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• Drought will be more prevalent in the
Mediterranean region as a consequence
of climate change and human activities.

• We assessed decomposition of leaf-
litter of contrasting quality across a re-
gional-scale drought gradient.

• Decomposition rates showed no general
pattern but declined sharply in streams
subject to severe water stress.

• Drought affected detritivores, which in
turn were the main drivers of decom-
position rates.
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Drought, an important environmental factor affecting the functioning of stream ecosystems, is likely to become
more prevalent in the Mediterranean region as a consequence of climate change and enhanced water demand.
Drought can have profound impacts on leaf litter decomposition, a key ecosystem process in headwater streams,
but there is still limited information on its effects at the regional scale. We measured leaf litter decomposition
across a gradient of aridity in the Ebro River basin. We deployed coarse- and fine-mesh bags with alder and
oak leaves in 11 Mediterranean calcareous streams spanning a range of over 400 km, and determined changes
in discharge, water quality, leaf-associated macroinvertebrates, leaf quality and decomposition rates. The study
streams were subject to different degrees of drought, specific discharge (L s−1 km−2) ranging from 0.62 to
9.99. One of the streams dried out during the experiment, another one reached residual flow, whereas the rest
registered uninterrupted flow but with different degrees of flow variability. Decomposition rates differed
among sites, being lowest in the 2mostwater-stressed sites, but showed no general correlationwith specific dis-
charge. Microbial decomposition rates were not correlated with final nutrient content of litter nor to fungal bio-
mass. Total decomposition rate of alderwas positively correlated to the density and biomass of shredders; that of
oakwas not. Shredder density in alder bags showed a positive relationship with specific discharge during the de-
composition experiment. Overall, the results point to a complex pattern of litter decomposition at the regional
scale, as drought affects decomposition directly by emersion of bags and indirectly by affecting the functional
composition and density of detritivores.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Climate change
Litter breakdown
Ecosystem functioning
Water stress
Leaf quality
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2016.07.209&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.scitotenv.2016.07.209
mailto:silvia.monroy@ehu.eus
http://dx.doi.org/10.1016/j.scitotenv.2016.07.209
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


1451S. Monroy et al. / Science of the Total Environment 573 (2016) 1450–1459
1. Introduction
Global climate models forecast widespread shifts in temperature
and precipitation patterns in the next decades, including increased tem-
perature, reduced rainfall and higher frequency of extreme climate
events in the Mediterranean area (IPCC, 2014). Because of the linkages
between climate and hydrological processes (Papadaki et al., 2016),
these changes are expected to affect flow regime in different ways,
such as reducing average flow or increasing the frequency and magni-
tude of extreme flow events (Huang et al., 2016).

Flow is a key driver of the structure and function of aquatic ecosys-
tems, as it affects water quality, physical habitat, energy resources and
biotic interactions (Allan and Castillo, 2007; Dewson et al., 2007; Poff
et al., 1997). Drought, in particular, is an important environmental
stressor for freshwater ecosystems (Sabater, 2008). It reduces water ve-
locity and depth, reduces hydrological connectivity, promotes sedimen-
tation (Dewson et al., 2007), alters water physicochemical conditions
(Schäfer et al., 2012; von Schiller et al., 2011) and affects the inputs,
storage and quality of organic matter (Sanpera-Calbet et al., 2015; Ylla
et al., 2010). Therefore, it can affect not only stream biological assem-
blages (Bonada et al., 2007; Filipe et al., 2013), but also ecosystem pro-
cesses (Acuña et al., 2005; Martínez et al., 2015). Semiarid regions such
as the Mediterranean are particularly vulnerable to drought distur-
bances (Milly et al., 2005; Sabater and Tockner, 2010). The Mediterra-
nean climate is characterized by high inter-annual variability and
pronounced seasonality with hot, dry summers (Gasith and Resh,
1999), and climate models forecast reduced precipitation and more se-
vere drought events (Milly et al., 2005). Therefore, to predict the conse-
quences of oncoming climate change, it is important to understand the
effects of drought on river ecosystem functioning.

Organicmatter decomposition is a key processwhich transfers ener-
gy andmatter across trophic levels (Perkins et al., 2010), controls nutri-
ent cycling (Cheever et al., 2012) and contributes greatly to the global
carbon cycle (Battin et al., 2009; Kominoski and Rosemond, 2012). It is
a complex process that includes the leaching of soluble compounds,
physical abrasion, microbial conditioning and invertebrate fragmenta-
tion, and which depends on a complex array of both intrinsic (e.g. litter
quality) and extrinsic (e.g. temperature, dissolved nutrients, discharge)
factors (Tank et al., 2010). Therefore, decomposition rate has been pro-
posed as an integrative indicator of ecosystem functional status
(Gessner and Chauvet, 2002; Young et al., 2008). Previous studies
have shown decomposition in streams to occur more slowly during pe-
riods of residual flow (Leberfinger et al., 2010; Mora-Gómez et al.,
2016), being also slower in temporary than in perennial streams
(Langhans and Tockner, 2006), and the effects of drying events to ex-
tend long after flow resumption (Datry et al., 2011). Nevertheless,
most information so far existing on the effects of drought on litter de-
composition derives from studies at a few sites (Martínez et al., 2015)
and there is not yet a clear consensus onwhether the patterns observed
also hold for larger, regional scales subject to other confounding factors.

Additionally, it is still unclear whether the effects of drought differ
among groups of consumers. Reduced decomposition rates in tempo-
rary streams have been attributed to reduced macroinvertebrate activi-
ty (Langhans and Tockner, 2006; Martínez et al., 2015), whereas
microbial decomposition seems to recover from drought faster than in-
vertebrate activities (Datry et al., 2011), although fungi andbacteria also
differ in their sensitivity to environmental stress (Mora-Gómez et al.,
2016). Also, it is still unclear whether the effects of drought differ
among leaf species. Leaf species show a wide range of degradability
(Petersen and Cummins, 1974), determined in part by their contents
in nutrients and structural molecules such as lignin (Hladyz et al.,
2009), although intra-specific variations can be large (Graça and
Poquet, 2014). The most palatable leaves can be readily consumed by
shredding invertebrates, whereas the decomposition of more recalci-
trant species is more driven by microbes (Martínez et al., 2016). There-
fore, it is likely that the differential impact of drought on microbes and
invertebrates could result in contrasting effects on the decomposition
of different leaf species.

The aim of our studywas to examine the effect of drought on leaf lit-
ter decomposition across a regional gradient of aridity, to check wheth-
er microbial or detritivore activities are more affected, and whether the
effects are consistent for leaves with contrasting quality. We performed
a decomposition experiment with a fast-decaying (alder) and a slow-
decaying species (oak) along an aridity gradient in 11 streams in the
Ebro river basin (Spain). We hypothesized that 1) drought reduces the
decomposition rate; 2) detritivore activity is more affected than micro-
bial activity; 3) fast-decaying, high-quality leaf litter is more affected
than slow-decaying, low-quality one; and 4) differences in decomposi-
tion rate between species are higher where detritivore activity is most
affected.

2. Methods

2.1. Study sites

We performed a first screening of potential sites for experiments in
the Ebro basin (Spain) by checking the information on hydrology and
ecological status available at the Ebro Hydrographic Confederation
(CHE; http://www.chebro.es). We selected streams of the Mediterra-
nean calcareous mountain typology, which are characterised by
limestone substrate, catchment slope N 2%, specific discharge
(Qs) b 16.5 L s−1 km−2 and conductivity N320 μS cm−1 (CEDEX,
2004; CHE). In spring 2014, we visited over 40 calcareous mountain
streams with good ecological status according to the monitoring net-
work of CHE, where we analyzed the physical habitat and determined
basic physico-chemical characteristics. Based on all this information,
we performed a principal component analysis from which we selected
11 sites with similar habitat and water quality but spatially distributed
along a precipitation gradient, which ranged from 311.2 up to
621.4 mm y−1, with average annual temperature ranging from 8.2 to
14.2 °C (Fig. 1; Table 1). The sites spanned a distance of over 400 km.
Given that inter-annual variability of the Mediterranean climate is
high and hydrological conditions in a given period can depart markedly
from historic averages, we used the accumulated rainfall for a year prior
to sampling as a surrogate of the climate conditions at the sampling site.
We used the specific discharge (Qs), calculated as themean annual dis-
charge per unit catchment area (L s−1 km−2) (Munné and Prat, 2004)
as a proxy for drought. Moreover, we also calculated the monthly coef-
ficient of variation of water flow (CVQ) as the standard deviation of
monthly flow divided by annual average flow, since it yields informa-
tion about intra-annual flowvariability. All flow variableswere calculat-
ed using daily mean flows from a common 10-y period (Qs10; CVQs10)
and from 1-y prior to the study period (Qs13/14; CVQs13/14) (Table 1).
Daily mean flow values for all study sites were obtained from nearby
gauging stations for the period 2005–2015 (data from CHE; http://
www.chebro.es).

2.2. Environmental variables

During the study period (autumn-winter 2014–2015), water tem-
perature was recorded hourly with two ACR Smart-Button temperature
loggers (ACR Systems Inc) at each site placed at different depths, thus
also allowing to detect reductions in flow. Conductivity, pH and oxygen
saturation were measured on three occasions with a multiparametric
sensor (WTWMulti 350i). Discharge was estimated on these occasions
from instantaneous water velocity measured by a current metre
(MiniAir 2, Schiltknecht Co). Furthermore, following the calculation
procedure in the precedent section, Qs and CVQ were determined for
the experimental period (Qsexp, CVQs,exp) for both total and microbial
decomposition periods. Water samples for nutrient analyses were col-
lected at all streams on each sampling date, immediately filtered
(Millipore, 0.45 μm pore) and frozen (−20 °C). Nitrate, chlorine and
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Fig. 1. Location of the study sites.

Table 1
Location, reach characterization and hydrological and climatic attributes for all studied streams. Streams arranged along the longitudinal gradientW–E. For air temperature, mean values
and their range (in parenthesis) are shown. Data for hydrological variables of SAN andMOR and NAJ andMONwere estimated from the same gauging station. Specific discharge (Qs) and
monthly coefficient of variation of water flow (CVQ) from a common 10-y period (Qs10; CVQs10) and from 1-y prior to the study period (Qs13/14; CVQs13/14).

SAN MOR HOM ALH NAJ MON RIB VIV GUA TRU MAT

Latitude (N) 42° 41′
06.5″

42° 42′
24.9″

42° 34′
36.5″

41° 53′
56.5″

41° 29′
54.1″

41° 18′
57.0″

41° 30′
28.3″

40° 52′
12.2″

40° 32′
52.8″

40° 27′
42.0″

40° 49′
37.0″

Longitude (W) 3° 52′
46.3″

3° 43′
33.8″

3° 35′
20.4″

2° 09′
34.5″

2° 11′
58.5″

1° 53′
11.5″

1° 48′
59.9″

0° 56′
12.8″

0° 40′
48.1″

0° 18′
57.6″

0° 11′
07.8″ E

Altitude (m a.s.l.) 764 786 755 920 918 661 822 954 1251 1124 565
Basin area (km2) 47.9 59.1 55.6 45.0 41.5 88.2 54.0 45.3 55.9 165.0 48.7
Width (m) 3.3 ± 0.7 3.0 ± 0.34 2.9 ± 0.5 3.5 ± 0.9 1.9 ± 0.3 2.1 ± 0.8 2.9 ± 0.5 4.9 ± 1.2 1.7 ± 0.2 6.7 ± 1.8 7.6 ± 0.8

Riparian vegetation
Tree canopy cover(%) 83 62 93 73 79 33 72 30 46 1.6 24

Substrate composition(%)
Boulder (N256 mm) 20 5 5 20 (+) (+) 20 5 30 5
Cobble (64–256 mm) 50 40 10 60 10 30 0 45 45 40
Pebble (16–64 mm) 10 35 5 5 40 50 0 40 20 45
Gravel (2–16 mm) 10 10 5 10 25 10 0 5 5 10
Sand (b2 mm) 10 10 5 5 25 100 10 80 5 0 0
Travertine substrate 70

Hydrological variables
Qs10 (L s−1 km−2) 9.99 9.99 3.41 1.3 0.62 0.62 2.96 0.66 5.73 1.09 6.58
CVQs10 0.72 0.72 0.62 0.81 0.1 0.1 0.46 0.63 0.49 1.19 0.59
Qs13/14 (L s−1 km−2) 10.08 10.08 3.21 0.84 0.69 0.69 2.58 0.67 5.25 0.31 4.18
CVQs13/14 0.94 0.94 0.78 0.71 0.16 0.16 0.27 0.45 0.48 0.74 0.4

Climatic variables
Annual mean air temperature (°C) 8.2 10.0 12.5 10.6 12.4 8.9 13.4 13.8 10.5 9.7 14.2

(3.3–14.4) (3.3–14.4) (7.3–17.6) (6.9–14.9) (5.9–19.4) (5.1–13.9) (4.7–17.0) (8.5–17.6) (4.4–16.4) (6.2–21.4) (8.1–19.5)
Annual mean precipitation from
2005 to 2015 (mm)

621.4 543 503.9 379.6 311.2 349 419.3 408.5 451.8 509.5 508.5

Coefficient of variation of monthly
precipitation (%)

43.4 49 44.7 35.9 42.9 40.7 37.1 43.5 42.1 43.8 50.3

Annual mean precipitation 2013/14
(mm)

523.2 476 521.4 386.6 266.7 401.8 454.4 238 350.8 411.4 –

Coefficient of variation of monthly
precipitation 2013/14 (%)

100 56.2 68.6 55.4 80.7 63.7 44.6 69.8 69.4 88.7 –

SAN: San Antón; MOR: Moradillo; HOM: Homino; ALH: Alhama; NAJ: Nájima; MON: Monegrillo; RIB: Ribota; VIV: Vivel; GUA: Guadalope; TRU: Truchas; MAT: Matarraña.
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sulphate concentration were determined by capillary ion electrophore-
sis (Agilent CE), and the rest of the nutrients were analyzed colorimet-
rically (Spectrophotometer Jasco V-630): nitrite by the sulphanilamide
method, ammonium by the salicylate and dichloroisocyanuratemethod
and dissolved reactive phosphorus (SRP) by the ascorbic acid method
(APHA, 1998). Dissolved inorganic nitrogen (DIN) was computed as
the sum of nitrate, nitrite and ammonium.

2.3. Leaf litter decomposition

In October 2014we collected freshly-fallen leaves of two native spe-
cies from the Iberian Peninsula contrasting in quality, the highly palat-
able black alder, Alnus glutinosa (L.) Gaertner, and the recalcitrant
pedunculate oak, Quercus robur L. Approximately 5.0 g (±0.1 g) of air-
dried leaf litter were enclosed in either fine (12 × 15 cm, 0.5 mm
mesh size) or coarse (20 × 25 cm, 5 mmmesh size) mesh bags and de-
ployed in the 11 streams on 2nd to 4th December 2014. At each site, 5
iron bars were anchored randomly to the streambed in riffle sections
along 50 m of the channel and 4 bags (2 species × 2 mesh size) were
tied to each bar by nylon lines, making a total of 20 bags per site (5 sam-
ples per species andmesh bag type). An extra set offive bags per species
and type ofmeshbagwere used to correct initialmass values formanip-
ulation loss and estimate air dry to oven-dry (72 h at 60 °C), to ash free
dry mass (AFDM, 12 h at 500 °C) conversion factors.

On 13th to 18th January 2015, when alder was expected to have lost
approximately 50% of the initial mass, we retrieved all (alder + oak)
coarse mesh bags to evaluate total decomposition rate. We retrieved
all fine bags on 9th to 11thMarch 2015 to calculatemicrobial decompo-
sition. Retrieved litter bags were enclosed individually in zip-lock bags
and transported in a refrigerated cooler to the laboratory. The leaf litter
material from each bag was rinsed with distilled water on a 200-μm
sieve to remove sediments and associated invertebrates. For each fine-
mesh bag, a set of five leaf disks was punched out with a cork borer
(12mmdiameter) and frozen at−80 °C for later fungal biomass deter-
mination. The remaining material was oven-dried (60 °C, 72 h) and
weighed to determine leaf dry mass. A portion of leaf material from
each bag retrieved was ground (1 mm pore sieve) and stored (−20 °C)
for later nutrient analyses and the rest was combusted (500 °C, 12 h)
and weighed to determine the remaining ash free dry mass (AFDMr).
The collected fauna was preserved in 70% ethanol for later analyses.

2.4. Leaf litter stoichiometry

Carbon (C) and nitrogen (N) concentrationswere determinedwith a
Perkin Elmer II CHNS/O elemental analyser and phosphorus (P) colori-
metrically after autoclave-assisted extraction (APHA, 1998). Results
were expressed as a percentage elemental content of leaf dry mass
(%C, %N, %P).

2.5. Fungal biomass

The sets of five leaf disks from each fine-mesh bagwere freeze-dried
and weighed to later determine ergosterol concentration as a measure
of fungal biomass (Gessner and Chauvet, 1993). Lipid extraction and sa-
ponification were performed using KOH methanol 0.14 M (8 g L−1) at
80 °C for 30 min in a shaking bath. Extracted lipids were purified
using solid-phase extraction cartridges (Waters Sep-Pak®, Vac RC,
500 mg, tC18 cartridges, Waters Corp.), and ergosterol was eluted
using isopropanol. Ergosterol was detected and quantified via high
pressure liquid chromatography (HPLC) by measuring absorbance at
282 nm. A Jasco HPLC system equipped with a Gemini-NX 5 μm C18
250 × 4.6 mm columnwas used. The mobile phase was 100% methanol
and the flow rate was set to 1.2 mL min−1. Ergosterol was detected at
33 °C and converted to fungal biomass using a conversion factor of
5.5 mg ergosterol per gram of fungal mycelium (Gessner and Chauvet,
1993). The results were expressed in mg of fungal biomass per gram
of leaf litter AFDM.
2.6. Associated invertebrates

Invertebrates removed from coarse-mesh bags were identified to
family level (except Oligochaeta which was identified to the order
level), counted and sorted into 2 groups: the functional feeding group
of shredder invertebrates according to Tachet et al. (2002) and Merritt
et al. (2007), and the other invertebrates as non-shredders. Shredders
and non-shredders were dried (60 °C, 72 h) and combusted (500 °C,
12 h) to determineAFDM. Resultswere expressed as number of total in-
vertebrates and shredders per gram of litter AFDM and mg of total in-
vertebrates or shredders per gram of litter AFDM.
2.7. Statistical analysis

Differences in physicochemical characteristics were analysed by
one-way ANOVA with stream as factor. Leaf litter decomposition rates
were estimated by fitting the remainingAFDMto thenegative exponen-
tial model. The rates were expressed in terms of degree-days to correct
for the influence of temperature (Graça et al., 2005). The decomposition
rates and final litter nutrient contents were compared separately for
each bag type by two-wayANOVA (factors: stream, leaf species). Fungal
biomass and invertebrate density and biomass were tested by two-way
ANOVA (factors: stream, leaf species). Bivariate relationships between
decomposition rates and biological variables and between decomposi-
tion rate or biological variables and both hydrological (Qs, CVQs) and en-
vironmental variables (conductivity, pH, SRP, DIN, riparian canopy
cover, annual precipitation) were tested by linear regression. When
necessary, data were log10 or log10(x + 1) transformed to achieve re-
quirements for parametric analyses. All statistical analyses were per-
formed with R statistical program (version 3.0.3; R Development Core,
2014).
3. Results

3.1. Environmental variables

The characteristics of the streams differed markedly (Tables 1 and
2). In general, the riparian vegetation was scarce and dominated by
Populus nigra L. and Salix sp., except streamMON,whichwas dominated
by sedges (Scirpus sp.). The canopy cover, an indicator of potential leaf
litter inputs to streams, was rather variable, dependingmainly on chan-
nel width (Table 1).

Rainfall was low during the first part of the study period (from 2nd
December 2014 to 18th January 2015),which included thewhole coarse
mesh bags experiment, followed by intense rain and floods afterwards.
Only one site (VIV)was dry when the bags were deployed, and from in-
formation recorded by dataloggers, it remained dry for 19 d. Another
site (TRU) suffered a strong reduction inwater level after the 4th d of in-
cubation, and flow there remainedmarginal for 87 d. Average discharge
during the experimental period ranged from 14.6 to 679.9 L s−1 (Table
2). All streams presented well oxygenated waters and alkaline pH.
Water temperature differed about 9 °C from the coldest to the warmest
stream, differences being statistically significant (one-way ANOVA,
F10,1023: 328.4, p b 0.00001), and conductivity ranged from 430 to
812 μS cm−1 (F10,21: 26.2, p b 0.00001). DIN concentration ranged
from 168 to 11,284 μg N L−1 (Table 2), differences among sites being
statistically significant (F10,21: 29.8, p b 0.00001); it was dominated by
NO3

−. SRP concentration was relatively low (from 2.3 to 18.8 μg P L−1)
and showed no significant differences among streams (p = 0.8)
(Table 2).
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3.2. Litter decomposition

For alder leaves, the AFDM remaining ranged across streams from
30.3% to 69.2% in fine mesh bags and from 20.1% to 79.4% in coarse
bags. For oak, it ranged from 69.8% to 84.3% in fine bags and from
70.1% to 95.8% in coarse bags. Decomposition rates for alder ranged
from 0.00062 to 0.00162 dd−1 in fine mesh bags and from 0.00102 to
0.00585 dd−1 in coarse mesh bags; the range for oak was from
0.00025 to 0.00071 dd−1 and from 0.00018 to 0.00082 dd−1, respec-
tively (Fig. 2). Decomposition rates differed significantly among sites
for both species andmesh type (two-wayANOVAs; Table 3) the interac-
tion between site and species being statistically significant for coarse
but not for fine mesh bags (Table 3).

Decomposition rates in coarsemesh bagswere lowest in streamVIV,
which dried out, and stream TRU, where flow was marginal for part of
the experiment, but no differences were found among these streams
and the rest in fine mesh bags (Fig. 2). No general relationship was
found between decomposition rate and any hydrologic (Qs) or climatic
variables, except for a positive correlation between oak microbial de-
composition and CVQs,exp. The decomposition rate of both litter species
in coarse bags was positively correlated with riparian canopy cover
(alder: r2 = 0.38; p = 0.043; oak: r2 = 0.68; p = 0.002).

3.3. Nutrients in leaf litter

The initial C, N and P concentrations in alder litter were 51.8%, 2.9%
and 0.11%, respectively, and 50.1% C, 1.3% N and 0.05% P for oak litter.
The final carbon concentration was around 40.2–51.2% for all mesh
and species.

The final N concentration was higher than initial values in both spe-
cies. In alder litter it ranged from3.57 to 4.23% infine bags and from2.19
to 4.35% in coarse bags; in oak litter it ranged from 1.36 to 1.79% in fine
bags and from 1.25 to 1.58% in coarse bags (Fig. 3). Differences among
streams were statistically significant for both leaf species and mesh
sizes, the interaction between site and species being statistically signif-
icant for %N in coarse bags (Table 3).

In general, the final P concentration was lower or similar to initial
values in both species. For alder litter it ranged from 0.04 to 0.08% in
fine bags and from 0.06 to 0.11% in coarse bags. For oak litter it ranged
from 0.04 to 0.08% in fine and from 0.08 to 0.12 in coarse bags (Fig. 3).
Differences were statistically significant among sites for both leaf spe-
cies and mesh sizes, the interaction between site and species being
also statistically significant (Table 3).

The final N and P concentrations were not correlated to the hydro-
logic nor climatic descriptors. Only for oak in fine bags the final N con-
centration appeared to be positively correlated to dissolved nitrogen
availability (r2 = 0.58), but only when excluding the 4 richest sites
(NAJ, ALH, RIB and HOM, with DIN N 1500 μg-N L−1).

In general, the leaf ash content for alder and oak litterwas around 15
and 10% in coarse andfinebags respectively, although these valueswere
greater in SAN, HOM and GUA (Fig. 3).

3.4. Fungal biomass

Fungal biomass ranged from 2.8 to 68.9mg g−1 AFDM for alder litter
and from 15.2 to 65.4 mg g−1 AFDM for oak litter (Fig. 4). Differences
were statistically significant among sites, values being highest in GUA
and lowest in MON, but not between species (Table 3). Fungal biomass
was not correlated to any hydrological (Qs and CVQs) or other environ-
mental variables. There were no relationships neither with decomposi-
tion rate nor with litter nutrient content.

3.5. Associated invertebrates

Total invertebrate richness in bags ranged from 6 to 16 taxa; the
lowest values were found at TRU and VIV in oak and in TRU, VIV and
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MON in alder, all them streams with very low Qs (Table 1). Total inver-
tebrate density ranged from 2.3 to 118.5 individuals g−1 AFDM for alder
and from2.2 to 51.6 individuals g−1 AFDM for oak, the lowest values oc-
curring at TRU. Total invertebrate biomass ranged from 0.05 to
113.9 mg g−1 AFDM for alder and from 1.07 to 23.2 mg g−1 AFDM for
oak, with the lowest values also occurring at TRU. Invertebrate density
and biomass were statistically different among streams for both species
(Table 3). Shredder density ranged from zero (VIV, TRU and GUA) to
42.3 individuals g−1 AFDM for alder litter and to 11.8 individuals g−1

AFDM for oak litter. Shredder biomass ranged from zero in both litter
species to 110.8 mg g−1 AFDM1 for alder litter and 18.0 mg g−1 AFDM
for oak. Shredder density and biomass differed significantly among
streams and between species and tended to be more abundant in
alder bags, the interaction between site and species being statistically
significant (Table 3).

Only shredder density showed a significant relationship with one
of the descriptors of drought (Qsexp, positive). Among all other
Table 3
Summary table for two-way ANOVAs performed on decomposition rate (k, dd−1), final nitrogen
sity and biomass of total invertebrates and of shredders). Significant values are highlighted in

Coarse mesh bags

df F

k (dd−1) Stream 10, 88 21
Species 1, 88 59
Stream × Species 10, 88 3.

%N Stream 10, 87 11
Species 1, 87 16
Stream × Species 10, 87 3.

%P Stream 10, 87 23
Species 1, 87 47
Stream × Species 10, 87 6.

Fungal biomass Stream
Species
Stream × Species

Total invertebrate density Stream 10, 87 12
Species 1, 87 12
Stream × Species 10, 87 0.

Shredder density Stream 10, 87 19
Species 1, 87 14
Stream × Species 10, 87 3.

Total invertebrate biomass Stream 10, 87 9.
Species 1, 87 19
Stream × Species 10, 87 3.

Shredder biomass Stream 10, 87 14
Species 1, 87 20
Stream × Species 10, 87 4.
environmental variables measured, total invertebrate density (alder:
r2 = 0.53; p = 0.01; oak: r2 = 0.37; p = 0.046) and biomass (alder:
r2 = 0.68; p = 0.002; oak: r2 = 0.38; p = 0.044) in both species only
showed a significant relationship with riparian canopy cover. The de-
composition rate of alder litter was positively correlated with both den-
sity and biomass of shredders in litter bags, whereas that of oakwas not
correlated with any invertebrate variable (Fig. 5).

4. Discussion

The flow regime in the Mediterranean region can be seriously al-
tered in the coming decades following changes in rainfall and tempera-
ture (Milly et al., 2005). Our experiment across a precipitation gradient
aimed at gaining knowledge on the likely consequences of such changes
for stream ecosystem functioning. We hypothesized drought to reduce
decomposition rate, but, although decomposition was slowest at the
sites suffering most intense drought, no general pattern could be
and phosphorus concentration (%N, % P), fungal biomass and invertebrate variables (den-
bold.

Fine mesh bags

p df F p

.0 b0.0001 10, 84 10.0 b0.0001
6.1 b0.0001 1, 84 413.5 b0.0001
2 0.0016 10, 84 0.8 0.583
.2 b0.0001 10, 84 2.8 0.005
08.1 b0.0001 1, 84 1382.0 b0.0001
4 0.00086 10, 84 1.0 0.481
.1 b0.0001 10, 84 20.4 b0.0001
3.6 b0.0001 1, 84 1007.3 b0.0001
2 b0.0001 10, 84 5.6 b0.0001

10, 80 9.5 b0.0001
1, 80 2.3 0.1371
10, 80 1.1 0.389

.4 b0.0001

.0 0.001
9 0.526
.2 b0.0001
.7 0.0002
4 0.0008
9 b0.0001
.0 b0.0001
3 0.001
.0 b0.0001
.7 b0.0001
0 0.0001



Fine mesh
%

 N

0

1

2

3

4

5

Coarse mesh

Alder
Oak

%
 P

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Stream

%
 A

sh

0

10

20

30

40

50

60

70

Stream

SAN MOR HOM ALH NAJ MON RIB VIV* GUA TRU* MAT SAN MOR HOM ALH NAJ MON RIB VIV* GUA TRU* MAT

Fig. 3. Leaf nitrogen, phosphorus and ash concentration (% DM) at the end of experiment in fine (left) and coarse mesh bags (right). Streams arranged in longitudinal gradient order from
west to east (mean ± SE; n = 5). Streams that suffered strong reduction in water flow throughout experiment are marked with asterisk.

1456 S. Monroy et al. / Science of the Total Environment 573 (2016) 1450–1459
found between decomposition rate of both litter species and any of the
proxies for drought we determined.

In the two streamswhere droughtwasmost intense (VIV, where the
stream dried out during part of the experiment, and TRU, where residu-
alflow occurred) decomposition rateswere lower than in the rest of the
sites in both species, a result consistent with the literature, that shows
decomposition to be slower in temporary than in perennial streams
(Richardson, 1990; Datry et al., 2011; Martínez et al., 2015), and also
slower under residual flow (Acuña et al., 2005; Leberfinger et al.,
2010). Furthermore, this severe level of drought seemed to affect
more total than microbial decomposition confirming the second
hypothesis and as has also been shown in elsewhere (Martínez et al.,
2015). Microbes can survive drought if there is some residual humidity
in the field (Abril et al., 2016; Bruder et al., 2011; Sridhar and Bärlocher,
1993), and microbial activity recovers quickly after flow resumption
(Langhans and Tockner, 2006), unlike invertebrates, which take longer
to recover (Datry et al., 2011). Drying events usually reduce the func-
tional and taxonomic richness of invertebrate communities, and al-
though permanent streams are highly resilient to hydrological
fluctuations (Schriever et al., 2015), the recovery of communities in in-
termittent streams can be slower, as it depends on a few resistant spe-
cies (Leigh et al., 2016) or on re-colonization from other water bodies.
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Severe drought events would, thus, show a slower functional recovery,
what would explain the lower decomposition rates measured in VIV
and TRU.

Microbial decomposition of both species was not correlated with
fungal biomass. In the literature there are examples of positive signifi-
cant relationship (e.g. Foulquier et al., 2015) as well as of lack of corre-
lation (Casas et al., 2011). Nutrient content, which is usually taken as a
proxy of nutrient change caused by microbial activity (Cheever et al.,
2012;Webster et al., 2009), was also not related to microbial decompo-
sition. However, microbial decomposition of both species tended to in-
crease with CVQs,exp., although the relationship was only statistically
significant for oak leaves. Other environmental variables could be driv-
ing the microbial decomposition, such as water nutrient availability, as
suggested by the relationship between N content of oak litter and dis-
solved N.

Total decomposition rate of alder, the leaf material with the best
quality, was mainly determined by detritivore density and biomass.
Among the invertebrate variables, only shredders seemed to be limited
by specific discharge throughout the experiment. Flow stability, mini-
mumflowandflowpermanence are important drivers ofmacroinverte-
brate assemblages (Belmar et al., 2013;Datry et al., 2011), and affect leaf
litter processing. On the other hand, the existence of a clear link be-
tween total decomposition of alder and detritivore community suggests
Shredder density (log nºindiv g-1 AFDM)

Alder
Oak

Shredder biomass (log mg g-1 AFDM)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.82.5

0.0 0.5 1.0 1.5 2.0 2.52.5

y =0.0013+ 0.0016x
r2= 0.62; p = 0.004

y = 0.0013 + 0.002x
r2 = 0.53; p = 0.011

ss of total invertebrates and of shredders g−1 AFDM. The equation, r2 and p-values of the
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that the impact of hydrological conditions on invertebrate community
could result in contrasting effects on the decomposition of leaf species
with different quality, fast-decaying and high-quality leaf litter being
more affected than slow-decaying and low-quality one, as we hypothe-
sized (third hypothesis).

We found a strong positive correlation between total decomposition
rate and stream canopy cover, an indirect indicator of litter inputs to
streams, which was also correlated with the density and biomass of in-
vertebrates in litter bags. This link suggests the abundance of detritivore
invertebrates in Mediterranean streams to be also controlled by the
supply of riparian detritus, which is in part dependent on rainfall
(Sanpera-Calbet et al., 2015). Changes in the identity and timing of
leaf inputs as a consequence of climate change or human activities
could, thus, alter decomposition in the near future (Kominoski and
Rosemond, 2012; Kominoski et al., 2013).

The lack of statistically significant relationship between decomposi-
tion rate and the variables we used to quantify drought could derive
from other factors such as human activities, as litter decomposition re-
sponds to multiple factors such as nutrient concentration (Woodward
et al., 2012), pesticides (Brosed et al., 2016), siltation (Niyogi et al.,
2003) or hydraulics (Elosegi and Sabater, 2013). Besides, travertine pre-
cipitation,which occurred in some of our streams, can either enhance or
slowdecomposition, depending on the continuity of the travertine layer
(Casas and Gessner, 1999; Miliša et al., 2010). Therefore, the effects of
drought could be not easily disentangled given the concomitant varia-
tion in other environmental variables and the particular responses of
decomposers and detritivores.

5. Conclusion

In short, our results point to a complex pattern of litter decomposi-
tion at the regional scale, as drought affects decomposition directly by
emersion of bags and indirectly by affecting the functional composition
and density of invertebrates. Decomposition rate was determined by
the macroinvertebrate community, which was affected by hydrology
as well as by riparian vegetation. Other studies (e.g., Pozo et al., 2011)
have also shown leaf decomposition to reflect geographic differences
in macroinvertebrate communities, thus highlighting the role of inver-
tebrates as drivers of leaf decomposition. By contrast, microbial-
mediated decomposition might be less affected by drought.

Seasonality in precipitation and temperature is expected to increase
in oncoming years in the Mediterranean region, resulting in more in-
tense and frequent drought events (e.g. low flows, droughts), as well
as an increase in the number of intermittent streams. Future efforts
are needed to identify factors and their interactions affecting stream
ecosystem processes, such as organic matter decomposition, to predict
and monitor the consequences of future hydrologic change under a
shifting mosaic of abiotic and biotic conditions.
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