

subjects. According to Karalis and Macheras [19], we added a constraint to the original 

TSD methods, specifically by not recruiting more than 150 subjects overall. For 
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example, in the case of a true bioequivalent drug with 0.95 ≤ GMR ≤ 1.05, and for 

highly variable drugs with an estimated within-subject coefficient of variation above 

58% at the interim analysis, the final sample size needed for achieving a power of 80% 

at the second stage already exceeds 150 subjects. At first glance this constraint 

represents some global loss of power, but this possibility of cancelling a study for 

futility may ultimately be considered a positive trait, since the sponsor is unaware of the 

true treatment effect value during the planning phase, and the overall sample size could 

unnecessarily soar above this threshold for a scenario of true bioinequivalence. 

However, from an ethical perspective even starting a study with such a low expected 

power might be questionable [22]. 

 

Kieser et al. [15] and Karalis and Macheras [19] pointed out a potential limitation of the 

original TSD methods stated by Potvin et al. [17] and Montague et al. [13], as although 

unblinded data are available after the first stage, the knowledge about the estimated 

GMR in the interim analysis is not used for sample size recalculation. We assumed a 

fixed true treatment effect of GMR = 0.95 after the first stage since Cui et al. [23] 

showed that a determination of the second stage sample size based on an interim 

estimate of the GMR can substantially inflate the probability of type I error in most 

practical situations. 

 

In addition, the expected total sample size E[N] is usually used to compare the 

performance characteristics of different TSD methods. However, by their very nature in 

TSD, the distribution of total sample sizes N is bimodal, mainly due to the imposition of 

N ≥ 1.5N1. For example, using our modified Potvin B, with αadj = 0.03018396 at each 

stage, GMR = 0.95, CVw = 0.3, N1 = 24, and target power 80%, we obtain a E[N] of 40 

subjects, but with 24 and 36 subjects having more likelihood of occurrence (Figure 5). 

As the average is skewed towards two sample values, we believe that the median of N is 

more useful to compare different TSD methods. 

 

In general, regulators allow using adaptive methods, though they usually favor sample 

size re-estimation procedures that maintain the blinding of the treatment allocations 

throughout the trial, as shown by Golkowski et al. [24]. However, even though both 

TSD Potvin B and C methods studied in this article assume unblinded data at the 

interim analysis, the agencies do specifically also recommend using these two TSD 

methods [2], as they have demonstrated that they control the type I error rate in a strong 

way. 

 

So, given that either the RSABE or TSD methods are suitable approaches for ABE 

studies, we have compared them through the behavior of the type I error rate and its 

power to facilitate the discussion about which to choose. In terms of power, both 

approaches perform similarly despite both adaptive methods requiring a higher mean 

sample size to reach the same power, especially for clearly variable drugs. Nevertheless, 

they demonstrate suitable power at the first stage in some cases. However, as RSABE 

relies on replicate designs, double exposure of subjects is needed. The crucial point to 

consider is the assessment made by sponsors regarding the relative importance of the 

number of required subjects (an argument favoring the scaled approach) and the 

exposure of these subjects (which tips the balance in favor of the TSD approach). 

 

The applicability of the TSD approaches is essentially the same as the classical 

approach, in that they have the same RT/TR design and fixed standard limits [25]. The 
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RSABE approaches (with type I error adjustment) are appropriate for drugs with low to 

moderate variability, because dose-to-dose variability within a patient is comparable to 

the width of the criteria. However, with HVD, dose-to-dose variability within a patient 

is greater than the width of the standard criteria, and it is usually characterized by flat 

dose response curves and wide safety margins. Therefore, broadening the acceptance 

limits in the RSABE approach is at the very least controversial, since clinically sound 

criteria should be used to clearly prove if a greater difference in Cmax (and also in AUC 

for the FDA) is irrelevant. 

 

In conclusion, the RSABE approach is well powered and usually requires enrolling 

fewer patients than adaptive TSD methods, even though scaling the ABE limits 

ultimately depends on additional clinical judgment. For HVD in general, samples of 36 

subjects provided well-powered studies using RSABE methods. As there is a 

considerable chance of declaring ABE at the first stage in adaptive approaches, sponsors 

should consider them because they imply less subject exposure and less treatment 

duration.  

 

 

  

Page 30 of 41Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 

 

Acknowledgments 

 

This research is partially supported by the grant MTM2015-64465-C2-1-R 

(MINECO/FEDER) from the Ministerio de Economia y Competitividad (Spain) and by 

the grant 2014 SGR 464 from the Generalitat de Catalunya. 

 

We would like to thank the reviewers who identified areas of the manuscript that needed 

corrections or modifications. 

 

 

 

 

 

 

 

 

 

 

     

  

 

 

 

 

 

 

  

Page 31 of 41 Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 

 

References 

 

1. FDA. Guidance for Industry: Bioavailability and Bioequivalence Studies submitted 

in NDAs or INDs - General considerations. U.S. Department of Health and Human 

Services. Food and Drug Administration. Center for Drug Evaluation and Research 

(CDER): Rockville, MD, 2014. Available from: http://www.fda.gov/downloads/ 

drugs/guidancecomplianceregulatoryinformation/guidances/ucm389370.pdf 

[Accessed on 18 October 2016]. 

2. EMA. Guideline on the investigation of bioequivalence. CPMP/EWP/QWP/1401/ 

98 Rev.1/Corr. European Medicines Agency: London, 2010. Available from: 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/ 

2010/01/WC500070039.pdf [Accessed on 18 October 2016]. 

3. Tothfalusi L, Endrenyi L, Garcia Arieta A. Evaluation of bioequivalence for highly 

variable drugs with scaled average bioequivalence. Clinical Pharmacokinetics 

2009; 48(11):725-743. DOI:10.2165/11318040-000000000-00000. 

4. FDA. Guidance for Industry: Statistical Approaches to Establishing 

Bioequivalence. U.S. Department of Health and Human Services. Food and Drug 

Administration. Center for Drug Evaluation and Research (CDER): Rockville, MD, 

2001. Available from: http://www.fda.gov/downloads/Drugs/.../Guidances/ 

ucm070244.pdf [Accessed on 18 October 2016]. 

5. Schütz H. Two-stage designs in bioequivalence trials. European Journal of Clinical 

Pharmacology 2015; 71(3):271-281. DOI:10.1007/s00228-015-1806-2. 

6. Davit BM, Conner DP, Fabian-Fritsch B, Haidar SH, Jiang X, Patel DT, Seo PR, 

Suh K, Thompson CL, Yu LX. Highly variable drugs: observations from 

bioequivalence data submitted to the FDA for new generic drug applications. The 

AAPS Journal 2008; 10(1):148-156. DOI:10.1208/s12248-008-9015-x. 

7. FDA. Guidance for Industry: Bioequivalence Studies with Pharmacokinetic 

Endpoints for Drugs Submitted Under an ANDA. U.S. Department of Health and 

Human Services. Food and Drug Administration. Center for Drug Evaluation and 

Research (CDER): Rockville, MD, 2013. Available from: http://www.fda.gov/ 

downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm377465

.pdf [Accessed on 18 October 2016].  

8. FDA. Draft Guidance on Progesterone. U.S. Department of Health and Human 

Services. Food and Drug Administration. Center for Drug Evaluation and Research 

(CDER): Rockville, MD, 2011. Available from: http://www.fda.gov/downloads/ 

drugs/guidancecomplianceregulatoryinformation/guidances/ucm209294.pdf 

[Accessed on 18 October 2016].  

9. Muñoz J, Alcaide D, Ocaña J. Consumer’s risk in the EMA and FDA regulatory 

approaches for bioequivalence in highly variable drugs. Statistics in Medicine 2016; 

35(12):1933-1943. DOI:10.1002/sim.6834. 

10. Labes D, Schütz H. Inflation of Type I error in the evaluation of scaled average 

bioequivalence, and a method for its control. Pharmaceutical Research 2016; 

33(11):1-10. 

11. EMA. Questions & Answers: Positions on specific questions addressed to the 

pharmacokineticsworking party. European Medicines Agency: London, 2015. 

Available from: http://www.ema.europa.eu/docs/en_GB/document_library/ 

Scientific_guideline/2009/09/WC500002963.pdf [Accessed on 18 October 2016]. 

12. Bandyopadhyay N, Dragalin V. Implementation of an adaptive group sequential 

design in a bioequivalence study. Pharmaceutical Statistics 2007; 6(2):115-122. 

DOI:10.1002/pst.252. 

Page 32 of 41Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

13 

 

13. Montague TH, Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ. 

Additional results for “Sequential design approaches for bioequivalence studies 

with crossover designs” Pharmaceutical Statistics 2012; 11(1):8-13. 

DOI:10.1002/pst.483. 

14. Davit B, Braddy AC, Conner DP, Yu LX. International guidelines for 

bioequivalence of systemically available orally administered generic drug products: 

a survey of similarities and differences. The AAPS Journal 2013; 15(4):974-990. 

DOI:10.1208/s12248-013-9499-x. 

15. Kieser M, Rauch G. Two-stage designs for cross-over bioequivalence trials. 

Statistics in Medicine 2015; 34(16):2403-2416. DOI:10.1002/sim.6487. 

16. Pocock SJ. Group sequential methods in the design and analysis of clinical trials. 

Biometrika 1977; 64(2):191-199. DOI:10.1093/biomet/64.2.191. 

17. Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, Smith RA. 

Sequential design approaches for bioequivalence studies with crossover designs. 

Pharmaceutical Statistics 2008; 7(4):245-262. DOI:10.1002/pst.294. 

18. Karalis V, Macheras P. On the statistical model of the two-stage designs in 

bioequivalence assessment. Journal of Pharmacy and Pharmacology 2014; 

66(1):48-52. DOI:10.1111/jphp.12164. 

19. Karalis V, Macheras P. An insight into the properties of a two-stage design in 

bioequivalence studies. Pharmaceutical Research 2013; 30(7):1824-1835. 

DOI:10.1007/s11095-013-1026-3. 

20. Xu J, Audet C, DiLiberti CE, Hauck WW, Montague TH, Parr AF, Potvin D, 

Schuirmannh DJ. Optimal adaptive sequential designs for crossover bioequivalence 

studies. Pharmaceutical Statistics 2016; 15(1):15-27. DOI: 10.1002/pst.1721. 

21. Patterson SD, Zariffa N, Montague TH, Howland K. Non-traditional study designs 

to demonstrate average bioequivalence for highly variable drug products. Eur J 

Clin Pharmacol. 2001; 57(9):663-70. DOI:10.1007/s002280100371. 

22. Fuglsang A. Futility rules in bioequivalence trials with sequential designs. The 

AAPS Journal 2014; 16(1):79-82. DOI: 10.1208/s12248-013-9540-0. 

23. Cui L, Hung HMJ, Wang S-J. Modification of sample size in group sequential 

clinical trials. Biometrics 1999; 55(3):853-857. DOI:10.1111/j.0006-

341X.1999.00853.x. 

24. Golkowski D, Friede T, Kieser M. Blinded sample size re-estimation in crossover 

bioequivalence trials. Pharmaceutical Statistics 2014; 13(3):157-162. 

DOI:10.1002/pst.1617. 

25. EGA. Revised EMA Bioequivalence Guideline: Questions and Answers. Summary 

of the discussions held at the 3rd symposium on bioequivalence. European Generic 

Medicines Association: London, 2010. Available from: 

http://www.medicinesforeurope.com/wp-content/uploads/2016/03/ 

EGA_BEQ_QA_WEB_QA_1_32.pdf [Accessed on 18 October 2016]. 

 

Page 33 of 41 Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14 

 

Table 1. Two-stage design (TSD) modified Potvin B and C: Bioequivalence, sample size, and percentage of studies stepping up to 

second stage for true GMR = 0.95, and under different fixed N1 and a true CVw 

 

 Modified Potvin B Modified Potvin C 

Fixed a 

priori 
ABE 

Step 

to 

St2 

N ABE 

Step 

to 

St2 

N 

N1 
True 

CVw 
% St1 

% 

St1+St2 
% Min 5% Me 95% Max 

% 

St1 

% 

St1+St2 
% Min 5% Me 95% Max 

12 20 41.92 85.00 55.69 12 12 18 40 104 41.56 84.76 54.44 12 12 18 40 106 

12 30 7.03 78.61 92.71 12 12 44 84 150 6.40 78.34 93.05 12 12 44 84 150 

12 40 1.03 71.65 95.68 12 22 70 128 150 0.90 70.96 95.28 12 20 72 130 150 

12 60 0.05 29.43 51.00 12 12 44 142 150 0.05 27.76 49.06 12 12 12 142 150 

24 20 83.76 90.16 8.20 24 24 24 36 62 87.89 91.19 4.22 24 24 24 24 64 

24 30 41.86 83.86 57.47 24 24 36 70 138 40.47 83.38 57.69 24 24 38 72 140 

24 40 10.12 79.79 89.45 24 24 76 118 150 8.93 79.44 90.49 24 24 78 120 150 

24 60 0.19 31.19 46.47 24 24 24 146 150 0.15 28.83 43.59 24 24 24 146 150 

36 20 95.68 95.75 0.07 36 36 36 36 54 97.51 97.51 0.01 36 36 36 36 54 

36 30 68.13 87.23 28.33 36 36 36 60 120 69.94 85.77 22.95 36 36 36 62 124 

36 40 34.32 82.42 65.54 36 36 68 110 150 32.40 82.14 67.16 36 36 72 112 150 

36 60 1.53 31.28 42.66 36 36 36 146 150 1.20 28.35 39.37 36 36 36 146 150 
ABE, average bioequivalence; TSD, two-stage design; GMR, geometric mean ratio; N1, initial and fixed sample size (Stage 1); CVw, within-subject coefficient of 

variation; %St1, proportion of simulations declaring bioequivalence at Stage 1; %St1+St2, cumulative proportion of simulations declaring ABE at Stage 2, Step up 

to St2, proportion of simulations requiring stepping up from Stage1 to Stage 2; Min, min of N; 5%, percentile 5 of N; Me, median of N; 95%, percentile 95 of N; 

Max, max of N 
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Table 2. Probability of bioequivalence acceptance according to the regulatory 

reference scaled ABE (RSABE) EMA and an adjusted EMA method compared to 

two-stage designs (TSD) modified Potvin B and C (true CVw = 30%) 

 

  Probability ABE 

acceptance 
Type I error 

  True GMR 

 Method 0.95 1.00 1.12 1.25 1.31 

R
S
A

B
E

 

m
e
th

o
d
 

Regulatory EMA (N1 = 24) 0.896 0.963 0.631 0.085 0.021 

AdjEMA (N1 = 24) 0.864 0.948 0.559 0.050 0.009 

T
S
D

 

m
e
th

o
d
 

Modified Potvin B (N1 = 24 at 

Stage 1) 

0.419 

 

0.484 

 

0.242 

 

0.029 

 

0.008 

 

Modified Potvin B (Stage 1 + 

Stage 2 with 36≤N≤150)  

0.839 0.926 0.527 0.050 0.012 

Modified Potvin C (N1 = 24 at 

Stage 1) 

0.405 

 

0.468 

 

0.236 

 

0.030 

 

0.009 

 

Modified Potvin C (Stage 1 + 

Stage 2 with 36≤N≤150) 

0.834 0.922 0.519 0.048 0.012 

ABE, average bioequivalence; RSABE, reference scaled average bioequivalence; TSD, two-stage design; 

GMR, geometric mean ratio; CVw, within-subject coefficient of variation; N1, initial and fixed sample 

size fixed at 24 subjects (Stage 1 with modified Potvin B and C); Regulatory EMA, regulatory European 

Medicines Agency approach; AdjEMA, adjusted EMA type I error  
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Legends 

 

 

Figure 1. Type 1 TSD Modified Potvin B algorithm 

 

Adapted from the figure depicted in detail by Montague, Potvin et al. [13], with the restriction of not 

including more than 150 subjects [18] and N ≥ 1.5N1;  

ABE, average bioequivalence; N1, Initial fixed sample size; N2, the additional number of subjects 

recruited at Stage 2; GMR, assumed geometric mean ratio; ��5�, estimated within-subject coefficient of 

variation 

 

Figure 2. Type 2 TSD Modified Potvin C algorithm 

 
Adapted from the figure depicted in detail by Montague, Potvin et al. [13], with the restriction of not 

including more than 150 subjects [18] and N ≥ 1.5N1;  

ABE, average bioequivalence; N1, Initial fixed sample size; N2, the additional number of subjects 

recruited at Stage 2; GMR, assumed geometric mean ratio; ��5�, estimated within-subject coefficient of 

variation 

 

Figure 3. Bioequivalence acceptance of the adjusted reference scaled ABE 

(RSABE) EMA method and two-stage designs (TSD) modified Potvin B and C at 

stages 1 and 2, for a true GMR of 0.95, and a progressive increase of the within-

subject variability 
 

ABE, average bioequivalence; RSABE, reference scaled average bioequivalence; TSD, two-stage 

design; GMR, geometric mean ratio; HVD, highly variable drugs; N1, initial and fixed sample size used 

for the modified EMA method and both TSD methods at Stage1; CVw, within-subject coefficient of 

variation; Me[N], TSD media total sample size at Stage 2 (beside the squares in the figure); AdjEMA, 

type I error adjusted EMA method 

 

Figure 4. Bioequivalence acceptance of the adjusted reference scaled ABE (RSABE) 

EMA method and two-stage designs (TSD) modified Potvin B for different levels of true 

bioequivalence and a progressive increase in the within-subject variability 

 
ABE, average bioequivalence, RSABE, reference scaled average bioequivalence; TSD, two-stage design; HVD, 

highly variable drugs; N1, initial and fixed sample size (EMA method); GMR, geometric mean ratio; CVw, 

within-subject coefficient of variation; Me[N], TSD median total sample size (beside the squares in the figure); 

AdjEMA, type I error adjusted EMA 

 

Figure 5. Type 1 TSD modified Potvin B distribution of N (Stag1 + Stage 2) 

GMR=0.95; CVw=30%; N1=24; αadj =0.03018396; P=0.8; m=1,000,000 simulations 

 
GMR, true geometric mean ratio; CVw, true within-subject coefficient of variation; N1, Initial fixed 

sample size; N2, the additional number of subjects enrolled at stage 2; N=N1+N2, total sample size 

(stage 1 + stage 2); αadj, significance level used in each stage; P. target power; m, number of 

simulations 

 

Suplementary Material Not For Review is included:  

 

1. TIE_estimating_CV.R; and 2. TIE_estimating_CV_results.pdf 

3. Modified Potvin_Alpha.R; and 4. potvin.R  
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Figure 1. Type 1 TSD Modified Potvin B algorithm  
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Figure 2. Type 2 TSD Modified Potvin C algorithm  
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Figure 3. Bioequivalence acceptance of the adjusted reference scaled ABE (RSABE) EMA method and two-
stage designs (TSD) modified Potvin B and C at stages 1 and 2, for a true GMR of 0.95, and a progressive 

increase of the within-subject variability  
 

228x177mm (300 x 300 DPI)  

 

 

Page 39 of 41 Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 4. Bioequivalence acceptance of the adjusted reference scaled ABE (RSABE) EMA method and two-
stage designs (TSD) modified Potvin B for different levels of true bioequivalence and a progressive increase 

in the within-subject variability  
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Figure 5. Type 1 TSD modified Potvin B distribution of N (Stag1 + Stage 2) 
GMR=0.95; CVw=30%; N1=24; αadj =0.03018396; P=0.8; m=1,000,000 simulations  
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