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ABSTRACT

Health insurance companies accumulate a great wealth of historical data, related both to

the intensity of health care usage made by policyholders and to the type of medical claims.

Furthermore, the occurrence of death is also monitored, as well as a set of personal char-

acteristics (gender, residence, etc.). In particular, the studies carried out in the sphere of

private health care include the medical claims made by each individual over time, these being

able to be used as an indirect measure of health status. At the same time, the aging process

taking place in developed countries leads to an obvious interest in assessing the relation-

ship between emergency care demand and survival rate, paying particular attention to those

policyholders aged 65 and over. From a purely economic perspective, elderly policyholders

need to be provided cost-effective premiums according to their individual health status, and

insurance companies need to plan for the potential costs of dealing with lifetimes above the

mean expectations. Theoretically, the amount needed to cover the life insurance costs of

policyholders who require a great deal of emergency care should be compensated due to a

lower survival rate, but this compensation is ambiguous due to the heterogeneity between

subjects. Indeed, aging and mortality rates are influenced by subject-specific socio-economic

and biological variables, which may vary considerably not only between individuals, but also

dynamically within a single subject.

Consequently, there is a both medical and economic necessity to assess, in an individualized

manner, how the medical demand of the elderly will evolve over time, as they will be the

principal beneficiaries of additional medical resources due to the high prevalence of chronic

diseases in this age range. On the one hand, pricing of health insurance is measured in terms

of premiums, so the individual health status of elderly people must be considered in order

to allow them to sign actuarially fair contracts. On the other hand, an insurance company

providing retirement pensions and health insurance needs to plan for unexpected costs de-

rived from people having lifespans above mean expectations. Under this interdependency

scheme, the joint models for longitudinal and time-to-event data proposed in this thesis

provide useful tools to properly address the underlying relationship between the emergency

medical demand and the hazard for death event.

This thesis makes a contribution to the statistical methodology in the field of joint modeling

techniques, which is applied to a large longitudinal dataset, the HI dataset, provided by a

Spanish medical insurance company. From this dataset, we collect those subjects aged 65

and above, living in the city of Barcelona (Spain). For each subject, we have the histor-

ical emergency claims information within the study window, as well as the time-to-event

information. The longitudinal outcome is of discrete nature, usually restricted to a small

range of non-negative integer values which are affected by some degree of overdispersion;

that is, the observed variance exceeds the mean. Additionally, counts with a large number

of zeros become quite common owing to the nature of health insurance data, in which a lack

of information about health status exists for some subjects. Another important character-

istic concerning the cohort under study relies on the fact that only policyholders who have

reached the age of 65 come under study, so all those entering after this age are considered



as delayed entries, and their time-to-event data are subject to left truncation in addition to

the potential right censoring (considered as non-informative) from a certain date onwards.

Then, the implemented joint models must account for the special characteristics of our

observed longitudinal response, departing from the common Gaussian responses, together

with the specific time-to-event data pattern. This involves a great methodological challenge,

as well as demands a huge computational effort, considering the large sample size.

In particular, there are three main tasks to be carried out by the joint analysis of the two

outcomes considered:

1. We aim to implement a joint model which allows for the handling of longitudinal counts,

also considering the potential overdispersion present at a subject-specific level by means

of the specification of a model which considers an excess zeros (zero inflation). Moreover,

survival times can also be subject to both left truncation and right censoring, being these

features non-informative.

2. We want to assess the functional form to instantaneously associate, in a personalized

manner, the expected longitudinal response with death risk. In this regard, we investigate

the effect of the cumulative longitudinal response on the current death hazard.

3. As a central focus of this thesis, we propose the existence of a time-dependent relationship

between the longitudinal process and the time-to-event outcome. This relationship is

defined using penalized B-splines in order for any specific shape to be conferred.

All the analyses included in this thesis have been implemented under the Bayesian framework,

in the R and JAGS free-software environments. The software codes are available from the

author upon request.



RESUMEN

Las compañ́ıas aseguradoras médicas atesoran una valiosa cantidad de datos históricos, rela-

tivos tanto a la frecuencia de demanda entre sus asegurados, como a las peticiones médicas

que éstos realizan. Además, la muerte del cliente también se registra, aśı como un conjunto

de caracteŕısticas de tipo personal (género, población de residencia, etc.). En concreto, los

estudios realizados dentro del ámbito de la salud privada recogen las peticiones médicas

efectuadas por cada individuo a lo largo del tiempo, pudiendo ser utilizadas como medida

indirecta de su estado de salud. Paralelamente, el envejecimiento poblacional que tiene

lugar en los páıses desarrollados conduce a un interés obvio en evaluar la relación existente

entre la demanda de peticiones médicas de urgencia y la tasa de supervivencia, con especial

atención sobre el grupo de asegurados con edad igual o superior a los 65 años. Desde

una perspectiva puramente económica, los asegurados de mayor edad necesitan disponer de

tarifas adecuadas a su particular estado de salud, mientras que la compañ́ıa aseguradora

tiene que planificar aquellos costes adicionales generados por los asegurados que alcanzan

edades por encima de las expectativas de vida media. En teoŕıa, la cantidad de dinero que

tiene que pagar la aseguradora en el caso de clientes que requieren una gran atención médica

de urgencia habŕıa de quedar compensada por una menor tasa de supervivencia de éstos,

pero esta compensación resulta ambigua debido a la heterogenidad entre individuos. De

hecho, el envejecimiento de una determinada persona depende de factores socio-económicos

y biológicos que son inherentes a cada individuo, pudiendo variar considerablemente no sólo

entre diferentes individuos, sino también dentro de un mismo sujeto a lo largo del tiempo.

En consecuencia, existe una necesidad médica y económica en poder evaluar, de manera

personalizada, la evolución temporal de la demanda de servicios médicos dentro de los indi-

viduos asegurados de mayor edad, siendo ellos los principales beneficiarios de esta inversión

adicional en recursos médicos debido a la alta prevalencia de situaciones de cronicidad en

este rango de edades. Por un lado, el coste de los servicios médicos se mide conforme a las

tarifas de la aseguradora, de forma que el estado de salud de un individuo debe considerarse

a la hora de firmar contratos justos en términos actuariales. Por otro lado, una compañ́ıa

que proporciona planes de pensiones y servicios médicos ha de tener en cuenta los costes

que se producirán debido a un incremento de la esperanza de vida. Bajo este esquema de

interdependencia, los joint models para datos longitudinales y de supervivencia propuestos

en esta tesis constituyen una herramienta útil para estimar la relación subyacente entre la

frecuencia de demanda médica de urgencia y el riesgo de mortalidad.

Esta tesis realiza una contribución en la metodoloǵıa estad́ıstica en las técnicas de joint

modeling, habiéndose aplicado sobre una extensa base de datos longitudinales, HI dataset,

proporcionada por una compañ́ıa de seguros médicos de ámbito español. De esta base se

consideran los individuos con edad igual o superior a los 65 años y residentes en la ciudad

de Barcelona (España). Para cada sujeto se tiene la información histórica de peticiones

médicas de emergencia durante el periodo de observación, aśı como la información referente

a su tiempo de vida. La respuesta longitudinal es de tipo discreto, estando habitualmente

restringida a un pequeño rango de valores enteros no negativos, afectados por un cierto nivel



de sobredispersión; es decir, la varianza observada excede el valor de la media. Adicional-

mente, suele ser bastante habitual una gran presencia de registros nulos debido a la propia

naturaleza de los datos de conteo en el campo de los seguros médicos, donde a menudo

existe una falta de información relativa al estado de salud de ciertas personas. Otra im-

portante caracteŕıstica relativa a la cohorte analizada reside en el hecho de que únicamente

aquellos individuos que alcanzan la edad de 65 años son incorporados al estudio, de manera

que aquellos que acceden en edades posteriores son considerados como entradas tard́ıas. En

consecuencia, sus tiempos de supervivencia quedan truncados por la izquierda, además de

poder estar sometidos a una censura por la derecha (de tipo no informativo) a partir de una

determinada fecha.

Aśı, los joint models implementados deben de considerar las caracteŕısticas especiales de

nuestros datos longitudinales, alejados de la habitual respuesta gaussiana, junto con el patrón

espećıfico de los tiempos de supervivencia. Ello supone una gran reto metodológico, deman-

dando igualmente un enorme esfuerzo computacional motivado por el uso de una extensa

base de datos.

En particular, se pueden distinguir tres grandes tareas metodológicas en el análisis conjunto

de las dos respuestas consideradas:

1. Implementar un joint model que permita la inclusión de procesos de conteo, considerando

la potencial sobredispersión en el conjunto de respuestas observadas para cada individuo

mediante un modelo que considere un exceso de ceros (zero inflation). Además, los

tiempos de supervivencia pueden estar sujetos tanto a un truncamiento por la izquierda

como a una censura por la derecha, siendo ambos fenómenos de tipo no informativo.

2. Evaluar una forma funcional adecuada para asociar, de forma personalizada y en un

instante de tiempo, la repuesta longitudinal esperada con el riesgo de mortalidad. En

este punto, se investiga el efecto que tiene la respuesta longitudinal acumulada en el

riesgo de mortalidad actual.

3. Como parte fundamental de esta tesis, se considera la existencia de una asociación de-

pendiente del tiempo entre el proceso longitudinal y la respuesta de supervivencia. Esta

relación temporal se define por medio de B-splines con penalizaciones, permitiendo aśı

que a priori pueda adoptar cualquier tipo de forma.

Todos los análisis incluidos en esta tesis han sido implementados mediante el esquema de

trabajo bayesiano con los programas estad́ısticos de libre acceso R y JAGS. Los códigos de

software están disponibles mediante su petición al autor.



RESUM

Les companyies asseguradores mèdiques atresoren una valuosa quantitat de dades històriques,

relatives tant a la freqüència de demanda entre els seus assegurats, com al tipus de peti-

cions mèdiques que aquests realitzen. A més, la mort del client també queda enregistrada,

aix́ı com un conjunt de caracteŕıstiques de tipus personal (gènere, població de residència,

etc.). En concret, els estudis realitzats dins de l’àmbit de la salut privada recullen les peti-

cions mèdiques efectuades per cada individu al llarg del temps, podent ser utilitzades com

a mesura indirecta del seu estat de salut. Paral·lelament, l’envelliment poblacional que té

lloc als päısos desenvolupats condueix a un interès obvi en avaluar la relació existent entre la

demanda de peticions mèdiques d’urgència i la taxa de supervivència, amb especial atenció

sobre el grup d’assegurats amb edat igual o superior als 65 anys. Des d’una perspectiva pu-

rament econòmica, els assegurats de major edat necessiten disposar de tarifes adequades al

seu particular estat de salut, mentre que la companyia asseguradora ha de planificar aquells

costos addicionals generats pels assegurats que assoleixen edats per sobre de les previsions

de vida mitjanes. En teoria, la quantitat de diners que ha de pagar l’asseguradora en el cas

de clients que requereixen una gran atenció mèdica d’urgència hauria de quedar compensada

per una menor taxa de supervivència d’aquests, pero aquesta compensació resulta ambigua

a causa de l’heterogenëıtat entre individus. De fet, el procés d’envelliment depèn de factors

socio-econòmics i biològics que són inherents a cada individu, podent variar considerable-

ment no només entre diferents individus, sino també dins d’un mateix subjecte al llarg del

temps.

En conseqüència, existeix una necesitat mèdica i econòmica en poder avaluar, de manera

personalitzada, l’evolució temporal de la demanda de serveis mèdics dins dels individus as-

segurats de major edat, essent ells els principals beneficiaris d’aquesta inversió addicional en

recursos mèdics degut a l’alta prevalència de situacions de cronicitat en aquest rang d’edats.

Per un costat, el cost dels serveis mèdics es mesura en base a les tarifes de l’asseguradora, de

forma que l’estat de salut d’un individu ha de considerar-se a l’hora de signar contractes jus-

tos en termes actuarials. D’altra banda, una companyia que proporciona plans de pensions

i serveis mèdics ha de tenir en compte els costos que es produiran degut a un augment en

l’esperança de vida. Sota aquest esquema d’interdependència, els joint models per a dades

longitudinals i de supervivència proposats en aquesta tesi constitueixen una eina útil per

estimar la relació subjacent entre la freqüència de demanda mèdica d’urgència i el risc de

mortalitat.

Aquesta tesi realitza una contribució a la metodologia estad́ıstica en les tècniques de joint

modeling, les quals s’han aplicat sobre una extensa base de dades longitudinals, HI dataset,

proporcionada per una companyia d’assegurances mèdiques d’àmbit espanyol. D’aquesta

base es consideren els individus amb edat igual o superior als 65 anys i residents a la ciutat de

Barcelona (Espanya). Per a cada subjecte es té la informació històrica de peticions mèdiques

d’emergència durant el peŕıode d’observació, aix́ı com la informació referent al seu temps de

vida. La resposta longitudinal és de tipus discret, estant habitualment restringida a un petit

rang de números enters no negatius afectats per un cert nivell de sobredispersió; és a dir, la



variància observada excedeix el valor de la mitjana. Addicionalment, acostuma a ser bastant

habitual una gran presència de registres nuls degut a la pròpia naturalesa de les dades de

compteig en el camp de les assegurances mèdiques, on sovint existeix una falta d’informació

relativa a l’estat de salut de certes persones. Altra important caracteŕıstica relativa a la

cohort analitzada resideix en el fet de que únicament aquells individus que assoleixen l’edat

de 65 anys són incorporats dins l’estudi, de manera que aquells que accedeixen en edats

posteriors són considerats com a entrades amb retard. En conseqüència, els seus temps de

supervivència resten truncats per l’esquerra, a més de poder estar sometsos a una censura

per la dreta (de tipus no informatiu) a partir d’una determinada data.

Aix́ı, els joint models implementats han de considerar les caracteŕıstiques especials de les

nostres dades longitudinals, allunyandes de l’habitual resposta gaussiana, juntament amb el

patró espećıfic dels temps de supervivència. Això suposa un gran repte metodològic, exigint

igualment un enorme esforç computacional motivat per l’ús d’una extensa base de dades.

En particular, es poden distingir tres grans tasques metodològiques en l’anàlisi conjunta de

les dues respostes considerades:

1. Implementar un joint model que permeti la inclusió de processos de compteig, considerant

la potencial sobredispersió en el conjunt de respostes observades per a cada individu

mitjançant un model que consideri un excés de zeros (zero inflation). A més, els temps

de supervivència poden estar subjectes tant a un truncament per l’esquerra com a una

censura per la dreta, essent ambdós fenòmens de tipus no informatiu.

2. Avaluar una forma funcional adequada per associar, de forma personalitzada i en un

instant de temps espećıfic, la resposta longitudinal esperada amb el risc de mortalitat.

En aquest punt, s’investiga l’efecte que té la resposta longitudinal acumulada sobre el risc

de mortalitat actual.

3. Com a part fonamental d’aquesta tesi, es considera l’existència d’una associació depenent

del temps entre el procés longitudinal i la resposta de supervivència. Aquesta relació

temporal es defineix d’una forma flexible mitjançant la consideració de B-splines amb

penalitzacions, permetent aix́ı que a priori pugui adoptar qualsevol tipus de forma.

Totes les anàlisis incloses en aquesta tesi han estat implementades mitjançant l’esquema de

treball bayesià amb els programes estad́ıstics de lliure accés R i JAGS. Els codis de software

estan disponibles mitjançant la seva petició a l’autor.
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CHAPTER 1

INTRODUCTION AND GOALS

1.1 Population Aging in the European Union

Several European countries have experienced a significant growth in their elderly population

over the last 50 years, and for the moment this process does not appear to have reached its

peak. The process of population aging among senior citizens is primarily related to medical

and technological advances in health and longevity, which have allowed for an increase in life

expectancy by means of curing or controlling diseases which in the past had no treatment.

In medical terms, these health improvements have enabled a large number of subjects to

transition from having major incurable diseases towards a chronic but manageable status,

which tends to be long-term. Then, in many cases the extension of the lifespan of the

elderly takes place at the expense of a tendency to face a greater number of years with a

potential range of health problems, which require being attended to within the health system

of each country by means of an adequate allocation of economic resources. Particularly, a

wide interest arises regarding those subjects aged over 65 years, since that threshold has

been commonly assumed as the statutory retirement age, and consequently, is taken as the

reference point from which the population is designated as elderly. In general, the risk

of multimorbidity (i.e. suffering from more than one chronic condition at the same time)

becomes higher with age (Salisbury et al., 2011; Fabbri et al., 2015). At least 60% of the

European Union states (EU-28) population reaching retirement age will have at least two

chronic conditions in the coming (WHO, 2011). As pointed out by Koller et al. (2014),

multimorbidity is related to a higher risk of care dependency, which inevitably leads to an

increase in demand for medical care and long-term care services.

Parallel to the aging process, European countries have registered a steady decline in birth

rates since the middle of the 20th century. In particular, the average birth rate registered

in 2015 was 1.58 children per woman, which is below the population replacement birth rate

for most industrialized countries, recently stated at 2.1 births per woman. Consequently,

the progressive growth of the number of elderly people has taken place at the same time

as its total size increased in comparison to the total population, affecting not only the

segment recently reaching the retirement age, but also people at very old aging stages. In

the particular case of the states from EU-28, the rate of elderly population growth has been

particularly high since the early 1990s, when the percentage of subjects over 65 rose above

15%. Thus, the number of inhabitants 65 and over increased from 10.4% (424.7 million total)

on January 1, 1965 to 18.9% (508.50 million total) on January 1, 2015.

1
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Figure 1.1 shows the evolution over time of the EU-28’s elderly rates during the period

1965-2015, and it is compared with the same rate in different countries around the world

(OECD, 2016). In this regard, due to its key role in this thesis, we include the particular

case of Spain, which presents a similar case to that summarized by the EU-28 (Garin et al.,

2014). We can also infer how Chile, stated as one of the fastest-growing Latin American

economies, presents half of the percentages exhibited by the EU-28. In Japan, by contrast,

people over the age of 65 make up a quarter of the total population. Finally, the United

States of America, with the largest economy in the world, has an elderly population halfway

between EU-28 and Chile, benefiting from policies favorable to the birth rate since the end

of the last century. From the results, we can see that European trends are mimicked in other

parts of the world, although different socioeconomic factors in each country lead to different

growth rates, even among EU-28 states.

Figure 1.1. Comparison between the evolution of EU-28 elderly rates with some industrialized

countries during the period 1965-2015. Source: Data from OECD (2016).

The increase in elderly population, per se, would not necessarily entail important changes in

the economic structure of a country’s health coverage, as long as the generational turnover

is maintained. However, in the case of EU-28, the aforementioned increase has been ac-

companied by a stagnation, if not decline, of the younger population demographics. As

an example, the median age of the EU-28 population has risen by 3 years in the last
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decade, shifting from 39.5 years in 2005 to 42.4 years in 2015 (Eurostat database 2016,

http://ec.europa.eu/eurostat/data/database).

While it is true that population aging has affected each of the European countries, its

evolution over time has not uniformly affected the EU-28 as a whole, reaching higher elderly

rates specifically in those countries with the five largest industrial economies: Germany,

France, the United Kingdom, Italy and Spain. These five countries each present elderly

rates above 16.0% of the total population, as depicted in Figure 1.2.

Figure 1.2. Percentage of the total population over 65 years old across the EU-28 member

states in 2015. Source: http://www.wikiwand.com/en/Ageing_of_Europe

The European aging trend is forecasted to continue rising, although at a slower pace, in the

long run. By January 1, 2080, the number of inhabitants is projected to reach 520.1 million,

and the median age of the EU-28 population is expected to rise to 46.4 years (Eurostat,

2016). Regarding the percentage of the elderly, it is projected to increase from 18.9% in

2015 to 28.7% in 2080, so Europe as a whole will become an aging society in the widest

sense. Aging societies, also named graying societies, can be regarded as a direct consequence

of low birth rates combined with higher life expectancy among populations. As a result,

the median age of a society increases, and that logically translates into a higher proportion

of older people and relatively fewer working-age adults. This demographic revolution poses
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many challenges in the funding of health care systems, requiring the rethinking of current

policies in order to achieve sustainable elderly care in the coming decades.

1.2 Joint Models to Assess Longevity Risk in Health Insurance

In the particular context of health insurance, the demographic shift to a higher life ex-

pectancy and lower fertility rates has greatly increased the relative medical demand among

the elderly. The increasing usage of private care also extends longevity even further, so that

the health insurance system is greatly challenged by those subjects aged over 65. They are

indeed in the age range where experiencing critical diseases is most probable, which, at the

same time, is usually associated with higher costs. From a purely economic perspective,

living longer means additional costs above the expected average, something usually referred

to as longevity risk. These two phenomena (longer lifespans and more demand for medical

care) have traditionally been studied independently. For example, D’Amico et al. (2009)

analyzed a portfolio of policyholders that were covered for disability and found that survival

rates could not be separated from impairment conditions. Indeed, standard actuarial meth-

ods of health insurance (Yue and Huang, 2011; Pitacco, 2014; Ericson and Starc, 2015) even

ignore correlated information about their subjects. Theoretically, savings in emergency care

due to a better quality of life should be larger than the increase in the amount needed to

cover life insurance costs (Dao et al., 2014), but this compensation is ambiguous due to the

heterogeneity between subjects. Indeed, aging and mortality rates are influenced by socio-

economic factors, biological variables and health conditions, which may vary considerably

not only between subjects, but also dynamically within a single subject. Consequently, there

is a need to know, in an individualized manner, how the medical demand of the elderly will

evolve over time, as they will be the principal beneficiaries of additional medical resources.

On the one hand, pricing of health insurance is measured in terms of premiums (which are

related to rising medical expenditures), so the individual health status of elderly people must

be considered in order to allow them to sign actuarially fair contracts. On the other hand,

an insurance company providing retirement pensions and health insurance needs to plan for

unexpected costs derived from people having lifespans above mean expectations.

Health insurance companies accumulate a great wealth of historical longitudinal data on the

intensity and type of health care usage through claims made by policyholders. As part of the

longitudinal follow-up process, the occurrence of mortality is also monitored, as well as a set

of personal characteristics. The combination of this information provides valuable medical

information collected at different ages of the same subject, and allows for the assessment

of the degree of relationship of these records to their particular health status. From an

insurance point of view, it can be extremely valuable for quantifying their clients’ medical

care demand risks and for predicting individual survival probabilities.

Building on this insight, a basic time-to-event or survival analysis would incorporate longitu-

dinal time-dependent information by means of a time-dependent Cox model (Andersen and
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Gill, 1982); however, this assumption is not realistic since it assumes that subject health sta-

tus remains constant between subsequent measurements, and may lead to biased inferences

(Prentice, 1982). In order to ensure that longitudinal information is adequately incorpo-

rated into a survival model, a simultaneous approach to both processes is required. Then,

joint modeling of longitudinal profiles and time-to-event (also called survival) data stands as

the natural field of study for simultaneously analyzing informative dropout (from repeated

measurements across time) and event outcomes. Interest in the application of joint models

in biostatistics and medical research has dramatically increased in the past two decades,

leading to the proliferation of statistical studies that use these models for different types

of data. However, the application of joint models in fields other than biostatistics, such as

insurance, remains practically unpublished to this day, with few recent exceptions. Among

the main reasons for this lack of use in insurance research, we highlight: a) the enormous

computational cost that joint modeling techniques require for the large datasets handled

by insurance companies, b) the usual departures from the normal distribution in the data,

which establish additional difficulties in the already complex data modeling process, and c)

in contrast with the biostatistics field, in which a biomarker with strong prognostic capabil-

ities is typically identified, in the case of insurance research, such a clear reference for the

main longitudinal outcome does not always exist.

In our particular case, the different modeling difficulties can be solved working under the

Bayesian framework, while the demand for medical emergency services is adopted to account

for the deterioration of elderly subject’s health. We want to assess whether emergency

demand and health status have a significant association from the age of 65 onwards, and if

so, to evaluate this underlying relationship over time. In general terms, we can assume that

a high demand for emergency services will be associated with a poorer health status, and

consequently, with a higher mortality risk. The key point relies on the fact that each subject’s

particular aging process is related to a set of random biological components, so that it is

necessary to take into account each subject’s longitudinal information (repeatedly measured

observations over time) for an accurate assessment of the corresponding mortality risk. The

relationship between emergency claims in a subject’s medical history and survival responses

can be properly addressed in a single model, called a joint model (JM) for longitudinal

and time-to-event data, where the association between both outcomes at each time point is

traditionally expressed by means of a constant parameter. However, we argue in this thesis

that a specific demand for emergency medical services does not necessarily translate into

the same increment in mortality risk at any given age within the elderly segment. On the

contrary, the mortality risk due to a specific pathology will depend on, among other factors,

the age of the person affected. In addition, we must keep in mind that at certain ages the

occurrence of chronic illnesses increases; this can lead to peaks in demand for emergency

medical services that do not necessarily correlate with a lower survival rate.

We seek a personalized method in order to provide us with knowledge about the risk pat-

tern, thus allowing each subject to negotiate the acquisition of more cost-effective annual

premiums according to individual health status. In turn, insurers will have personalized
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health information about each of their customers, thus being able to accurately allocate the

required capital to face the underwriting obligations for each of them.

1.3 Literature Review on Joint Modeling Framework

Although there are several possible approaches to jointly modeling both information sources,

the most commonly used one is carried out under the shared-parameter models (SPM)

framework. Complete explanations can be found in Wu and Carroll (1988), Little (1995)

and Molenberghs and Kenward (2007). The key issue of SPM relies on the conditional

independence hypothesis, so that dependence between longitudinal responses and mortality

risk is conducted using a common latent structure, described by a set of subject-specific

random parameters. Then, given these shared random effects, longitudinal and time-to-event

outcomes are independent, as are repeated measurements in the longitudinal process. In such

a scheme, the subject-specific longitudinal history can be included as covariate information

in a classical proportional hazards (PH) model, so that both processes are linked at each

time point by an appropriate association structure.

In the seminal formulation of the JM, the longitudinal hierarchical response is normally

distributed, and the time-to-event response is introduced by a proportional hazards model

(Tsiatis et al., 1995; Faucett and Thomas, 1996; Wulfsohn and Tsiatis, 1997). The two pro-

cesses are linked by normally distributed random parameters, thus relating for each subject

the current expected outcome of emergency demand at a specific time point to the death haz-

ard or mortality risk (both terms are used interchangeably throughout the different chapters

of this thesis). Joint models provide an efficient method not only to assess the relationship

between both submodels, but the combined approach also avoids biased estimates from each

submodel, as well documented in, for example, Tsiatis and Davidian (2001) and Fieuws

et al. (2008). Hence, a JM allows for informative dropout when the longitudinal process is of

primary interest, whereas the precision of the estimates of the survival parameters improves

when handling the time-to-event process. Finally, these models are an extremely valuable

tool in order to assess the relationship between both outcomes.

Since the initial definition of the standard JM, the academic interest in these models has

continued to grow. Several case studies followed the seminal articles, most of them aimed at

analyzing personalized biological patterns using the relationship between a specific biomarker

and the time remaining until the event of interest. Among these earlier contributions, we

can find both frequentist and Bayesian strategies to obtain the parameter estimates. One

extended approach is the maximization of the joint likelihood. Some key references can be

found in Henderson et al. (2000), Yu et al. (2004), Zeng and Cai (2005), and Ding and

Wang (2008). A complete account of different functional forms to assess the relationship

between longitudinal and survival outcomes is provided by Rizopoulos (2012), in a text

book format. Alternatively, other authors opted for a joint model approach under a Bayesian

paradigm, as in Xu and Zeger (2001), Wang and Taylor (2001), Brown and Ibrahim (2003)
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and Ibrahim et al. (2004). An interesting alternative extension of standard joint models is

postulated by the so-called latent class joint models (Lin et al., 2002; Proust-Lima et al.,

2009), where each subject from a target population is assumed to belong to one and only one

latent subpopulation, so that longitudinal and time-to-event outcomes are associated with

the corresponding latent class indicator. This joint model approach is particularly useful

when focusing on subject-specific predictions, since they allow for very flexible association

structures.

With the aim of seeking application to further types of data, the main research lines in the

recent past have focused on incorporating the necessary flexibility in the different parts of the

JM, i.e., longitudinal response, survival time and the way in which the associative structure

between both components is defined. Among the different extensions implemented when

tackling the longitudinal outcome, we can point out the inclusion of non-Gaussian longitu-

dinal outcomes (Murawska et al., 2012; Viviani et al., 2012; Rizopoulos, 2016) and the case

of multivariate longitudinal outcomes (Song et al., 2002; Brown et al., 2005; Rizopoulos and

Ghosh, 2011; Andrinopoulou et al., 2014). More recently, Ivanova et al. (2016) formulated a

JM to handle different types of response, i.e., continuous, discrete and ordinal. In the case

of time-to-event processes, research has focused on tackling situations such as survival data

with competing risks (Elashoff et al., 2008; Williamson et al., 2008; Li et al., 2010; Huang

et al., 2011; ProustLima et al., 2016), or cases in which time-to-event data are left-truncated

(Piccorelli and Schluchter, 2012; Su and Wang, 2012; Crowther et al., 2016). Finally, a few

extensions are worth special attention. These are all those devoted to increasing prognostic

capacity of joint models to distinguish between high-risk subjects and those who are more

likely to survive, thus making a more reliable personalized prediction for either the longitudi-

nal or the survival outcome. Within this framework, further details on prediction assessment

in joint models can be found, among others, in Proust-Lima and Taylor (2009), Rizopoulos

(2011), and Sweeting and Thompson (2011).

A key benchmark in the classical joint model formulation is that the association parameter

between longitudinal responses and the death hazard is assumed constant across time. How-

ever, in our particular problem, we observe that emergency claims peak around 85-90 due to

chronic diseases, so that the real impact on survival at this age range is not expected to be

as large as at other ages. Consequently, a more realistic approach to describe the underlying

relationship between the two responses is achieved by departing from a constant association

parameter. Specifically, we propose that the longitudinal response has a time-varying effect

on death hazard.

1.4 Motivating Dataset: An Example of the Spanish Situation

We have been provided health care data by a large Spanish insurance company (Piulachs

et al., 2016), consisting of a large cohort of subjects aged 65 and over, living in the city of

Barcelona. They have a health insurance policy, so they have the right to receive private
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medical assistance under the conditions of their insurance contract. Regarding the longitu-

dinal information, the individuals included in the study are analyzed over a period of eight

years, from January 1, 2006 to February 1, 2014, and we focus on annual records of those

claims directly related with subject death hazard, which we refer to as emergency claims per

year. These are indeed the largest contributors to the economic costs forecast, and in addi-

tion serve to explain the subject’s health prognosis in a more definitive way. In this regard,

emergency medical claims can be summarized by ambulance services, hospitalizations and

non-routine medical visits. So, our longitudinal outcomes are integer values, ranged from 0

to 20, and are affected by some degree of overdispersion, induced by between-subject unob-

served heterogeneity and an excess of zeros. At this point, the demand for emergency medical

services is a rather infrequent event in elderly people, especially if we consider ambulance

services and hospitalization in particular. Moreover, the Spanish public health system offers

universal coverage, so many of the policyholders can opt to access public health services,

leading to a zero count which does not reflect the real health status of the subject.

The insurance company also provides an additional set of personal information where the

age at which each subject enters the study is recorded, as well as their lifespan inside the

window study. Hence, we have two types of observations:

� If the subject’s death is recorded during the study period, we can know the age of the

subject at which the event of interest occurs.

� If the subject’s death is not observed, we can know either the age of subject at the study’s

closing date, established on February 1, 2014 due to administrative reasons, or the age at

which the subject has an early dropout, here assumed to be caused by reasons unrelated

to the event of interest. In both cases all we know is a certain period of time during which

the subject is still alive, but we do not have any further information. These situations

correspond to a non-informative right censoring.

In addition, in our particular case the age of 65 is posed as time zero, so all subjects entering

the study after that threshold age are considered as delayed entries, and, consequently, their

time-to-event data are left-truncated.

1.5 Scope and Specific Goals of the Thesis

The research conducted in this thesis is motivated by the current demographic challenges

that must be addressed by European private health insurance companies, where aging has

exposed the sector to unexpected financial costs. In particular, we focus on the Spanish

situation, where advances in clinical knowledge have enabled the extension of customers’

lifespan above mean expectations, so insurers must adjust their premiums in order to reflect

the risks expected at very old ages. In our particular research, we analyze real health data

containing longitudinal and time-to-event information of elderly policyholders in the city of

Barcelona. The main aim of this research is to find the key patterns regarding the mortality
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risk. To achieve this, we use a simultaneous approach to longitudinal and survival processes,

which leads to further extensions of the standard JM.

Specifically, there are three main challenges to face in our analysis:

1. We seek an adequate model to accommodate correlated counts observed in the longitu-

dinal outcome, taking into account the potential overdispersion at subject-specific level,

that is, when the within-subject variability is larger than the mean. The two main causes

of overdispersion derive from an inherent heterogeneity among measurements and an

abundance of zeros. Additionally, time-to-event data should account not only for the

usual right censoring, but also for the left truncation caused by the late entry into the

study of a large percentage of subjects.

2. We analyze the adequate functional form to relate the subject’s claim history within

the study window to death risk. Standard joint models assume a constant relationship

between the current expected value and the survival rate, but in our case it does not

seem reasonable to summarize the health status by only considering the longitudinal

information from a single time point. Instead, we can consider the impact of past health

status on the current death hazard. Moreover, all past medical information does not have

the same importance; the closer measurements are to the current time, the more weighted

their consideration should be compared to those that are more distant.

3. As a main issue in this thesis, we want to incorporate a time-varying association param-

eter between longitudinal and time-to-event outcomes, hence allowing for a more flexible

relationship between emergency demand and death hazard. This point becomes essential

in the insurance field, since the result of this connection is the one which may prove that

expected costs from subjects with a higher emergency demand are compensated with

lower survival rates.

The rest of the thesis is organized as described in the following paragraphs:

Chapter 2 presents a description of the motivating dataset that has been used in this

thesis, which was provided by a Spanish medical insurance company. It consists of 5470

subjects, aged 65 or above, who signed a health insurance policy. Consequently, they have

the right to request for private medical assistance during the study period, 2006-2014. For

each subject, the data contain repeated measurements of emergency claims in a year (count

rates), as well as left-truncated and right-censored survival information, thereby providing

valuable and useful information about the current state of Spain’s private health care. The

goal within the insurance field is to relate both processes in order to asses the longevity risk

in a personalized manner.

Chapter 3 introduces the standard formulation of joint models for longitudinal and time-

to-event data. The application of these models to our longitudinal information is first carried

out by applying a logarithmic transformation to the count rates. Moreover, we outline the

special features of our time-to-event data, focusing on left truncation and right censoring,
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and how the inclusion of both issues must be considered in order to avoid biased inferences

in estimating survival parameters. The simultaneous approach to longitudinal and event

times is carried out under the shared-parameter JM framework, in which traditionally the

expected longitudinal outcome and the event hazard (and, consequently, the time-to-event)

are instantaneously related using a constant association parameter. In addition, we extend

the aforementioned relationship to account for the weighted cumulative effects on the event

hazard. Thus, we also analyze a constant relationship between the recency-weighted area

under the expected longitudinal profile until a time point and mortality risk at this point.

The parameter estimation is performed under the Bayesian framework using Markov chain

Monte Carlo methods.

Chapter 4 outlines the necessary concepts for the inclusion of counting outcomes in the

longitudinal submodel of the Bayesian JM. Initially, the Poisson mixed-effects model is intro-

duced, this being the most used probability distribution to accommodate panel discrete data

in longitudinal studies. Since the real data are usually affected by some degree of overdisper-

sion, the negative binomial mixed-effects model is also introduced. This model represents a

further step when dealing with counting data, emerging as the simplest way to account for

the overdispersion effects in the observed responses. Regarding the time-to-event submodel,

the main outcome is subject to both left truncation and right censoring. Building on these

assumptions, longitudinal and survival responses are joined into a single statistical model

by a common set of random effects. The resulting JM clearly departs from the standard

approach, and its consideration allows for a more accurate modeling of our data.

Chapter 5 presents a Bayesian JM to relate, with a time-varying association parameter,

the emergency claims per year with left-truncated lifetimes. Specifically, this is achieved

by allowing a flexible shape for the unknown association structure by its expansion into

B-splines with discrete penalties, namely P-splines. The counting sequence is undertaken by

a hierarchical zero-inflated response, which includes a mixture of a point mass at zero and

a classical counting distribution. The zero-inflated models considered are the zero-inflated

Poisson and the zero-inflated negative binomial models with random effects. The time-to-

event outcome is, as in previous chapters, subject to both left truncation and right censoring.

The main results of the JM with a time-varying association are reported, and its benefits

with respect to a constant link are commented.

Chapter 6 illustrates how the joint model approach provides dynamic predictions of survival

probabilities. In particular, the predictions are obtained from the JM approach which consid-

ers the recency-weighted effects of a longitudinal count response. From the subject-specific

predictions for a theoretical subject, we provide an illustrative example of how emergency

demand and longevity have opposite effects on health insurance rates.

Finally, Chapter 7 contains a discussion focused on the impact of emergency claims on

death hazard, and we also comment the potential areas of future research.



CHAPTER 2

THE HEALTH INSURANCE DATA

2.1 Obtaining the Dataset From External Sources

In this chapter, we introduce our health insurance data, the HI dataset, which has ultimately

motivated the different methodologies and statistical models that are studied in this thesis.

The information encompassed a large number of contracts from subjects who signed a health

care policy with a Spanish insurance company, and therefore had the right to receive private

medical coverage during the period in which our study takes place, from January 1, 2006 to

February 1, 2014. Due to privacy laws, confidentiality agreements were established between

the health insurance company and the University of Barcelona, as a necessary prerequisite

for academic uses of these data. All the contracts, each of them directly related to a specific

subject, were randomly assigned a unique and anonymous identifier code by the company.

The contract information given by the company was originally split into multiple files, so we

undertook the difficult process of data linking to store all the information in a single file.

One the one hand, we were provided a claims file, which essentially reported the historical

medical claims recorded within each contract during the study window, as well as different

types of personal information associated with each subject’s contract, such as age, gender,

residence and length of time with company. This claims file was arranged in the long-format,

so the repeated measurements collected within each contract were stored in multiple lines. On

the other hand, a time-to-event file was also given by the company, providing information

about insurance dropouts and the reasons behind them, or whether the subject’s death

occurred before the end of the study. An exhaustive scrubbing process was conducted in

both data sources by removing incomplete, improperly formatted, or duplicated records, as

well as that information occurring outside the established study period. The algorithms

implemented to undertake all these tasks also considered the identification and correction of

missing data, redundant information, and the potential existence of contradictory records.

After this scrubbing, the final dataset was obtained through the appropriate combination of

the information contained in both files.

The whole process for obtaining the HI dataset entailed a huge programming and computa-

tional effort, given the high volume of observations. Basically, the main tasks that we had

to carry out in order to obtain the final dataset consisted of the following:

1. Importing the claims information.

2. Importing the time-to-event information.

11
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3. Merging different data sources into a single file.

4. Selection and scrubbing of the medical claims to perform our research.

5. Construction of a longitudinal mesh which is used to collect subjects’ measurements.

All the above steps and the challenges related to their proper implementation are briefly

summarized in the next subsections. The different algorithms for scrubbing and adequately

merging different data sources are implemented by means of the R software (R Core Team,

2017), and are explained in detail by the software code supplied in the Appendix A.

2.1.1 Importing the Claims File

In this first phase of data management, we consider all the available medical information

during the 8.1-year observation period. For this, we take into account both routine and

emergency medical demand observed within the contracts, each of which is referred to by

a single and anonymous identifier, id. The longitudinal information of claims related to

the same contract is organized in long-format. Hence, within each contract represented in

the file, there were as many rows as claims observed during their monitoring. The type of

medical claim is reported by means of three different codes: the general type of medical claim,

cfam, the medical specialty, cspe, and the specific medical service, cclaim. In addition, the

claim date occurrence, dclaim, is included in the resulting file, as well as different variables

related to the subject of the contract, such as the birth date, dborn, the gender, sex, and

the geographical information, such as the postal code cp or the municipality town (where

unusual characters and punctuation in place names were removed).

We only select those contracts of subjects living in the city of Barcelona (Spain) to guarantee

population homogeneity. This results in a total of 33 311 different contracts, whose informa-

tion was spread across 2 162 538 observations (rows). The data importation is conducted in

the R environment using the package data.table (Dowle et al., 2017). This package offers

important advantages over the traditional data.frame format when manipulating big data,

requiring a lower computational demand in combination with simple syntax (further details

on this package can be found in http://r-datatable.com).

2.1.2 Importing the Time-to-Event Information

The provided file regarding the information of lifetimes contains one single observation for

each policy contract, using the same identifier coding system (id) as in the claims file to

denote the contract held by a specific subject. The starting date of the contract with the

insurance company is supplied through the variable dini, as well as the date on which

contract’s progress of medical demand stops being observed, dfinal. In this regard, the

company provides, for each contract, the cause due to which the monitoring ends. This allows

us to introduce a dichotomous variable, status, indicating in each case if the conclusion of
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follow-up is due to the occurrence of the event of interest. So, we have status = 1 in all

those observations associated with contracts that have left the study due to the death of the

subject, implying the occurrence of an event, whereas we have status = 0 if a contract’s

follow-up interval has concluded with the subject still being alive, leading to administrative

censoring. In our case, most of the censored data derive from the closing date of the study,

but some of them come from loss of follow-up after a known date due to causes not related to

the subject’s health status (mainly unpaid premiums and disagreements between the subject

and company about the premium price).

The main task we face when managing the time-to-event file comes from the correct assign-

ment of initial and final monitoring dates for each contract, as well as the corresponding

causes of follow-up cessation. This difficulty arises from the fact that subjects in the study

had the possibility of changing their policy terms from a certain date onwards, so each change

in the contractual terms was kept in the file as another observation, but with a new identifier

code. In these cases, the effective date of change was established as: a) the final follow-up in

the previous subject’s observation, which remains right-censored due to an “artificial” loss

of follow-up (since the subject’s contract is actually being followed with another identifier

code), and b) the initial follow-up date in the new observation generated by the change in

contractual terms. Therefore, there are contracts who have multiple dates associated for

both enrollment in the company and for ending their follow-up interval. In all cases we

keep the most conservative dates, by considering the oldest enrollment date, and also the

oldest following-up date in the cases where the death is not recorded in any of the multiple

observations.

Once the possibility of multiple contracts per subject is considered and adequately scrubbed,

we get a file containing 145 742 single contracts, each of them uniquely associated with a

specific subject of any age. Note that the final number of contracts is a much larger quantity

than that obtained in the claims file (a difference of 112 631 contracts), due to the following

reasons:

� The file which contains lifetime information does not report about residence, so we are

actually dealing with contracts of subjects included living in any part of Spain (subjects

living outside the city of Barcelona are later excluded).

� We are considering contracts who belong to subjects of all ages, thus including an impor-

tant percentage of policyholders at younger ages who have not needed medical coverage

yet, and consequently no historical information about them has been recorded in the claims

file (in the final dataset, only subjects aged 65 and over will be considered).

� The provided contracts belong to subjects that may use a combination of private and

public medical care, since the Spanish system offers universal health care coverage as a

constitutionally-guaranteed right. Hence, a subject’s contract could not have any record

in the claims file, and yet the subject could have received medical care within the public

system.
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2.1.3 Merging Longitudinal and Survival Data: From Contracts to Subjects

The longitudinal information is merged with the time-to-event information, so from this

moment on we are not dealing with contracts any more, but working directly with subject’s

information. To properly merge both type of data, algorithms are implemented to eliminate

demand-related time inconsistencies present in the original information. In particular, we

make sure that for each subject, all dates associated with medical claims, denoted by dclaim,

are indeed placed within the time interval in which the subject is with the insurance company,

delimited between the dates dini and dfinal.

Medical data collection across the study is conducted using a mesh of eight equally-spaced

control points, respectively allocated at every year end throughout the study period. In this

step, at each of these points we account for all types of medical records occurring during the

immediately preceding year (later only emergency claims will be used). The establishment

of these control points entails the annual discretization of medical demand observations for

each subject, originally recorded by the insurance company in a continuous manner. We

are then working with longitudinal profiles of subjects for whom repeated measurements of

medical services are annually recorded at each of the years covered by their trajectory.
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Figure 2.1. Mesh of control points to gather information about annual demand for medical

services for each subject.

This response partitioning confers important advantages in dealing with longitudinal claims:

1. It subsequently allows to annually summarize the longitudinal demand, thus working with

rates of claims (claims per unit of time) instead of raw claims. This is particularly useful

in panel counts, where the time periods during which counts are recorded may vary. As
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an example, let us consider two longitudinal profiles, respectively belonging to a couple

of subjects who have the same gender and reach 65 years on exactly the same day, before

the study begins. Let us additionally suppose that the first subject enrolled with the

company on 1990/01/01 (i.e., subject’s profile follow-up is observed from the beginning

of the study), and the second one enrolled on 2006/07/01 (i.e., the subject is incorporated

into the study after it has begun). Without taking into account their particular biological

features, the effect of recording the same number of medical claims at the end of year 2006

from their corresponding longitudinal profiles will not have the same medical impact, since

only the first profile has been followed-up during the whole year of 2006. Thus, a direct

comparison working in raw claims would not be fair since identical information is collected

about the second subject in half the time, so the importance of their measurements must

be time-weighted accordingly (later, this will be properly addressed).

2. The selected time unit for each measurement is established as a year, thus coinciding with

the reference period that insurance companies use to fix their premium pricing.

3. We establish only eight potential starting points into the study for each of the subjects,

placed just after the corresponding control points. Working with a small number of points

to enter into the study represent significant computational advantages given the volume

of the data to be handled.

4. The admission date of each subject into the study is automatically reflected in their

corresponding longitudinal profile by the control point at which the individual is enters

the study, thus providing a longitudinal response. This response is usually assumed to

remain constant until the next control point.

5. It proves easier to impose minimum follow-up conditions to allow a specific subject to

enter into the study, establishing the constraint that a subject’s longitudinal profile must

have crossed, at least, one of the prespecified control points.

Once the system to collect all types of medical claims, the admission of each subject into the

study is reflected by the date of the first control point in which an elderly 65 subject provides

longitudinal information. In particular, each subject’s entry date into the study is denoted

by dent, assigned as the date of the first control point at which an specific individual is 65

or older, and has, at least, half a year of previous following in their medical demand profile.

The time frame in which each subject is observed is delimited between the dates [dent,

dfinal] (logically, the date dent is always after or equal to the date dini). At the end of

this step, we have information about 5496 subjects and 531 580 observations.

2.1.4 Selection and Scrubbing Process of Medical Claims

For each of the previous subjects, we aim to record only those medical claims directly re-

lated to emergency care: ambulance services, hospitalizations and non-routine medical visits.

Before focusing on selecting emergency claims, however, we have to take into account the



16 CHAPTER 2. The Health Insurance Data

subjects who do not have any emergency claim recorded. These subjects should be accounted

for in the final dataset, and at this stage a single observation is incorporated into the dataset

by assigning a particular medical code and a null value in the quantity of claims. The ad-

dition of such an “artificial” row to the claims file is the way to denote that these subjects

will provide observations with zeros in the final dataset.

Once these zero values are recorded, we select the three general codes related to the corre-

sponding type of claim we wanted to account for, and then we focus on a scrubbing process

within each of these. The process of cleaning up each of the codes involves removing dupli-

cated or inconsistent values which could distort the results of our analyses. In addition, the

standardization of the way to account for a claim is another important point, since some of

the claims units do not correspond to a real demand (for instance, the ambulance service

was given in hours, whereas we are just interested in the request for this service). We keep

the previous 5496 subjects, but we have now only 31 170 observations.

2.1.5 The HI Dataset

Within each subject, we add up the emergency claims recorded in the whole calendar year

immediately before control point covered by subject’s longitudinal profile, and we assign

such amount of claims to the corresponding control point. In case of subjects without any

record, a zero value is assigned. The specific amount of emergency claims recorded at each

of subject’s control point measurements is accounted for by the variable claimyr. Hence,

the main longitudinal outcome in our study is defined as the emergency claims per year. We

assume that each measurement associated with a control point will remain constant until the

next control point. This last observation carried forward approach (LOCF) is the common

working scheme for handling both longitudinal and time-to-event information. Further, the

longitudinal profile of those subjects who had a single and artificial measurement without

claims are expanded across their life span in the study window, thus systematically recording

zeros at each of the control points crossed by their longitudinal profiles. In order to avoid

anomalous results, of the 5496 people recruited so far, we removed the 19 subjects who

have over 20 claims per year in any of their measurements, and also those 7 subjects whose

follow-up interval started after having reached the age of 100 years. We finally retrieve the

longitudinal and time-to-event information related to a homogeneous population of 5470

insured subjects aged 65 and over, representing a total of 32 269 measurements (note

that here the number of measurements increases in comparison with the previous step).

However, not all subject-profiles start to be observed at the beginning of a specific calendar

year. Consequently, as noted in Section 2.1.3, the time periods during which emergency

claims are collected might be different. We therefore need to explicitly consider exposure

time effects in order to avoid spurious estimates. This procedure is carried out by relating

the amount of emergency claims observed at the end of a calendar year to the corresponding

exposure time, thus taking into account the real period-at-risk in which the aforementioned
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amount is collected. The longitudinal value of the exposure time variable, denoted in the

file by expo, ranges in our case from expo = 0.5 (i.e., the subject’s medical information

is only recorded during half a year) to expo = 1 (i.e., the medical information is recorded

during the whole year). Finally, at the end of each subject’s follow-up interval we know the

value of dichotomous variable status, which informs either of the subject’s death or that

the individual is still alive.

The longitudinal information of the final dataset is stored in terms of start-stop coding, thus

meaning that each subject’s longitudinal observation of the response variable is assumed to

have been collected inside a time interval (start, stop] during which the value of the variable

remain constant. This nomenclature is usually referred to as counting process coding, which

assumes the occurrence of events as the realization of a very slow process (Andersen and

Gill, 1982; Fleming and Harrington, 1991; Andersen et al., 1993). Additionally, all those

subjects whose interval follow-up start at older ages than 65 are assumed to have delayed

entries, and consequently their survival times are left-truncated. An appropriate way to

handle different starting ages in our study is using the age above 65 years as our particular

time scale, so that all our timing references are adapted to this threshold age. Such features

yield the final health insurance data source used in this thesis, the HI dataset, where the 10

variables showed in Table 2.1 are included.

Name Description

id Subject identifier.

sex Gender of the subject: 0 = Man, 1 = Woman

age dent Age of the subject at study entry (in years).

obstime Observation time (in years above the age of 65) of measurement recording.

claimyr Emergency claims (ambulance services, hospitalizations and non-routine medical

visits) per year, denoted by yi(t) for the i-th subject at the observation time t.

expo Exposure time (value between 0.50 and 1.00 years), denoted by ei(t) for the i-th

subject at the observation time t.

start Lower limit (in years above the age of 65) of the time interval during which the

corresponding measurement of emergency claims is recorded.

stop Upper limit (in years above the age of 65) of the time interval during which the

corresponding measurement of emergency claims is recorded.

event Event indicator at the end of each of the follow-up intervals (start, stop] from

a specific subject. Its dichotomous value across all intervals related to the same

subject will be by 0 if subject is still alive at stop, and will vary to 1 when death

is recorded.

status Event indicator at the end of whole follow-up of specific subject. Its value is

constant across all subjects measurements, and is categorized by:

0 = The subject is still alive at the end of follow-up: Righ-censored data

1 = The subject’s death was recorded at the end of follow-up: Event data

Table 2.1. Names and description of the variables provided by the HI dataset.
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In Figure 2.2 we present three possible situations of longitudinal profiles contained in the HI

dataset, exemplified by subject 1 , subject 2 , and subject 3 . We realize that in all cases

the corresponding measurement points match to the control points, equally-spaced over the

study period.

Subject 1 is a man who enrolled with the company before 2006/01/01, and entered into

the study at the second control point, at the age of 65, so his time-to-event data is not

left-truncated. The follow-up of this man extends from the date of his first measurement, on

2008/01/01, until the administrative closing date, on 2014/02/01, with him still being alive

at the age of 71.1 years. Consequently, his event time is right-censored.

Subject 2 is a man who is exactly the same age as subject 1 , but he enrolled with the

company on 2007/07/01. He also entered into the study at the age of 65, at the second

control point, and his follow-up extends from the date of first measurement (where the

emergency claims recorded are corrected by an exposure of 0.5), on 2008/01/01, to the date

of his dropout from the study, on 2011/10/01. Then, we only know that he was still alive

at the age of 68.8, so his time-to-event outcome is right-censored.

Finally, subject 3 is a woman who enrolled with the company before 2006/01/01, and

entered into the study at the first control point, at the age of 80. Consequently, her time-

to-event data is affected by left truncation (caused because 15 years have elapsed since the

time zero of study). Her follow-up extends from the date of first measurement (obtained

after having been followed the whole year of 2006), on 2007/01/01, to the date of her death,

on 2012/07/01. In this case, the woman’s death was recorded when she was 85.5 years old,

so her time-to-event response corresponds to an event of interest.
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Figure 2.2. Observed time-to-event profiles for three subjects in the HI dataset.
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Due to the nature of our dataset (where two different outcomes are reported), each subject’s

profile represented in Figure 2.2 can be thought of both from a longitudinal and time-to-event

perspective, as illustrated by Figure 2.3:
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Figure 2.3. Longitudinal and time-to-event information about the three subjects from the

HI dataset represented in Figure 2.2. The panels on the left side show the evolution over time

of emergency claims per year, whereas the panels on the right side depict the corresponding

survival information.

Taking the three profile examples discussed above, Table 2.2 displays the format and the

structure with which the information in the HI dataset is stored. In that scheme, the follow-

up period for each individual within the study window is divided up into a sequence of

shorter time intervals, each of them characterized by an entry time (start) and an exit time

(stop), during which the value of the longitudinal outcome remains constant, as well as the

explanatory covariates (in our case only the variable sex). Thus the longitudinal and time-
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to-event information for each subject is represented by a number of right-censored intervals

and possibly one interval ending with the death event.

id sex age ent obstime claimyr expo start stop event status

1 0 65.00 0.00 1 1.00 0.00 1.00 0 0

1 0 65.00 1.00 0 1.00 1.00 2.00 0 0

1 0 65.00 2.00 2 1.00 2.00 3.00 0 0

1 0 65.00 3.00 1 1.00 3.00 4.00 0 0

1 0 65.00 4.00 0 1.00 4.00 5.00 0 0

1 0 65.00 5.00 0 1.00 5.00 6.00 0 0

1 0 65.00 6.00 0 1.00 6.00 6.08 0 0

2 0 65.00 0.00 1 0.50 0.00 1.00 0 0

2 0 65.00 1.00 1 0.50 1.00 2.00 0 0

2 0 65.00 2.00 2 0.50 2.00 3.00 0 0

2 0 65.00 3.00 0 0.50 3.00 3.80 0 0

3 1 80.00 15.00 1 1.00 15.00 16.00 0 1

3 1 80.00 16.00 0 1.00 16.00 17.00 0 1

3 1 80.00 17.00 2 1.00 17.00 18.00 0 1

3 1 80.00 18.00 3 1.00 18.00 19.00 0 1

3 1 80.00 19.00 5 1.00 19.00 20.00 0 1

3 1 80.00 20.00 3 1.00 20.00 20.50 1 1

Table 2.2. Layout information supplied in the HI dataset in accordance with the information

provided in Figure 2.3.

The whole process summarized in this section entailed a huge programming and computa-

tional effort given the high volume of both the measurements and the different issues to

consider in each step. All the scrubbing tools were implemented by means of the R software,

and the different steps to be followed for obtaining the final dataset are detailed in the R

code supplied in Appendix A.

2.2 Scope of the Data: The HI dataset

The HI dataset becomes an extremely rich and valuable source of medical information to

reflect the current situation of private health care providers in Spain, thus helping us to

answer the stated research questions. Specifically, these data allow for modeling the given

information using a three-pronged approach:

� Longitudinal approach: The HI dataset contains repeated counts of the annual demand for

emergency care for each of the considered subjects. We can assume that claim counting

for each subject plays the role of a classical biomarker, in the sense that it provides
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essential information regarding the individual health status during the study period. Given

that the final aim is relating the demand evolution to the death hazard, the motivating

dataset is constructed in order to carry out a longitudinal study of different time-dependent

information associated with each subject.

� Time-to-event approach: The resulting dataset contains the age at which each subject

enters the study, coinciding with the time point of their first longitudinal observation, and

the age of the subject’s death (defined here as the particular event of interest) or right

censoring (for those subjects whose death event is not observed). Besides the usual cen-

sorship mechanism, our study is unique in that it only focuses on those subjects who have

reached the age of 65. This has two direct implications on the survival times ultimately

observed: a) all subjects who have not reached 65 years of age within the study window

are excluded, and b) all those entering after the age of 65 are assumed to be delayed entries

in relation to time zero, set at the age of 65. Both factors, closely related, mean that the

presence of left truncation issue should be kept in mind when analyzing our right-censored

survival data. The time-to-event modeling is then conducted as the elapsed time from the

age of 65 until the death event.

� Joint approach: A simultaneous approach of the longitudinal and time-to-event informa-

tion can also be considered (including parameters that control their correlation), this being

the primary goal over the following chapters. The joint modeling is tackled by assuming

a shared latent structure between these two processes, so that longitudinal responses can

be taken into account in the survival analysis as a subject-specific covariate information.

In such a working scheme, longitudinal and time-to-event data are time linked by an ap-

propriate association structure, which collects the degree of relationship between the two

responses. The functional form adopted to collect this association will be the one that

most clearly helps to understand the patterns of health care usage by the elderly.

2.3 Longitudinal Information Provided by the HI dataset

2.3.1 Definition and Recording Scheme of the Longitudinal Outcome

The HI dataset derives from the information provided by a Spanish medical insurance com-

pany, and is circumscribed within a period of time that, for administrative reasons (and

therefore not related to mortality risk), encompasses from the January 1, 2006 until Febru-

ary 1, 2014. The length of time between these two dates is called study period or study

window, and corresponds to the period when an active monitoring of the target population

is performed.

The cohort under study consists of a homogeneous population of n = 5470 subjects (37.6%

men and 62.4% women), aged between 65 and 100 years when entering the study, and living in

the city of Barcelona. All these subjects have the right to receive medical assistance during
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the 8.1-year study period, and we are interested on monitoring, within the i-th subject,

i = 1, . . . , n, the degree of the medical service’s use in order to obtain personalized patterns

of mortality risk. More specific, we focus on time evolution of emergency claim counts, so

that follow-up recordings of this discrete response are annually conducted annually using a

mesh of control points fixed at the end of each calendar year throughout the study period.

Hence, the longitudinal outcome is defined as the rate of emergency claims per year, where

ambulance services, hospitalizations and non-routine medical visits are considered in an

aggregated manner. This longitudinal response involves a count value, which plays the role

of a health status indicator during each subject’s follow-up time within the study window.

Because subjects do not enter the study at the same age, each subject provides a set of ni
responses, observed at time points t ∈ {tij, j = 1, . . . , ni}, and summarized via the vector

yi = {yi (t1) , yi (t2) , . . . , yi (tni)}. A total of 32 269 observations are conducted during the

study period.

The monitoring of the data can be considered adequate, with an average number of mea-

surements by subject of about six measurements (a mean follow-up in time of 5.10 years,

and a median of 6.33 years). Nearly half of the subjects are observed across the whole study

period, and no significant differences can be inferred by relating the number of measurements

to the average age of study entry (Table 2.3).

Measurements per subject Average age at entry Subjects (%)

1 75.00 383 (7.0)

2 75.54 414 (7.5)

3 76.61 447 (8.2)

4 75.36 411 (7.5)

5 75.18 425 (7.8)

6 74.52 406 (7.4)

7 74.62 360 (6.6)

8 75.50 2624 (48.0)

Overall 75.40 5470 (100.0)

Table 2.3. Distribution of the number of measurements in the HI dataset.

2.3.2 Particular Features of the Longitudinal Outcome

When recording the diagnostic information inside the observation period, the within-subject

measurements are non-negative integers which precisely range from 0 to 20 emergency claims

per year, so higher values can be related to poorest health status. Overall mean and variance

values are 0.84 claims/year and 2.66 (claims/year)2, respectively, thus suggesting that these

measurements are affected by a marked degree of overdispersion. In our context of panel

data, it entails that within-subject observed variance is significant large compared to the
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observed mean, so that a same subject can record few counts during most measurements

and many at some specific control points. The causes of overdispersion have been pointed

out by several authors; e.g., Hinde and Demétrio (1998), Molenberghs and Verbeke (2005),

Winkelmann (2008), Frees (2010), and Hilbe (2011). In practice, we can conclude that panel

count data are often overdispersed, mainly due to a) the unobserved heterogeneity, b) the

correlation between repeated measurements on a same subject, c) an excess of zeros in the

observed data. The aforementioned reasons may arise separately or together.

In our motivating dataset, a large number of zeros are exhibited in the longitudinal outcome,

representing 63.1% of the overall measurements, and presenting as the main cause of overdis-

persion. The tendency to overdispersion continues when stratifying by subject’s gender, as

shown in Table 2.4.

Sex Subjects (%)
Emergency claims per year summary

Mean SD Min Max % Zeros

Man 2055 (37.6) 0.85 1.66 0 19 63.8
Woman 3415 (62.4) 1.84 1.60 0 20 62.7
Overall 5470 (100.0) 0.84 1.63 0 20 63.1

Table 2.4. Descriptive statistics of emergency claims per year stratified by gender indicator
in the HI dataset.

Regarding the observed abundance of zeros, the universal coverage offered by the Spanish

health system becomes a key point. It is aimed to ensure that everyone is protected from

health issues, regardless of their particular economic situation. Due to this particular feature,

in our case zero counts may arise from two different sources:

� If a policyholder has a good health status (here understood as the absence of a critical

disease), it means that the subject is only using the insurance coverage for routine medical

care, so a zero arises from the considered counting model. It is a classical zero, sometimes

referred to as a sampling zero, which is obtained randomly due to a subject’s health status.

� In the case that a policyholder is being treated in a public medical center, that subject will

not have emergency claims recorded inside the health insurance system, and consequently

subject’s risk can not be observed within the private health care. In that case, it arises a

zero which does not come from a counting process because this null value does not appear

by chance. These zeros are usually named structural zeros, which inflate the response that

initially might be expected at this value from a standard count model.

The above circumstance, displayed on the left-hand panel in Figure 2.4, is compounded with

by the infrequent nature of the an emergency claim, and is the main source of overdisper-

sion in the longitudinal response. Consequently, this needs to be taken into account when

modeling the counting process.
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Although it can be assumed that the proportion of zeros is inherent to the health status and

use of private services of each individual, the right-hand panel of Figure 2.4 suggests that, in

principle, we can not infer any significant trend in the proportion of zeros over time. Indeed,

the overimposed lowess curve deviates slightly from the dotted horizontal line representing

the average proportion of zeros (0.63). The rate of null values is lowest around 85-90 years

old, even though the rates do not excessively depart from the mean rate.

Figure 2.4. Descriptive plots of the longitudinal outcome of the HI dataset. Left panel:

Frequency plot over all measurements and both genders (recall that 5470 individuals were

observed over a maximum of 8.1 years). Right panel: Average proportion of zero count rates

by age, where a smooth curve has been superimposed.

Although it is commonly accepted that the annual demand for health care increases with age,

it has been proven that this pattern is not necessarily observed for any age period over 65,

as exposed, for example, by Reinhardt (2003). In this regard, Charpentier (2015) suggests

analyzing the evolution of the empirical claims frequency according to policyholder age. In

our particular dataset, an initial increase in emergency demand is observed as subject ages

when fitting a generalized additive model (GAM) under the Poisson and negative binomial

models (Figure 2.5). However, this demand peaks around 85-90 years, and a changing trend

is detected at very old ages, so our data show that the use of health insurance services

decreases among those of an advanced age. This may reflect the fact that a portion of

the elderly population have taken up residence in nursing homes at older ages, and thus,

receive personalized care, or it might be a result of a preference for public over private

health services for severe treatments (Rodriguez and Stiyanova, 2004). Note that those ages

related to maximum demand levels correspond precisely to those ages at which the highest

proportion of zeros counts are observed.



CHAPTER 2. The Health Insurance Data 25

Figure 2.5. Observed annual rates of emergency claims by age in the HI dataset, with Poisson

and negative binomial GAM fittings. The 95% confidence regions are presented.

2.3.3 Observed Risk Patterns in the Longitudinal Outcome

Although this thesis focuses on the proper way to account for the subject-specific longitu-

dinal information in estimating the death hazard, it is usually helpful to refer to descriptive

results that allow for an initial idea about the type of dependence existing between the two

responses. In this regard, when stratifying the descriptive statistics of the emergency claims

measurements per year in relation to the death event, the following important results stand

out: a) The tendency of the data to overdispersion is maintained as much in subjects during

the study as in those whose death event is censored, b) the average number of observed

emergency claims in a year is almost double for those subjects who experience the event of

interest, and c) the percentage of observed null values is markedly higher for those profiles

in which the event of interest is not collected.
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Death Subjects
Annual claims summary

Mean SD Min Max % Zeros

No 4961 0.80 1.55 0 20 63.8

Yes 509 1.50 2.45 0 18 52.4

Overall 5470 0.84 1.63 0 20 63.1

Table 2.5. Descriptive statistics of emergency claims per year stratified by event indicator.

In the case of the longitudinal data, we observe a positive correlation within subject’s mea-

surements, so a graphical analysis becomes a key element in order to rapidly discern patterns

regarding any further explanatory variable (in our case the death event). Figure 2.6 shows

the time-plots of various claim profiles, where subject-specific measurements are connected

by line segments. The top panel shows the trajectories for a random sample of 100 subjects

alive at the end of study, while the bottom panel shows 100 randomly selected profiles of

subjects whose death was recorded during the study. Notice that the group of subjects whose

death event is recorded presents higher mean values than those presented by the subjects

that remain alive.
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Figure 2.6. Subject-specific claim profiles across time (age in years) for 100 randomly selected

subjects still alive during the follow-up period (top panel) and for 100 randomly selected

subjects whose death is observed (bottom panel).
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2.4 Time-to-Event Information Provided by the HI Dataset

When modeling time-to-event data for the n = 5470 subjects who are ultimately included

in the study, it is necessary to establish a well defined origin point from which to begin

measuring each subject’s survival time T ∗i , i = 1, . . . , n, that is, the time that it takes the

event of interest to happen for a specific subject. In our particular case, only policyholders

living beyond the age of 65 are considered within the study period 2006-2014.

Because our study is carried out in a defined time period of 8.1 years, some subjects die

before reaching the age of 65, while others register delayed entries as their follow-up begin

after that threshold age. Specifically, a total of 4365 subjects (79.8%) enter the study at

ages over 65, thus resulting a mean age at study entry of 75.4 years (i.e., 10.4 years above

the minimum threshold required). Therefore, our time-to-event data T ∗i is left-truncated

(Uzunoḡullari and Wang, 1992; Klein and Moeschberger, 1997). In order to avoid biased

estimates on survival parameters (because those subjects who had died before the age of

65 are not included in the study), a proper consideration of the left truncation issue in the

mortality hazard is achieved by setting the time zero at the age of 65 years, and using age

(above 65) as our particular time scale (Lamarca et al., 1998; Thiébaut and Bénichou, 2004;

Gail et al., 2009). In addition, an important portion of them are still alive at the end of

study, while others drop out of the study before having experienced the event, due to causes

beyond their health (mainly unpaid premiums and disagreements between the subject and

company about the premium price). In each of these cases, we have incomplete follow-up

information since we only certainly know that these subjects survival time will greater than

their last observed follow-up time. Consequently, the time-to-event data in the HI dataset is

subject to left truncation and right censoring. Both survival issues arise here due to causes

which are not related to the event of interest, so right censoring and left truncation issues

are considered as non-informative.

Once our reference times are adapted to the new time scale due to handle left truncation, the

individual profile descriptions for all the subjects cover from their age at first measurement

(coinciding with the age at study entry) until the date on which the first of these three

possible scenarios happen:

� Scenario A: The subject profile reached the study end, on 2014/02/01, being the subject

still alive.

� Scenario B: The subject profile dropped out of the study, due to causes not related with

health status, on specific date prior to 2014/02/01.

� Scenario C: The subject profile, which is left-truncated, ended at the date of subject’s

death, prior to 2014/02/01.

In the first and second scenarios we could only say that up to a determined time point, the

subject is still alive, but we have not more information beyond that date (their time-to-event
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information is incomplete). By contrast, in the third scenario subject experiences the event

of interest, and we know the true event time.

In the three examples of possible survival profiles shown in Figure 2.2, their respective

classification in one of the three proposed scenarios is evident. So, subject 1 is framed in

scenario A, subject 2 is a typical case of the loss to follow-up described in scenario B, and

subject 3 is a classic case of scenario C. Because the average life expectancy in Spain is much

greater than 65 years (our particular time zero), at the end of follow-up only 509 (9.3% in

total) deaths are recorded, while the remaining 4961 (90.7%) subjects lead to right-censored

data.



CHAPTER 3

STANDARD JOINT MODEL WITH LEFT-TRUNCATED

TIME-TO-EVENT DATA

3.1 Principles of the Standard Joint Model

Many cohort studies focus on assessing the time effect of a longitudinal process on the survival

outcome for an specific event of interest. Let yi(t) denote the observed response for the i-th

subject, i = 1, . . . , n, at time t, and let T ∗i be the corresponding event time. A first approach

to handling longitudinal covariates in survival analysis consists of including within-subject

repeated measurements as time-dependent covariates, which is achieved by an extension of

the classical proportional hazards model (Cox, 1972), called the time-dependent Cox model.

However, this treatment may lead to inefficient or biased inferences about the underlying

data mechanisms, especially in those cases where longitudinal and survival outcomes are

strongly associated (e.g. Gould et al., 2015). First, the extended Cox model is thought to

accommodate time-dependent exogenous (external) variables in the survival analysis, that

is, predictable processes whose value at any time t for the i-th subject does not depend on

the occurrence of an event at time s, with t > s (Kalbfleisch and Prentice, 2002). This

characteristic is clearly inconsistent with accounting for a subject’s health status, since it

is a non-predictable process which depends on different unobserved biological features, thus

being endogenous (internal) to the mortality risk in our case. Second, the complete covariate

path before any t, denoted by Yi(t), is not fully observed, but is only intermittently captured

by a specific set of time snapshots tij ≤ T ∗i , j = 1, . . . , ni. Finally, an additional drawback

of the time-dependent Cox model is that observations of an endogenous process are usually

contaminated by a random measurement error. Instead, a typical way of addressing time-

dependent survival data with dropouts consists of imputing the last observed value to fill in

until the occurrence of a new non-missing value. This imputation method implicitly assumes

that the value of the outcome remains constant between two subsequent measurements

without taking into account subject’s latent effects, which is rather unrealistic in survival

analysis when handling endogenous covariates subject to random variability.

Endogenous covariates in the survival analysis are properly addressed in the joint model-

ing framework, that is, the simultaneous modeling of the longitudinal and time-to-event

outcomes. Specifically, the repeated measurements collected from each subject are tradi-

tionally related by using a simple linear mixed model (Laird and Ware, 1982; Verbeke and

Molenberghs, 2000; Fitzmaurice et al., 2008), whereas the event times are modeled by a

classic relative risk model. Then, the key idea relies on assuming that longitudinal and

29
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survival processes depend on a common set of latent random effects, so that the expected

values µi(t) of the longitudinal process can be included in the relative risk model as a time-

dependent information. Building on this insight, the unrealistic step-function assumed in

the time-dependent Cox model is now replaced by the true smooth evolution over time of the

complete longitudinal history, namely Mi(t), and the expected longitudinal response µi(t)

can be related at each time t with the instantaneous hazard for the event, denoted by hi(t).

The benefits of joint modeling are not restricted to the association between both implicated

responses, but the combined approach also allows for the avoidal of biased estimates from

each submodel, as has been well documented in, for instance, Tsiatis and Davidian (2001)

and Fieuws et al. (2008). When using joint modeling techniques, the point of interest may

be focused to address the following concerns: a) adjustment of longitudinal profiles in the

presence of informative dropouts, b) determination of time-to-event outcomes by account-

ing for the subject-specific information, and c) characterization of the association structure

between each subject-specific trajectory and the survival time. Figure 3.1 exemplifies the

fundamental principle behind joint models on a subject from the HI dataset, where the ex-

pected emergency claims per year are related to the subject’s death hazard at each time t,

given that t exceeds the corresponding left truncation time τi. Recall that low values for the

annual rate of emergency services are implicitly related to a lower mortality risk.

Figure 3.1. Graphical representation of the main idea behind standard joint modeling formu-

lation for a subject from the HI dataset. Top panel: Time evolution of subject’s death hazard.

Bottom panel: The dotted line depicts the step-function arising from the observed responses

in the time-dependent Cox model, while the solid line corresponds to the smooth evolution

derived from the expected longitudinal responses.
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3.2 Analysis of Longitudinal Continuous Data

3.2.1 Features of Longitudinal Data

Longitudinal studies are based on repeated measurements of subjects taken intermittently

over a period of time (called the study window), thereby entailing a (positive) correlation

between the subject-specific set of observations. In such study designs, the independence

between all outcomes assumed by classic regression methods is no longer valid, and special

statistical techniques are required for valid analysis and inferences about parameters.

A quite common characteristic in follow-up studies is the fact that some subjects enter

the study at different times or drop out of it prematurely, yielding in both cases unequal

number of measurements per subject due to the missing values. Following the missing

classification established by Little and Rubin (1987), if the missing data pattern follows a

missing completely at random (MCAR) or a missing at random (MAR) mechanism, the

dropout is considered as non-informative or ignorable, and the unbalanced data can be

accommodated by the classical longitudinal models. However, in the case of having a missing

not at random (MNAR) mechanism the dropouts are informative or non-ignorable, and the

possible reasons for dropout should be accounted for in order to avoid biased estimates.

This kind of data may arise in medical, economic and social research fields, and its analysis

is specially useful in assessing changes over time in the behavior of interest. The longitudinal

data structures are indeed clustered within a set of observational units, so they allow for the

accommodation of two different variability sources in the response observed over time:

� Between-subject variation: This is the typical source of variation analyzed in cross-

sectional studies (where all the measurements relate to one point in time), and reflects

the variability of observed responses from one subject to another. In other words, it mea-

sures how pronounced the departure of the subject-specific underlying behavior (due to

biological, environmental or social factors) is from the population trend.

� Within-subject variation or residual variation: This measures the degree of change in the

observed outcomes at the individual level, and collects the inherent variability of each

subject that can not be explained by some predictive variable.

In the particular case of claim data analysis, the observed data provide a powerful tool to

assess the death hazard according to specific biological and socio-economic latent features of

the subject that are difficult to evaluate (Tyree et al., 2006; Shi and Valdez, 2014). Moreover,

the incompleteness of some profiles in the HI dataset is caused either by the left truncation of

the time-to-event data from those subjects that enter the study after 65, or by the subjects

leaving the insurance company due to economic reasons. In both cases, we face an ignorable

missing mechanism which can be adequately handled without any imputation or additional

assumptions.
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3.2.2 Transforming Counts into Continuous Data

Most of the longitudinal studies are designed to accommodate a continuous outcome, which

is usually normally distributed around the expected (unobservable) value at each time point

within the study window. This is, in fact, the consequence of residuals following a mean-

zero normal distribution with a homogeneous variance. However, count processes usually

present a highly skewed distribution that clearly departs from a bell-shaped curve, so in-

valid inferences would be obtained since the data are not in line with the assumptions made

in models with a Gaussian response. A first attempt to easily deal with count rates in

a continuous manner consists of “normalizing” the observed data by means of a proper

transformation function, usually a logarithmic one. Although there are other types of trans-

formations recommended in the literature to normalize the distribution of count data (for

example, the square-root transformation or, more generically, the power transformation), the

log-transformation is definitively the most widely used in both medical and socio-economic

research to make data conform to normality.

One important issue concerning the application of the log-transformation to count rates is

dealing with zero values. In this regard, a specific drawback comes from log(0) −→ −∞,

so a constant value must be added to the observed rates before transformation. Since

possible values are restricted to non-negative integers, a one-unit increase is typically used to

guarantee a one-to-one transformation mapping, which maintains the same number of zeros

and eliminates the possibility of negative values. In this line, the dependent variable for the

i-th subject, i = 1, . . . , n, at time t becomes yi(t) = log {1 + claimyri(t)}, and we can now

assume a linear evolution over time of the expected value of the observation, µi(t).

3.2.3 The Linear Mixed Model

The analysis of longitudinal data is carried out under the linear mixed model (LMM), also

referred to as a subject-specific model or hierarchical linear model. The name mixed model

comes from the intuitive idea behind this model, in which a combination of fixed and ran-

dom parameters is considered to properly describe each subject’s trend. The fixed-effect

coefficients are assumed to be population constants and represent mean trends across all

subjects, playing an analogous role as the estimated coefficients in a classic regression. In

addition, we also need to take into account the by-subject variability caused by a repeated

measurements scheme, this issue being addressed by a set of latent or random effects. These

capture the particularities of the same subject and allow for individual predictions.

More specifically, let yi = {yi(tij), i = 1, . . . , n} denote the vector of the observed log-

transformed responses for the i-th subject, recorded at a set of time points tij, j = 1, . . . , ni,

within the study window. Assuming that the expected outcomes are generated by a normal

distribution, the LMM is formulated in order to linearly relate each subject-specific obser-

vation from the HI dataset to p+ 1 fixed-effect covariates (explanatory covariates) and q+ 1
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random effects:



yi(t) ∼ N{µi(t), σ2
ε},

yi(t) = log{ei(t)}+ x>i (t)β+ z>i (t)bi + εi(t) = µi(t) + εi(t),

bi ∼ Nq+1(0, D),

εi(t) ∼ N (0, σ2
ε).

(3.1)

Here, the exposure time effect ei(t) is logged and included as an offset variable, so the

log-response could be divided by the effective length of time. x>i (t) and z>i (t) are the row

vectors of the fixed and random design matrices, respectively, while β = (β0, . . . , βp)
> and

bi = (bi0, bi1, . . . , biq)
> are the corresponding fixed-effect and random-effect vectors. The

coefficients of the random effects can be assumed to follow a standard multivariate normal

distribution with an unspecified (q + 1) × (q + 1) variance-covariance matrix, D. The εi(t)

is the measurement error of an observed value, which denotes the random deviation of

the observation yi(t) from the expected value E{yi(t) | bi} = µi(t), and σ2
ε represents the

within-subject variation (assumed constant across the subjects). Finally, the random effects

{b1, b2, . . . ,bn} are assumed to be independent of error terms, {ε1, ε2, . . . , εn}.

3.3 Analysis of Time-to-Event Data

3.3.1 Features of Time-to-Event Data

The terms time-to-event data or survival data are used interchangeably to refer to those

data which measure the time elapsed from a well-defined origin point until the occurrence

of a specific event of interest, usually designated by E . The event of interest can be of many

kinds, and the elapsed time can be measured in different units (days, months, years, etc.).

The statistical techniques developed to deal with these types of data are known as survival

analysis.

Although time-to-event is a continuous variable, standard regression procedures can not be

used due to such a variable is not measured in the same way as others. First, survival times

are restricted to positive values, and their distribution is often highly left-skewed. Second,

the probability of survival after a certain point in time may be of more interest than the

expected time-to-event itself. Finally, what makes time-to-event data special compared to

other types of data is that these times are typically subject to right censoring after a known

time, meaning that some patients have not yet experienced the event E at the end of the

follow-up period. These right-censored or incomplete observations are mainly due to subjects

who have completed the study free of the event E (i.e., administrative censoring), or those

cases of loss to follow-up without the occurrence of event E before the study’s closing date

(i.e., they drop out of the study prematurely).
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Besides right censoring, time-to-event data may also be subject to left truncation in ob-

servational studies, that is, the time-to-event is incomplete at the left side of the subject’s

follow-up period. Left truncation arises for those subjects who are not observed from the

established time origin of the study (Bull and Spiegelhalter, 1997), but they come under

observation at some later known time (called the left truncation time).

Subject information in the HI dataset is collected in calendar time within two prespecified

dates, with subjects’ death being the particular event of interest. An important percentage

of them are still alive at the end of the study, while others drop out of the study before having

experienced the event, due to causes not related to their health (mainly unpaid premiums and

disagreements between the subject and company about the premium price). In each of these

cases, we have incomplete follow-up information since we only know for certain that these

subjects’ survival times are greater than their last observed follow-up time. Moreover, we

focus on subjects aged 65 and older, so those entering into the study after that age, here our

time zero, are considered delayed entries. To avoid biased estimates caused by people who

die before 65 years old (which in practice leads to an overestimation of the survival rates),

we set the age above 65 as our particular time scale, so the survival times are restricted from

the age at which the subject enters into the study until the age they leave (having or not

experienced the event E). This departure from the classical time scale (which assigns time

zero at the study start) allows us to analyze survival evolution parallel to the aging of the

subject, becoming left-truncated all the event times of subjects who begin to be followed

after the age of 65. Throughout this thesis, our survival analysis methods will be extended to

assess both left-truncated and right-censored event times. Both survival issues arise here due

to causes not related to the processes which govern the event of interest, so right censoring

and left truncation issues are considered non-informative.

3.3.2 Main Functions for Time-to-Event Analysis

Survival and Hazard Functions

From now on, we denote with T ∗i the non-negative continuous random variable which rep-

resents the i-th subject’s elapsed time from the established time origin until the occurrence

of a specific event E . Let us consider the corresponding probability density function, pt(t),

and cumulative distribution function P(t). In survival analysis, there are three prominent

functions used to describe the distribution of the event times:

� Survival function, Si(t)

It is denoted by the reverse cumulative distribution function of T ∗i ,

Si(t) = Pr(T ∗i > t) =

∫ ∞
t

pt(s) ds = 1− P(t), t ≥ 0, (3.2)
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and represents the probability of an individual surviving beyond time t, that is, the prob-

ability that the event of interest E has not yet occurred before t.

� Hazard function or hazard rate, hi(t)

It is a non-negative function that represents the instantaneous rate of occurrence of the

event of interest at a given time t, conditional on survival until time t or later (that is,

T ∗i ≥ t). The hazard function can theoretically vary from zero (at the time when the risk

is null) up to infinity (at the time when the event E occurs), and is expressed by:

hi(t) = lim
∆t→0

Pr(t ≤ T ∗i < t+ ∆t | T ∗i > t)

∆t
= lim

∆t→0

Pr(t ≤ T ∗i < t+ ∆t)

∆t Pr(T ∗i > t)
, t ≥ 0. (3.3)

Therefore, the hazard rate can be easily related to Si(t):

hi(t) =
pt(t)

Si(t)
=

dP(t)/dt

Si(t)
= − dSi(t)/dt

Si(t)
= − d

dt

[
log{Si(t)}

]
. (3.4)

� Cumulative hazard function, Hi(t)

It measures the total quantity of hazard accumulated until time t, being defined as:

Hi(t) =

∫ t

0

hi(s) ds, t ≥ 0. (3.5)

In the same way as in the case of the hazard rate, it is also possible to express Hi(t) in

relation to the survival function:

Hi(t) =

∫ t

0

hi(s) ds =

∫ t

0

pt(s)

Si(s)
ds = −

∫ t

0

1

Si(s)

{
d

ds
Si(s)

}
ds = − log

{
Si(t)

}
. (3.6)

All of these functions are interrelated, so that if one is known, then the others are automat-

ically defined. The estimation of these functions constitutes the central axis of the survival

analysis carried out over the different chapters.

Survival analysis must be carried out in accordance with the specific characteristics of the

time-to-event data contained in the cohort under study. In the particular case of the HI

dataset, the survival data are affected by left truncation and right censoring. The left

truncation is handled by introducing an independent and non-negative random variable τi,

which defines the time elapsed between the age of 65 and the age at which a policyholder

enters the study, τi = age.entryi−65. Furthermore, the random censoring times are denoted

by the variable Ci, so for each subject we observe a time Ti = min {T ∗i , Ci}, associated with

a dichotomous event indicator δi which is equal to 1 if the observed time corresponds to a

true event (subject’s death), and 0 if it corresponds to a censoring.
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In the case of left-truncated and right-censored data, a subject will be included in the

study if and only if T ∗i > τi, giving rise to a left-truncated event time when τi > 0. Con-

sequently, the probabilistic distribution of the time-to-death has to be defined according

to the proportion of subjects living beyond time point t and is conditional on their being

older than the corresponding left truncation time, Si(t | T ∗i > τi) = Pr (T ∗i > t |T ∗i > τi) =

Pr (T ∗i > t) /Pr (T ∗i > τi) = Si(t) /Si(τi).

Likelihood Function for Right-Censored Data

Let us denote the parametric form of the i-th subject’s survival function as Si(t |θ), working

with a random n-sample of right-censored time-to-event data, {(Ti, δi), i = 1, . . . , n}. Con-

sequently, the time-to-event distribution comes from the corresponding probability density

function, pt(t |θ), and cumulative distribution function P(t |θ). To make inferences about

θ, the overall likelihood function combines the information from censored data and events,

so that it is expressed as the product of probabilities, given the observed data:

pt{Ti, δi |θ} =
n∏
i=1

{pt(Ti |θ)}δi {Si(Ti |θ)}1−δi . (3.7)

The above function can be also written alternatively by considering the previous relationships

between the different survival functions:

hi(t |θ) =
pt(t |θ)

Si(t |θ)
⇒ pt(t |θ) = hi(t |θ)Si(t |θ),

Hi(t |θ) = − log
{
Si(t |θ)

}
⇒ Si(t |θ) = exp

{
−Hi(t |θ)

}
= exp

{
−
∫ t

0

hi(s |θ) ds

}
,

so that the likelihood function can be completely expressed in terms of hazard function:

pt(Ti, δi |θ) =
n∏
i=1

{hi(Ti |θ)Si(Ti |θ)}δi {Si(Ti |θ)}1−δi

=
n∏
i=1

{hi(Ti |θ)}δi Si(Ti |θ)

=
n∏
i=1

{hi(Ti |θ)}δi exp
{
−Hi(Ti |θ)

}

=
n∏
i=1

{hi(Ti |θ)}δi exp

{
−
∫ Ti

0

hi(s |θ) ds

}
.

(3.8)

The overall log-likelihood function is then
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log{pt(Ti, δi |θ)} =
n∑
i=1

{
δi log hi(Ti |θ)−

∫ Ti

0

hi(s |θ) ds

}
, (3.9)

and the MLE estimation of the parameters θ can be obtained from
∂ log{pt(Ti, δi |θ)}

∂θ
= 0.

Likelihood Function for Right-Censored and Left-Truncated Data

In the presence of left truncation, the likelihood survival function is redefined as:

pt(Ti, δi |T ∗i > τi, θ) =
n∏
i=1

{
pt(Ti |θ)

Si(τi |θ)

}δi {Si(Ti |θ)

Si(τi |θ)

}1−δi
=

n∏
i=1

{pt(Ti |θ)}δi {Si(Ti |θ)}1−δi

Si(τi |θ)
.

(3.10)

In the same way as in the case of data only subject to censoring, the log-likelihood can be

defined from the hazard function:

pt(Ti, δi |τi > T ∗i , θ) =
n∏
i=1

{hi(Ti |θ)Si(Ti |θ)}δi {Si(Ti |θ)}1−δi

Si(τi |θ)

=
n∏
i=1

{hi(Ti |θ)}δi Si(Ti |θ)

Si(τi |θ)

=
n∏
i=1

{hi(Ti |θ)}δi
exp

{
−Hi(Ti |θ)

}
exp

{
−Hi(τi |θ)

}
=

n∏
i=1

{hi(Ti |θ)}δi exp

{
−
∫ Ti

0

hi(s |θ) ds+

∫ τi

0

hi(s |θ) ds

}

=
n∏
i=1

{hi(Ti |θ)}δi exp

{
−
∫ Ti

τi

hi(s |θ) ds

}
.

(3.11)

Then, the expression of the overall log-likelihood function when handling left-truncated and

right-censored is denoted by

log{pt(τi, Ti, δi |θ)} =
n∑
i=1

{
δi log hi(Ti |θ)−

∫ Ti

τi

hi(s |θ) ds

}
, (3.12)

and the MLE time-to-event parameters are estimated by solving
∂ log{pt(τi, Ti, δi |θ)}

∂θ
= 0.
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3.3.3 Preliminary Survival Results from Non-Parametric Analysis

Let us assume that the cumulative distribution function F (t) is completely unknown, and we

aim for a non-parametric estimate of the survival function based on the observed data, which

may be subject to (non-informative) right censoring and left truncation. In such a case, the

Kaplan-Meier (KM) estimator (Kaplan and Meier, 1958) is obtained by taking age above 65

as an alternative time scale, and then summarizing each subject’s survival information by

the observed triplet {τi, Ti, δi}, i = 1, . . . , n.

The KM estimator is the simplest way of estimating the survival distribution function over

time for an n-sample homogeneous population. It is usually referred to as the product-

limit estimator, and its construction is based on the cumulative product of the estimated

probability of not incurring an event (it can be viewed as the limiting case of the classic

actuarial estimator). In our particular dataset, left-truncated and right-censored times are

handled. We denote: τ = min{τ1, . . . , τn}; T ∗(k), k = 1, . . . , D, as the order statistics of the D

unique true event times in the sample so that T ∗(1) < T ∗(2) < . . . < T ∗(D); d(k) as the number of

subjects who die at time T ∗(k); and r(k) as the number of subjects at risk of dying (i.e. alive

and not censored) just prior to time T ∗(k) (these latter subjects are those who enter into the

study before time T ∗(k)). Then, taking the age above 65 as our time scale, for all t < T ∗(D),

the KM estimator for the survival distribution function takes the form

ŜKM(t |T ∗ > τ) =


1 if t < τ,∏
k: τ<T ∗

(k)
≤t

(
1−

d(k)

r(k)

)
if t ≥ T ∗(1).

(3.13)

As a result, it provides a non-parametric estimate of the survival curve by defining a step

function with jumps at the D (D < n) different times where true events are observed in

the sample. The D-th true event time might contain: a) one event, b) more than one

event, or c) a combination of events and censored observations (in this case, it is assumed

that the events precede the censored data). Hence, the KM estimator is very useful to

estimate the probability of an event at each time point, and additionally it can be shown

that (under certain conditions) the estimate is consistent and asymptomatically normal.

See, for example, Breslow and Crowley (1974), Gill (1983), Stute and Wang (1993) and Cai

(1998). However, one of the main limitations of the KM estimator is rooted in the fact that

it does not allow for a direct inclusion of covariate information in survival estimates, making

the use of stratified curves necessary. Thus, other parametric or semiparametric methods

are preferable.

One of the characteristics of left-truncated data is that the number of subjects at risk does

not follow a decreasing trend within the study window, but may dynamically fluctuate due

to a compensation between the number of events and the progressive incorporation of new

subjects into the study after the administrative start of the study period.
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Figure 3.2 represents the evolution over time of the total number of subjects at risk, stratified

by gender, and overall. In all cases, the evolution of the number of subjects at risk in relation

to age follows a similar pattern, and reflects a greater percentage of women in the study.

The maximum number of men at risk occurs at the age of 76.65, and for women at the age

of 79.08 years, with 503 and 863 individuals exposed, respectively. In the total of subjects,

it is at 79.22 years of age that a maximum value of 1368 subjects at risk is reached.

Figure 3.2. Time evolution of the number of subjects at risk in the HI dataset, overall and

by gender.

During the study period, the death event is recorded for a total of 509 (9.3%) individuals,

which means that 4961 policyholders survive or are no longer in the sample by drop out at

the end of the study, i.e. 90.7% right censoring. Of these censored subjects, 3429 (69.1%) are

alive at the administrative close of the study window, on February 1, 2014. The remaining

1532 (30.9%) right-censored survival times are attributable to insurance cancellations caused

by different reasons not related to the event of death (e.g., dissatisfaction with the service,

change of insurance company or an unwillingness to pay), which in practice means that the

subject is no longer covered by the insurance policy. Figure 3.3 displays a non-parametric
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survival curve estimate for the overall sample (on the left) and one stratified by gender (on the

right). Although higher survival estimates are registered for women, a comparison between

the KM estimates for each gender was performed by means of the corresponding log-rank

test (also called Mantel-Cox test), and the results do not suggest a significant difference of

survival estimates (p = 0.242).

Figure 3.3. Plot of the Kaplan-Meier estimate of the survival function of time-to-death (with

95% confidence intervals) for our overall subjects from the HI dataset (left panel), and stratified

by gender (right panel).

3.3.4 The Cox Proportional Hazards Model for Censored Data

Formulation of the Cox Model

The most popular regression model to handle predictor covariates when modeling time-to-

event data is the semiparametric PH model, that is, the traditional Cox model. It pro-

vides the conditional hazard function at time t of the i-th subject’s profile given by p time-

independent explanatory covariates or baseline covariates, wi = (wi1, . . . , wip)
>, and is given

by

hi(t |wi) = h0(t) exp{γ>wi}, t ≥ 0. (3.14)

Here, h0(t) is an unspecified and non-negative baseline hazard function, (that is, the hazard

function for a theoretical subject that has wi = 0), whereas γ = (γ1, . . . ,γp)
> denote
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the vector of regression coefficients. The model then combines a non-parametric functional

form in the baseline hazard (usually a step-wise function) with a parametric function in the

covariate part, therefore it has a semiparametric character. It is the flexibility conferred

by the baseline hazard (it can take any shape as a function of t) that permits us to make

inferences about γ without knowing the distribution of survival times, and that makes the

use of the Cox model so widespread in survival analysis. Moreover, the exponential part

ensures that the estimated hazards are non-negative.

The fundamental idea behind this model relies on the proportional hazards assumption,

according to which the baseline covariates act in a multiplicative manner on the hazard

function and remain constant throughout the entire study period (their effect on hazard

does not change). As a result, the relative risk of two subjects, i and i′, with respective

covariate values wi and wi′ , is independent of time:

HRii′ =
hi(t |wi)

hi′(t |wi′)
=
h0(t) exp {

∑p
k=1 γkwik}

h0(t) exp {
∑p

k=1 γkwi′k}
= exp

{
p∑

k=1

γk(wik − wi′k)

}
. (3.15)

Then, in the absence of any information for data distribution, the Cox model shows a robust

behavior since it allows for to the estimation of the coefficients γk in the exponential part of

the model, and is usually preferred over parametric models when survival time information

is available and there is censoring.

Frequentist Estimation of PH Cox Model Parameters

Inferences about parameters of the Cox model can be based on the equation (3.8), for

right-censored data, or on the equation (3.11), in the additional presence of left truncation.

However, in his seminal papers, Cox suggested the use of the partial likelihood function

(Cox, 1972; Cox and Hinkley, 1974; Cox, 1975), which only depends on γ, and is defined

by generalizing the ideas of conditional and marginal likelihood. Let us consider the set

of individuals who are “at risk” for experiencing the event at time t, R(t) = {i : Ti =

min{T ∗i , Ci} ≥ t}. The partial likelihood function is given by:

Lp(γ |Ti, δi) ∝

{
n∏
i=1

exp (γ>wi)∑
j∈R(Ti)

exp (γ>wj)

}δi

, (3.16)

which is usually expressed in terms of the logarithm of partial likelihood function:

logLp(γ |Ti, δi) ∝
n∑
i=1

δi

[
γ>wi − log

{ ∑
j∈R(Ti)

exp
(
γ>wj

)}]
. (3.17)

In particular, the maximum partial likelihood estimators of γ are found by solving the

equation:
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∂ logLp
∂γ

=
n∑
i=1

δi

{
wi −

∑
j∈R(Ti)

wj exp(γ>wj)∑
j∈R(Ti)

exp(γ>wj)

}
= 0. (3.18)

It can be shown that the estimate γ̂ is unbiased, efficient, and asymptotically normally

distributed, so if n → ∞ then γ̂ ∼ N
(
γ,
[
E {I(γ)}

]−1)
, where I(γ) is the Fisher infor-

mation matrix.

3.3.5 The Extended Cox Model with Time-Dependent Covariates

Formulation of the Extended Cox Model

So far, we have been considering the traditional Cox model for the handling of right-censored

survival times, where the explanatory covariates remain constant over time. However, some

cohort studies may present a heterogeneous age distribution at study entry, so the classical

PH model must be extended to accommodate delayed entries. The local nature of such a

model allows for easy reformulation to account for left truncation by means of the inclusion of

time-dependent covariates, that is, a subject-specific vector of predictor variables, yi, whose

values may change over the course of the study period. In this alternative formulation of

the classical PH model, age is used as the time-scale (instead of the usual time-on-study)

and the subsequent within-subject measurements are stored in terms of start-stop coding,

as detailed in Subsection 2.1.5.

The basic idea behind the time-dependent covariates lies in the consideration of a counting

process model, where a subject contributes to the risk set for an event as long as an individual

is under observation at the time the event occurs, and shares the same baseline hazards

function (Andersen and Gill, 1982; Therneau and Grambsch, 2000). The time-dependent

relative risk model is formulated as:

hi{t |Yi(t), wi} = h0(t) exp{γ>wi + α yi(t)}, (3.19)

where Yi(t) = {yi(s), τi ≤ s ≤ t}, denotes the intermittently observed (and therefore in-

complete) covariate history for the i-th subject up to time t, whereas the parameter α is

the regression coefficient that accounts for the effect on the hazard of the time-dependent

covariate evaluated at t, yi(t).

In this approach, the hazard ratio at time t between two subjects i and i′, with baseline

covariates wi and wi′ , and time-dependent covariates yi(t) and yi′(t), is no longer constant

in time, but depends on the current value at time t of the corresponding covariate values for

both subjects:
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HRii′ (t) =
hi(t |Yi(t), wi)

hi′(t |Yi′(t), wi′)
=

h0(t) exp {
∑p

k=1 γkwik + α yi(t)}
h0(t) exp {

∑p
k=1 γkwi′k + α yi′(t)}

= exp

[
p∑

k=1

γk(wik − wi′k) + α {yi(t)− yi′(t)}

]
.

(3.20)

Frequentist Estimation of Parameters from the Extended Cox Model

The estimation of γ and α is again based on the partial log-likelihood function. Let us

assume an “at-risk” function Ri(t) so that:

Ri(t) =

{
0 if the subject i is not at risk at time t

1 if the subject i is at risk at time t

Then, the partial log-likelihood for a time-dependent relative risk model is:

Lp(γ |τi, Ti, δi) =

=
n∑
i=1

(
Ri(t) exp{γ>wi + α yi(t)} − log

[ ∑
j∈R(Ti)

Rj(t) exp{γ>wj + α yj(t)}

])
.

(3.21)

The main drawback of the PH model is the fact that this extension can only accommodate

exogenous or external time-dependent variables, that is, variables whose whole trajectory is

known at every time point without any measurement error. On the contrary, the maximiza-

tion of the partial log-likelihood function leads to regression coefficient estimates which are

asymptotically biased (Prentice, 1982). However, in many longitudinal studies (especially

those involving medical research), we do not know all the time-dependent survival covari-

ates history, but only their values at specific time points where the repeated measurements

have taken place. The common procedure to circumvent this issue consists of adopting an

approach in which the observed values remain constant between two subsequent time mea-

surements and latent terms are not considered, which very often constitutes an inadequate

approach in case we are dealing with time-dependent endogenous or internal covariates.

Thus, the accuracy of measurements taken on endogenous processes are usually contami-

nated by a random measurement error, which is inherent in the observed process because

the value is affected by unpredictable subject-specific features.

In the case of the HI dataset, the time-dependent variable is the annual rate of emergency

claims, here used as an indirect measurement of the individual’s health status, which is of

endogenous nature. Consequently, we argue that the relationship established between the

frequency of use of emergency medical services recorded by subjects and their particular

health status will be affected by a random noise due to the inability to instantaneously
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assess the health of an individual. For example, we must keep in mind that each person

has a subjective perception of well-being. This means that one subject experiencing pain

may choose to visit the emergency room, whereas another subject suffering from an identical

disease may not consider such a visit necessary. Moreover, a superimposition of services

with the public health system exists, as commented in previous chapters, which can mean

that the insurance company’s data may not completely report the level of severity of a

subject affected by pain. Consequently, instead of relating the mortality risk to the observed

measurements for each subject, Yi(t) = {yi(s), τi ≤ s < t}, we take into account the

smooth evolution over time of the expected (underlying) error-free measurement process,

Mi(t) = {µi(s), τi ≤ s < t}, where the complete path of the longitudinal response until

time t is now known.

3.4 Specification of the Standard Joint Model Approach

Let us consider that the subject’s risk for an event depends on the expected value of the

longitudinal variable at time t, denoted by µi(t). Moreover, let us assume a time scale of

time (years) over the age of 65, and let T ∗i be the true survival time for the i-th subject.

We also define an independent random variable τi ≥ 0 as the time at which a policyholder

enters the study after the age of 65, giving rise to left truncation when τi > 0. Only

subjects reaching the threshold age can be sampled from the target population, i.e. T ∗i > τi,

otherwise they can not be observed. In addition, once the subject enters the study, the true

survival times are subject to the usual right censorship mechanism, denoted by a potential

censoring time Ci. This means we can only know the observed survival time for the i-th

recruited individual, Ti = min{T ∗i , Ci}, as well as a dichotomous event indicator δi = I(Ti∗ ≤
Ci). We assume the conditional independence of the random variables {τi, T ∗i , Ci} given the

covariate information, as well as that τi and Ci are independent of the event of interest. The

probabilistic distribution of the event times is conditional on these being older than their

left truncation times, Si{t |T ∗i > τi,Mi(t), wi} = Pr{T ∗i > t |T ∗i > τi,Mi(t), wi}.

Building on the longitudinal analysis considered in Subsection 3.2.3, repeated count se-

quences and the mortality risk processes can be connected by assuming the conditional

independence hypothesis (SPM framework). The JM for the i-th subject, i = 1, . . . , n, is

summarized at each time t within the study by two submodels, one for the longitudinal

process and the other for the hazard process:
yi(t) = log{ei(t)}+ x>i (t)β+ z>i (t)bi + εi(t) = µi(t) + εi(t),

hi{t |T ∗i > τi,Mi(t), wi} = h0(t) exp
[
γ>wi + αF {µi(t)}

]
,

bi ∼ Nq+1(0, D), εi(t) ∼ N (0, σ2
ε),

(3.22)

where h0(t) denotes the baseline risk function, wi the subject baseline survival covari-

ates, γ the vector of the corresponding regression parameters, and F(·) is a functional
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form which specifies a proper way for the expected longitudinal information, provided by

E{yi(t) |bi} = µi(t), to be accounted for in survival. Because µi(t) > 0 in a counting process,

F(·) is positively defined and increases with t. The parameter α quantifies the degree of the

(constant) association between the particular longitudinal evolution until time t, and the

corresponding death hazard. Specifically, the quantity exp(α) returns the hazard ratio for a

one-unit increase in the value F{µi(t)} at time snapshot t.

Although the function h0(t) traditionally remains unspecified in the PH literature (Sec-

tion 3.3.4), this condition is not kept when using joint modeling techniques. The accom-

modation of random effects makes impossible that the parameter estimates continue to be

based on the partial likelihood function, since this would result in an underestimation of

the standard errors of the estimates (Hsieh et al., 2006). It is therefore necessary to adopt

a parametric specification for the time-dependent baseline risk function. In the absence of

any information regarding the distribution of the event times, a B-spline approximation pro-

vides enough flexibility to capture the shape that the unknown function h0(t) may adopt

(Rizopoulos, 2012). For this approximation, an equally-spaced vector λh0 of Qh0 knots is

placed on [tmin, tmax], and then log{h0(t)} is approximated through a linear combination of

Rh0 = (Qh0 − 1) + dh0 B-spline basis functions of degree dh0 :

log{h0(t)} =

Rh0∑
r=1

γh0,r Bdh0 ,r
(t,λh0) , (3.23)

where {Bdh0 ,r
(t,λh0), r = 1, . . ., Rh0} denotes the set of B-spline functions, and γh0 =

(γh0,1, . . . , γh0,Rh0 )> is the Rh0-dimensional vector of the unknown B-spline coefficients.

The most important advantage of the B-spline implementation is that it allows for local

control of the curve shape, since each knot influences the whole curve. However, the crucial

point resides in the specification of the number and location of knots in order to avoid

overfitting (thus reducing the computational cost). When approximating the baseline hazard

function, the knots are usually allocated at the corresponding percentiles of the observed

death times, but this is not always an optimum computational strategy since there could

be specific time regions where h0(t) needs to be more defined, so the knots in this region

should be placed closer together. In addition, we do not know the total number of knots

to be employed, and therefore we can not determine with certainty the type of percentiles

to be used (there could be terciles, quartiles, quintiles, etc.). A more formal approach

suggests starting with B-spline basis functions of time, and then control the smoothness

using a roughness penalty term (which is always positive) based on k-th order differences of

adjacent B-spline coefficients. These are the penalized B-splines, also called P-splines (Eilers

and Marx, 1996), and they allow for an automatic smoothing selection, as well as provide

efficient computational methods comparing to the classical B-splines. In this thesis, the

function h0(t) is approximated by means of quadratic P-splines (section 3.8 provides more

details), with equally-spaced internal knots ranging from zero to the highest observed time.
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A standard approach to relating longitudinal counts to survival is undertaken by associating

the expected longitudinal value to the time-to-death using the identity function, F{µi(t)} =

Id{µi(t)} = µi(t). However, instead of taking just a single time point, in some cases it may be

more relevant to consider the whole path of the expected longitudinal outcome (Figure 3.4).

In particular, an extension of the aforementioned approach is to include the entire background

previous to measurement at time t (Abrahamowicz et al., 2011). Furthermore, we assume

that historical effects fade over time, so the more distant history is less relevant than the

more recent. Thus, F(·) transformation can be defined to account for the cumulative and

recency-weighted area under the whole longitudinal profile up to time t > τi:

F {µi(t)} =

∫ t

τi

ω(t− s)µi(s) ds, τi ≤ s ≤ t, (3.24)

where ω (·) is the selected average weighting function.

Figure 3.4. Graphical representation of the main idea behind the cumulative and recency-

weighted joint modeling formulation for a subject from the HI dataset. Here, we relate the

recency-weighted area under the expected longitudinal response (bottom panel) with the in-

stantaneous risk for an event (top panel).

Given the importance of the latest information in explaining current health status, we intro-

duced an exponential function with rate parameter ν > 0 in order to assign different weights

for each of the past observed longitudinal values,
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ω(t− s) = ν exp{−ν(t− s)}, τi ≤ s ≤ t,

and our functional form to include subject-specific longitudinal information in survival be-

comes:

F{µi(t)} =

∫ t

τi

ν exp{−ν(t− s)}
[

log{ei(t)}+ x>i (s)β+ z>i (s)bi
]
ds, τi ≤ s ≤ t.

3.5 Bayesian Estimation of the Standard Joint Model

We propose a Bayesian estimation to obtain estimates of the joint model parameters. Let

Dn = {(yi, τi, Ti, δi), i = 1, . . . , n} denote the information from our original dataset with n

subjects. Further, let us denote the unknown parameter vector as θ = (θ>y ,θ
>
t ,θ

>
b )>, where

θy collects the parameters regarding longitudinal approach, θt collects those parameters

related to the time-to-event response, and θb collects the components of the random-effects

covariance matrix. As commented in Section 3.4, the formulation of joint models under

the SPM assumption states that a common random effects structure accounts for both the

association between the longitudinal and event outcomes, and the correlation between the

repeated measurements in the longitudinal process. Then, given the shared random effects

of the i-th subject, both the longitudinal and time-to-event processes are independent, as

well as the subject’s ni longitudinal responses:

p(Dn |bi,θ) =
n∏
i=1

py(yi |bi,θ) pt {Ti, δi |T ∗i > τi,M(t),θ},

py(yi |bi,θ) =

ni∏
j=1

py {yi(tij) |bi,θ},
(3.25)

where py(·) and pt(·) are the conditional likelihood functions for the longitudinal and survival

processes, respectively.

In the standard JM, the longitudinal responses are assumed to be normally distributed

conditional on random effects, so the joint density for the longitudinal process for the i-th

individual can be written as:

py(yi |bi,θ) =

ni∏
j=1

1

(2πσ2)1/2
exp

[
− {yi(tij)− µi(tij)}

2

2σ2

]

=
1

(2πσ2)ni/2
exp

[
− 1

2σ2

ni∑
j=1

{yi(tij)− µi(tij)}2

]
,

(3.26)

whereas the i-th conditional density function for the survival part must account for left

truncation, as detailed in Subsection 3.3.2:
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pt {Ti, δi |T ∗i > τi,Mi(t),θ} =
pt {Ti, δi |Mi(t),θ}

Pr {T ∗i > τi |Mi(t),θ}

=

[
pt {Ti |Mi(t),θ}

]δi [Si{Ti |Mi(t),θ}
]1−δi

Si{τi |Mi(t),θ}

=

[
hi{Ti |Mi(t),θ} Si{Ti |Mi(t),θ}

]δi [Si{Ti |Mi(t),θ}
]1−δi

Si{τi |Mi(t),θ}

=
[
hi{Ti |Mi(t),θ}

]δi Si{Ti |Mi(t),θ}
Si{τi |Mi(t),θ}

=
[
hi{Ti |Mi(t),θ}

]δi exp
[
−Hi{Ti |Mi(t),θ}

]
exp

[
−H{τi |Mi(t),θ}

]
=
(

exp
[

log{h0(Ti)}+ γ>wi + αF{µi(Ti)}
])δi

× exp

(
−
∫ Ti

τi

exp
[

log{h0(s)}+ γ>wi + αF {µi(s)}
]

ds

)
.

(3.27)

Taking advantage of the expressions (3.23), (3.26), and (3.27), the overall joint likelihood

conditioned on random effects can be properly formulated to tackle left truncation through

the conditional independence assumption:

p (Dn |bi,θ) =

=
n∏
i=1

ni∏
j=1

1

(2πσ2)ni/2
exp

[
− 1

2σ2

ni∑
j=1

{yi(tij)− µi(tij)}2

]

×

(
exp

[ Rh0∑
r=1

γh0,r Bdh0 ,r
(Ti,λh0) + γ>wi + αF {µi(Ti)}

])δi

× exp

(
−
∫ Ti

τi

exp

[ Rh0∑
r=1

γh0,r Bdh0 ,r
(s,λh0) + γ>wi + αF {µi(s)}

]
ds

)
.

(3.28)

The mean estimates of parameters and random effects are then derived by using Markov

chain Monte Carlo (MCMC) algorithms, which enable inferences to be made by efficiently

drawing a sample from the posterior distribution through the Bayes’ rule:

π (θ,bi |Dn) ∝ p (Dn |bi,θ) π(θ,bi) = p (Dn |bi,θ) pb(bi |θ)π(θ), (3.29)

where pb(·) is the prior distribution for the random effects, usually assumed to follow a

standard multivariate normal distribution, and π(θ) is the prior distribution for the full JM

parameter vector θ, such that prior independence is assumed between its components.
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3.6 Missing Data Mechanism in the Standard Joint Model

Missing or incomplete data are quite common in longitudinal studies, especially in medical

research, and present several challenges in the analysis of data from these studies. The

presence of missing data results in a reduction in the available data which we use to determine

the Bayesian estimate of the parameters, directly affecting the grade of precision of the

parameter inferences. Moreover, the lack of this information can be due to causes directly

related to the behavior analyzed, in which case the missing pattern can introduce bias and

thereby lead to invalid results. It is this problem that most missing data studies focus on,

leading to the missing mechanisms outlined in Subsection 3.2.1.

In the particular case of the HI dataset, let yobsi = {yi(tij) : τi < tij < T ∗i , j = 1, . . . , ni}
denote all the observed longitudinal responses of the i-th subject before the death event E ,

and let ymisi = {yi(tij) : tij ≥ T ∗i , j = 1, . . . , n′i} denote all those measurements that would

have been observed from the event time to the study close date if the subject had still been

alive. The dropout pattern can be treated as a random variable, and is directly obtained by

jointly considering the observed and missing longitudinal values:

p(T ∗i |T ∗i > τi,y
obs
i ,ymisi , θ) ∝ p(T ∗i , bi |yobsi ,ymisi , θ)

∝ p(T ∗i |T ∗i > τi, bi, yobsi ,ymisi , θ) pb(bi |yobsi ,ymisi , θ)

∝ p(T ∗i |T ∗i > τi, bi, θ) pb(bi |yobsi ,ymisi , θ),

(3.30)

Thus, the time-to-event mechanism depends on both the observed missing longitudinal re-

sponses through the posterior distribution of the random effects, which means that the ob-

served data can not be considered a random sample from the target population. In practice,

this issue leads us to conclude that SPM joint models allow for the proper accommodation

of the MNAR mechanism.

3.7 Goodness-of-Fit for the Standard Joint Model

The deviance information criterion (Spiegelhalter et al., 2002), denoted by DIC, is used in

this thesis as a Bayesian goodness-of-fit measure for the model selection. The DIC balances

fit with model complexity, and in the JM context, is defined by

DIC = D(θ,bi) + 2 pD, (3.31)

where D(θ,bi) = −2
∑n

i=1 log p(Dn |θ,bi) is the Bayesian deviance, and pD = D(θ,bi) −
D(θ,bi) measures the model complexity. Accordingly, the term D(θ,bi) denotes the pos-

terior mean deviance of the JM parameters, whereas the term D(θ,bi) is the deviance

evaluated in the posterior mean of the JM parameters. The score provided by DIC serves
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as the basis for ranking the fitted models, where lower scores of DIC correspond to better

model fits. It is important to point out that DIC value is not constant, since it is calculated

from the MCMC output, DIC = DIC(θ,bi).

As a general rule of thumb, if the respective DIC’s of two models differ by more than 5

points, the one with the smaller DIC may be chosen (Lesaffre and Lawson, 2012).

3.8 Application of the Standard Joint Model

In order to assess the most adequate way to take into account the subject’s claim history

when evaluating the death risk, we first consider a standard JM in which the longitudinal

submodel assumes linear trends and only accounts for the current expected value, F(·) =

Id (·), so that F{µi(t)} = µi(t). This implies considering only the current health status when

evaluating the subject’s mortality risk, which could result in a naive approximation due to

not considering the most recent medical history. As commented in Section 3.4, in our case it

may be much more realistic to take into account all the most recent medical history, giving

more importance to the most recent emergency claims. In particular, we also considered an

extended version of the standard JM, with a longitudinal submodel that accounted for the

cumulative and exponentially-weighted expected value:

F{µi(t)} =

∫ t

τi

ν exp{−ν(t− s)}µi(s)ds, τi < s ≤ t. (3.32)

The fixed effects of the longitudinal outcome were set at {β0, β1}, respectively referring to

the intercept term and the observation time (directly linked to the subject’s age). Initially,

we tested a LMM with a single random intercept bi0, and also a random intercept and slope

{bi0, bi1}, with correlation ρ such that Cov(bi0, bi1) = ρ σb0 σb1 . The Bayesian LMM with two

random effects provides a mean estimate for ρ of 0.824 (95% CI: 0.811, 0.838), also leading to

a similar DIC than that obtained in the LMM with only a random intercept. For illustrative

purposes, we decided throughout this thesis not to include the latent correlation between

measurements along time in the JM fitting, and we only considered a single random effect

in the longitudinal submodel.

Finally, we have two proposals with a single random intercept each, one with the current

value of the underlying longitudinal response, and the other with the weighed cumulative

effect. Both of these assumptions are summarized by the following equations:


yi(t) = log{ei(t)}+ β0 + bi0 + β1t+ εi(t) = µi(t) + εi(t),

hi{t |T ∗i > τi,Mi(t), θt} = h0(t) exp
[
γgwgi + αF{µi(t)}

]
,

bi0 ∼ N (0, σ2
b0

), εi(t) ∼ N (0, σ2
ε).

(3.33)
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We use independent univariate vague normal priors for the fixed and random regression

coefficients, as well as for the measurement error. In the case of the weighting function, the

posterior estimation of the rate parameter is performed by adopting a diffuse uniform prior,

ν ∼ U(aν , bν). Because ν > 0, we set aν = 0, while for the second hyper-parameter we set

bν = 20 to expresses the uncertainty around the value of ν.

Following the suggestions of Rizopoulos (2016), the function h0(t) in the relative risk model

is expanded into a quadratic P-spline basis, with Qh0 = 8 equally-distanced internal knots

(Rh0 = 9). Specifically, we use Bayesian P-splines (Lang and Brezger, 2004), so γh0 is

assumed to follow the improper prior

π(γh0 |τh0) ∝ τ
rk(Mh0

)/2

h0
exp

(
−τh0

2
γ>h0Mh0γh0

)
, (3.34)

which in practice yields the hierarchical multivariate Gaussian prior

γh0 |τh0 ∼ NRh0 (0, τh0Mh0). (3.35)

Here, τh0 is the smoothing parameter, which is assumed to be τh0 ∼ G(1, 0.005), and the

penalty matrix Mh0 is obtained by solving the following system of equations expressed in

matrix form:

Mh0 = ∆>
k ∆k + 10−6 I, (3.36)

where ∆k is the difference matrix of order k, while the term 10−6 I introduces a small

“ridge penalty” to avoid a linearly dependent system. Moreover, the gender information is

included as an exogenous covariate in the relative risk model, wi ≡ wgi (man:0, woman:1),

for which a diffuse normal prior is specified. Finally, the longitudinal and time-to-event

outcomes are related using a constant association parameter, for which a diffuse normal prior

is assumed. The two longitudinal approaches within the standard JM are fitted using the

Bayesian software JAGS (Plummer, 2003), version 4.2.0. This software is called from the R-

environment by means of the package jagsUI (Kellner, 2016). The posterior mean estimates

of (θ, bi0) are obtained for each JM, and the calculation of the DIC has been programed from

the corresponding Bayesian deviance D(θ, bi0) = −2
∑n

i=1 log{p(yi |θ, bi0}). For illustrative

purposes, the software code to fit the standard JM which considers the current longitudinal

value is provided in the Appendix B of this thesis. This code is, in turn, an adaptation of

the code used in the R package JMbayes (Rizopoulos, 2016). In the case of the JM with

weighted cumulative effects of the longitudinal response, the necessary changes to introduce

an exponential weighting function has been implemented.

The results (Table 3.1) indicate a strong association between emergency claims and survival,

so that each unit increase in the current value of the expected log-transformed emergency

claims per year involves a exp(αvalue) = 6.73 - fold increase (95% CI: 5.20, 9.18) in the

subject’s mortality risk when accounting for the current longitudinal value. In the case

of accounting for the weighted cumulative effect, the association is also strongly related
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to the death hazard, so that a one-unit increase in the exponentially weighted area under

the log emergency claims per year trajectory leads to a exp(αcum) = 6.75 -fold increase in

the mortality risk (95% CI: 5.11, 9.03). Thus, we have a positive relationship between the

frequency of use of non-routine medical services and the corresponding death hazard. From

a goodness-of-fit perspective, the comparison between the fitted joint models is performed

using the DIC.

JM with current value JM with weighted cumulative effect

Parameter Mean SE q 2.5% q 97.5% Mean SE q 2.5% q 97.5%

Longitudinal

β0 0.302 < 0.001 0.283 0.320 0.303 < 0.001 0.282 0.318

β1 0.008 < 0.001 0.007 0.009 0.008 < 0.001 0.007 0.010

ν – – – – 9.978 0.051 8.087 11.882

σb0 0.311 < 0.001 0.302 0.320 0.311 < 0.001 0.303 0.320

σε 0.498 < 0.001 0.494 0.503 0.497 < 0.001 0.492 0.504

Survival

γg −0.067 0.004 −0.246 0.107 −0.070 0.003 −0.247 0.112

Association

α 1.907 0.006 1.648 2.217 1.910 0.008 1.623 2.201

Goodness-of-fit

DIC 59108.8 59105.4

Table 3.1. Posterior summaries for all parameters of the standard JM when considering both

the expected log-response and the exponentially-weighted cumulative effect of the expected log-

response. Mean, standard error, 95% credible interval and DIC are sampled for each parameter

from the corresponding posterior distribution.

Note the great similarity between the association parameters of these results and those

obtained under the current-value association structure, thus emphasizing that only the most

recent past claims have a real influence on the expected survival. The high estimate for

the rate parameter of the exponential weighting function indicates so, in practice, it yields

that approximately only the 0.30 years (i.e., four months) prior to t are strongly related to

the current death hazard. Considering the information provided by the variables, a great

similarity is observed between the values obtained. Moreover, we must highlight that the

sex baseline covariate shows no evidence of different behavior between men and women when

analyzing our target sample.

The DIC score obtained when considering the current expected value is slightly less than that

resulting from the consideration of a weighted cumulative parametrization of the longitudinal

response. However, this last one does not show enough evidence to conclude that there is

an improvement in the fitting, since its DIC estimate is not at least 5 points less than that

estimated with the first JM approach.
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3.9 Discussion of the Standard Joint Model Results

We demonstrate the benefits of taking a joint approach to modeling longitudinal and time-

to-event processes by using a large dataset from a Spanish medical company. This contains

historical insurance information for 5470 policyholders aged 65 and more (37.6% men and

62.4% women) across the study window. We have implemented a standard joint model with

two functional forms; first, we have considered the effect of the longitudinal response on the

survival, and we have also incorporated the weighted cumulative effect of emergency claims

information, which places greater emphasis on more recent demand than on past service

demand. Both models lead to similar conclusions, and no evidence has been obtained that

one is clearly preferable over the other. However, the JM which considers the weighted area

under the expected profile provides slightly better results.

In methodological terms, we have applied a log-transformation to the longitudinal response

in order to allow residuals to conform to normality. However, this naive approach towards

handling panel count rates involves in practice a series of methodological criticisms. Firstly,

we have to take into account that our observations indeed come from a data generation

process that produces counts, which are restricted to a small range of possible values and

have a variance related to the mean. Thus, any solution intended to “mask” this fact can

not be the best option to collect its real behavior. In fact, this option usually leads to biased

inferences, as well as the homokedasticity assumption is usually not achieved. Furthermore,

the fact that we work in logarithmic terms makes the direct interpretation of the data

difficult, compelling us to constantly undo the applied transformation.

In favor of the use of the logarithmic transformation in our count data, it could be argued

that the introduction of a specific counting model, as in the case of the Poisson distribution,

also implies a logarithmic transformation of the observed response yi(t) = claimyri(t).

When performing a log-transformation, we are using log {yi(t)} as our response variable in

the LMM, that is, we are actually modeling the expected value E
[

log{yi(t)}|bi
]
, whereas in

the Poisson approach we are modeling log
[
E {yi(t) |bi}

]
. Consequently, our results are here

affected by Jensen’s inequality, which in the case of the transformation g {yi(t)} = log {yi(t)}
(a concave function), states:

E
[

log{yi(t)}|bi
]
≤ log

[
E{yi(t) |bi}

]
, yi(t) > 0. (3.37)

Thus, the results in both cases will not be exactly the same, as will be shown throughout

the following chapter.





CHAPTER 4

JOINT MODEL FOR COUNTS AND LEFT-TRUNCATED

TIME-TO-EVENT DATA

4.1 Principles of Joint Models for Counts and Delayed Entries

In the previous chapter we have worked with the standard JM approach using the log-

transformation of the observed longitudinal response. However, the variable of interest in

the longitudinal part, established in the HI dataset as the rate of emergency claims per year

(including ambulance services, hospitalizations and non-routine medical visits), can only

take into account non-negative integers. So the longitudinal expected response must ac-

count for non-Gaussian data of discrete nature. Previous approaches to this issue have been

proposed in the field of joint modeling. For example, Rizopoulos and Ghosh (2011) defined

a Bayesian JM to relate multiple longitudinal outcomes (of discrete or continuous nature)

to a time-to-event. Murawska et al. (2012) presented a two-stage JM where the longitudi-

nal information was summarized by either a non-linear mixed-effects model or a generalized

linear mixed model (GLMM) in the first stage, while in the second, Empirical Bayes es-

timates of the subject-specific parameters were included as predictors in the proportional

hazards model. Viviani et al. (2012) implemented an expectation-maximization algorithm

to incorporate non-Gaussian data in the longitudinal response, with particular attention to

Poisson and binomial responses. More recently, Ivanova et al. (2016) formulated a JM to

handle continuous, discrete, or ordinal responses, where parameters were estimated using a

likelihood-based approach.

A common feature of the aforementioned extensions is that they do not account for delayed

entries in the survival submodel. However, in the time-to-event approach, we consider the

lifetime elapsed from the moment when a subject is aged 65 until the death event, and con-

sequently left truncation must be accounted for in all those subjects that enter the study

beyond the age of 65, here established as our time zero. Additionally, in our study, most life-

times cease to be observed at administrative closure, and some are not observed completely

due to dropout. Time-to-event data, therefore, are left-truncated further than the usual

censorship, and not all individuals present the same number of longitudinal measurements.

We have detailed in Chapters 2 and 3 how a proper consideration of the left truncation issue

in the mortality hazard can be achieved by using the subject’s age as the time scale.

Our goal throughout this chapter is to relate each personalized emergency claims rating pro-

file to time-to-death by postulating an appropriate JM. We also investigate the role played

by information contained in medical records and identify a cumulative and fading effect, so

55
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that more recent records have a greater influence than older records on the death hazard.

From a statistical perspective, this problem requires an innovative approach to the appli-

cation of a joint framework, where a pronounced dependency pattern between longitudinal

and survival outcomes for the elderly is expected. From a methodological perspective, the

statistical analysis poses the challenge of handling correlated counts in the longitudinal re-

sponse, and of having to extend the standard proportional hazards model by incorporating

the delayed entries.

As in the standard JM approach, the relationship between longitudinal counts and sur-

vival data can be properly assessed using a shared-parameter JM, where a policyholder’s

emergency claims and survival outcomes are stochastically correlated by a common latent

structure. Thus, conditional on the random effects, the longitudinal and time-to-event out-

comes are independent, as are repeated measurements in the longitudinal process. Complete

overviews of the joint modeling techniques can be found in Tsiatis and Davidian (2004),

Yu et al. (2008), and Rizopoulos (2012). In the context of the application of joint model-

ing techniques to health insurance studies, previous work on elderly policyholders can be

found under the frequentist approach in Piulachs et al. (2016), where the counting process

was approximated by a log-transformation of the longitudinal outcome to assume a normal

response. See also Mukherji et al. (2016), who implemented a Bayesian joint model to ex-

plore the relationship between out-of-pocket medical expenditure and hospitalizations in a

longitudinal survey of Americans aged 50 or more.

4.2 Analysis of Longitudinal Count Data

4.2.1 Features of Longitudinal Counts

Within a panel data context, let yi = {yi(tij), i = 1, . . . , n} denote the observed counts for

the i-th subject, recorded at a fixed set of time points tij, j = 1, . . . , ni. As in the case

of LMM, we want to capture both the between-subject variation and the within-subject

variation generated by the repetition of measurements on a single subject. We relate each

of the observed responses to a set of p + 1 fixed effect covariates and q + 1 random effects,

respectively denoted by β = (β0, . . . , βp)
> and bi = (bi0, bi1, . . . , biq)

>.

To properly model the correlation between repeated counts measurements, we will apply the

same ideas as in the case of a Gaussian response, with the only difference being that now

we are dealing with counts. Given the vector bi of random effects for the i-th subject, we

assume that the observed measurements on this individual derive from a counting process

generated by an exponential family (EF) distribution, yi(t) ∼ EF {ψi(t), φ}, with probability

mass function:

py{yi(t) |bi,θy} = exp
(
φ−1
[
yi(t)ψi(t)− b{ψi(t)}

]
+ c{yi(t), φ}

)
. (4.1)
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Here, b(·) and c(·) are known functions, and ψi(t) and φ are referred to as the canonical

and the scale parameter, respectively. It can be directly shown that E{yi(t) |bi} = µi(t) =

b ′{ψi(t)} and V{yi(t) |bi} = σ2
i (t) = φ b ′′{ψi(t)} (Molenberghs and Verbeke, 2005).

In many studies, the recorded counts rely on different periods of time, so the raw expected

mean outcome µ̂i(t) has to be related to the associated exposure time ei(t), which plays

the role of an offset variable. With this data pattern, modeling the counting rates is more

relevant than working with the raw counts, with the longitudinal submodel focusing on

expected mean rates of counts per time unit. That is exactly the case we are dealing with

in the case of the HI dataset, as explained in Subsection 2.1.3.

4.2.2 The Generalized Linear Mixed Model

In the case of correlated non-Gaussian outcomes, the expected rate value for the i-th subject

at time t is related to a set of fixed and random covariates with the introduction of a

continuous and differentiable link function g(·),
g{µi(t)} = log{ei(t)}+ ηi(t) = log{ei(t)}+ x>i (t)β+ z>i (t)bi,

E{yi(t) |bi} = µi(t) = g−1
[

log{ei(t)}+ ηi(t)
]
,

bi ∼ Nq+1 (0, D) .

(4.2)

Here, ei(t) is the exposure time effect, x>i (t) and z>i (t) denote row vectors of the fixed and

random design matrices, respectively, while β = (β0, β1, . . . , βp)
> and bi = (bi0, bi1, . . . , biq)

>

are the corresponding fixed-effects and random-effects vectors. The random-effects param-

eters enable capturing the expression of individual departures from the overall trend, and

in most cases they can be assumed to follow a multivariate normal distribution with an

unspecified (q + 1)× (q + 1) variance-covariance matrix D.

The Poisson Model with Random Effects

The most common choice for modeling panel counts in (4.2) results from a Poisson mixed

model for longitudinal data. The marginal mean responses are usually related to the covari-

ates and random effects information using a logarithmic link, g(·) = log(·), so g−1(·) = exp(·).
This ensures positive outcomes and provides a straightforward interpretation of the estimated

regression parameters:
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

yi(t) ∼ PO{µi(t)}, µi(t) = ei(t) exp{x>i (t)β+ z>i (t)bi},

py{yi(t) |bi} =
exp{−µi(t)}µi(t)yi(t)

yi(t)!
, µi(t) > 0

E {yi(t) |bi} = V{yi(t) |bi} = µi(t),

bi ∼ Nq+1(0, D).

(4.3)

The Poisson mixed model allows for robust parameter estimates, even if the underlying

distribution is not true, provided that the expectation is correctly specified (Gourieroux

et al., 1984). However, the underlying distribution usually has an observed variance greater

than the mean, so the counting response presents overdispersion. See, for example, Hausman

et al. (1984), Agresti (2012), Booth et al. (2003), Molenberghs and Verbeke (2005), and

Harrison (2014), for a related derivation and analysis of this alteration in the equaldispersion

hypothesis. This is a common issue affecting count data, mainly due to missing information,

aggregate data, or even an excess of zeros in the longitudinal outcome. In such cases, the

derived inference under the Poisson model leads to biased parameter estimates or erroneous

conclusions about parameter significance. A detailed discussion of these issues can be found

in Zuur et al. (2009) and Hilbe (2011).

The Negative Binomial Model with Random Effects

Although there are different models for dealing with the overdispersion relative to Poisson

counts, the standard negative binomial (NB) model appears in the literature as being the

most obvious choice. See, for example, Ismail and Jemain (2007), Greene (2008), and Hilbe

(2011). The NB mixed model for longitudinal data distribution can be easily derived from

the Poisson distribution by placing a multiplicative gamma distributed random noise εi(t)

in the conditional mean response. Specifically, such a latent variable is defined in terms of

shape and rate parameters by εi(t) ∼ Γ(κ, κ), κ > 0, with E{εi(t)} = 1 and V{εi(t)} = 1/κ,

so that the longitudinal counts are modeled by yi(t) ∼ PO{εi(t)µi(t)}. This Poisson-gamma

mixture presents a closed-form solution which, in practice, leads to the NB distribution with

a dispersion parameter κ. In this distribution, the marginal mean responses can be also

related to the fixed and random effects using a logarithmic link:

yi(t) ∼ NB{µi(t), κ}, µi(t) = ei(t) exp{x>i (t)β+ z>i (t)bi},

py{yi(t) | bi} =
Γ{κ+ yi(t)}
Γ(κ) yi(t)!

µi(t)
yi(t) κκ

{µi(t) + κ}κ+yi(t)
, µi(t), κ > 0

E{yi (t) |bi} = µi(t), V{yi(t) |bi} = µi(t) +
µi(t)

2

κ
,

bi ∼ Nq+1(0, D).

(4.4)

The NB distribution has the general canonical form of the exponential family equations for

any fixed κ. Because of the quadratic expression for the variance, it is sometimes referred
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to as NB2 in the literature. Note that the NB distribution can actually be understood

as an extension of the Poisson model when overdispersion is accounted for by parameter

κ, since the NB model tends towards the Poisson model as κ → ∞. This particularity is

well-documented by Lawless (1987) and Hinde and Demétrio (1998); see also Boucher et al.

(2008) for a numerical application in the field of insurance studies.

4.3 Specification of the Joint Model for Counts and Delayed En-

tries

Assuming a time scale of time (years) over the age of 65, let T ∗i be the true survival time

for the i-th subject. We also define an independent random variable τi ≥ 0 as the time

at which a policyholder enters the study after the age of 65, giving rise to left truncation

for a subject when τi > 0. Only subjects reaching the threshold age can be sampled from

the target population, i.e. T ∗i > τi; otherwise they can not be observed. In addition,

once the observed subjects enter the study, their survival times are subject to the usual right

censorship mechanism, respectively denoted by a potential censoring time Ci. This means we

can only know the observed survival time for the i-th recruited individual, Ti = min{T ∗i , Ci},
as well as a dichotomous event indicator δi = I(Ti∗ ≤ Ci). Consequently, the probabilistic

distribution of the time-to-death has to be defined according to the proportion of subjects

living beyond time point t and conditional on their being older than the corresponding left

truncation time, Si(t |T ∗i > τi,Mi(t),wi) = Pr (T ∗i > t |T ∗i > τi,Mi(t),wi).

Building on the analysis of longitudinal count data considered in Subsection 4.2.2, repeated

count sequences and time-to-event approaches can be coupled by assuming independence

between both processes given the shared random effects (conditional independence). The

JM for the i-th subject, i = 1, . . . , n, is postulated by a time-dependent relative risk model

where the death hazard at time t takes into account the whole expected longitudinal response

until t, Mi(t) = {µi(s), τi ≤ s ≤ t}:


E {yi(t) |bi} = µi(t) = g−1

[
log{ei(t)}+ x>i (t)β+ z>i (t)bi

]
,

hi{t |T ∗i > τi,Mi(t), wi} = h0(t) exp
[
γ>wi + αF {µi(t)}

]
,

bi ∼ Nq+1(0, D).

(4.5)

In the above equation, g(·) denotes the linking function to relate the expected longitudinal

response to the fixed and random effects, respectively β and bi. In case of assuming that

the underlying counting process is generated by a Poisson or negative binomial distribution,

g(·) = log(·). Furthermore, the function h0(t) denotes the baseline risk function, wi is

the vector with subject’s exogenous covariates, and γ is the vector of the corresponding

regression parameters. Although h0(t) traditionally remains unspecified in the proportional
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hazards literature, this condition becomes more flexible when addressed using joint modeling

techniques. In particular, the function h0(t) is approximated by means of quadratic P-splines,

in the same way as detailed in Section 3.4.

The functional form F(·) specifies a proper manner in which the longitudinal information

provided by µi(t) is accounted for in survival. Because µi(t) > 0 in a counting process, F(·)
is positively defined and increases its value with t. The constant parameter α quantifies the

strength of association between the particular longitudinal evolution until time t, and the

corresponding death hazard. Specifically, the quantity exp(α) returns the hazard ratio for a

one-unit increase in the value F {µi(t)} at time snapshot t.

The basic option consists of relating expected longitudinal counts to survival at each time t,

which yields F (·) as the identity function. However, in our particular case, it may be more

informative to include the entire underlying profile of counts previous to measurement at

time t, and at the same time assume that historical effects fade over time. Thus, the F (·)
transformation is defined to account for the cumulative and recency-weighted area under the

expected longitudinal profile until t. Specifically, in our case the area is and weighted by

means of an exponential weighting function (see details in Section 3.4).

In the case of handling counts with a Poisson or negative binomial distribution, the weighted

area under the whole subject’s longitudinal profile is included in the survival process through

the following functional form:

F{µi(t)} =

∫ t

τi

ν exp{−ν(t− s)} ei(t) exp{x>i (s)β+ z>i (s) bi} ds, τi ≤ s ≤ t, (4.6)

4.4 Estimation of the Joint Model for Counts and Delayed Entries

Let θ = (θ>y ,θ
>
t ,θ

>
b )> be the JM full parameter vector defined in Subsection 3.5, and let

Dn = {(yi, τi, Ti, δi), i = 1, . . . , n} be the complete information from our original dataset

with n policyholders. Taking advantage of the conditional independence assumption and

using (3.23), the overall joint likelihood for (θ,bi) is formulated as in the standard JM:

p (Dn |θ,bi) =
n∏
i=1

ni∏
j=1

exp
(
φ−1
[
yi(tij)ψi(tij)− b{ψi(tij)}

]
+ c{yi(tij), φ}

)

×

(
exp

[ Rh0∑
r=1

γh0,r Bdh0 ,r
(Ti,λh0) + γ>wi + αF{µi(Ti)}

])δi

(4.7)

× exp

(
−
∫ Ti

τi

exp

[ Rh0∑
r=1

γh0,r Bdh0 ,r
(s,λh0) + γ>wi + αF{µi(s)}

]
ds

)
.

The mean estimates of parameters and random effects are then derived by Markov chain

Monte Carlo (MCMC) algorithms, which enable inferences to be made by efficiently drawing
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a sample from the posterior distribution through the Bayes’ rule:

π (θ,bi |Dn) ∝ p(Dn |θ,bi) pb (bi |θb) π(θ). (4.8)

In the case of the longitudinal approach, we should stress that the expected outcome is here

directly dealt with in terms of emergency claims per year. Thus, we can also assess the

survival at time t by incorporating the information provided by the exponentially-weighted

area under the expected emergency profile until t.

4.5 Results of the Joint Model for Counts and Delayed Entries

The fixed effects of the longitudinal outcome are again set at {β0, β1}, respectively referring

to the intercept term and the observation time. Initially, we test a single random intercept

b0i, and a random intercept and slope {bi0, bi1}, with Cov(bi0, bi1) = ρ σb0 σb1 . These different

longitudinal approaches are fitted under the Poisson and NB distributions using Bayesian

software JAGS, version 4.2.0 (Plummer, 2003), by means of code written by the author. We

obtain the posterior mean estimates of the parameters and random effects of the GLMM,

and the goodness-of-fit is evaluated in each case by the corresponding DIC score. The

results suggest that the models with a single random-intercept provide better fittings, and

that the NB mixed model is preferable to consider the Poisson mixed model. This result

is unsurprising since the NB model accounts for response heterogeneity through parameter

κ, whose mean estimate exhibits strong evidence for overdispersion for both one and two

random effects, 0.997 (95% CI: 0.948, 1.049) and 1.008 (95% CI: 0.958, 1.060), respectively.

Regarding the two NB models, in both cases the posterior mean estimate for σb0 shows a

significant role in accounting for baseline heterogeneity, with 0.963 (95% CI: 0.930, 0.998)

in the random-intercept model and 0.969 (95% CI: 0.933, 1.004) for the two random effects

model. However, the mean estimate for σb1 in the NB model with two random effects displays

0.014 (95% CI: 0.004, 0.026), thus indicating a highly residual role of the latent correlation

between measurements along time. Consequently, there is no evidence for including the

effect of random-slope when overdispersion is accounted for, and the NB with only a random

intercept provides the lower DIC score. In what follows, the longitudinal approach in our

JM framework is carried out by a mixed model with a random-intercept per policyholder.

In the case of handling emergency claims per year with a Poisson distribution and considering

gender as the only baseline covariate wgi in the survival process, the JM is summarized by



yi(t) ∼ PO{µi(t)},

E {yi(t) |bi0} = µi(t) = ei(t) exp (β0 + bi0 + β1 t), (4.9)

hi{t |T ∗i > τi,Mi(t), wgi} = h0(t) exp

[
γg wgi + α

∫ t

τi

ν exp{−ν(t− s)}µi(s) ds

]
,

bi0 ∼ N (0, σ2
b0

),
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whereas the JM which uses a NB longitudinal submodel is postulated as:



yi(t) ∼ NB{µi(t), κ},

E {yi(t) |bi0} = µi(t) = ei(t) exp (β0 + bi0 + β1 t), (4.10)

hi{t |T ∗i > τi,Mi(t), wgi} = h0(t) exp

[
γg wgi + α

∫ t

τi

ν exp{−ν(t− s)}µi(s) ds

]
,

bi0 ∼ N (0, σ2
b0

).

The longitudinal part of the JAGS code to fit the JM with counts and left-truncated time-

to-event data, was written and properly implemented, this code being available on request.

Both JM’s are applied to the HI dataset using JAGS software from the R package jagsUI

(Kellner, 2016). The posterior mean estimates of the parameters and random intercepts of

each JM, (θ, bi0), are obtained, as well as the corresponding DIC (θ, bi0). The priors and

hyper-priors of the parameters are the same as considered in Chapter 3 for the standard JM,

adding only a flat prior for the dispersion parameter, κ ∼ U(0, 5).

JM weighted cumulative PO counts JM weighted cumulative NB counts

Parameter Mean SE q 2.5% q 97.5% Mean SE q 2.5% q 97.5%

Longitudinal

β0 -1.085 0.001 -1.140 -1.030 -0.985 0.001 -1.041 -0.920

β1 0.032 < 0.001 0.028 0.035 0.030 < 0.001 0.026 0.034

ν 9.989 0.026 8.083 11.894 10.006 0.026 8.085 11.907

κ – – – – 1.004 0.001 0.953 1.057

σb0 1.088 < 0.001 1.058 1.117 0.995 < 0.001 0.972 1.020

Survival

γg −0.074 0.002 −0.227 0.098 −0.071 0.002 −0.247 0.112

Association

α 0.429 0.001 0.382 0.477 0.526 0.002 0.475 0.578

Goodness-of-fit

DIC 99111.0 95723.3

Table 4.1. Posterior summaries for all parameters of the JM when considering the

exponentially-weighted cumulative effect of the expected emergency claims per year. Mean,

standard error, 95% credible interval and DIC are sampled for each parameter from the corre-

sponding posterior distribution.

For both joint models we obtain a high estimate for the rate parameter of the exponential

weighting function, thus indicating that only the most recent past claims have a real influence

on the expected survival. The positive sign of the association parameter in both cases shows

that relatively high cumulative demand for ambulance services, hospitalizations, and non-

routine visits, is instantaneously related to a deterioration in the subject’s health status and,
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consequently, to lower probabilities of survival. Thus, in the case of the JM with Poisson

response, a one-unit increase in the weighted area under the expected emergency claims per

year leads to a exp(ᾱPO) = 1.54 - fold increase (95% CI: 1.46, 1.61) in the subject’s mortality

risk, whereas this risk increases by a factor of exp(ᾱNB) = 1.69 (95% CI: 1.61, 1.78) in

the NB model. Again, we can remark that the sex baseline covariate shows no evidence of

different risk depending on policyholder’s gender for those aged 65 and more.

When comparing the DIC score obtained in each JM, we observe a substantial reduction in

its value in the case of the NB model, of 3387.7 points. This is due to the fact that the

NB model is able to capture the heterogeneity present in the response, using its dispersion

parameter, and it is consequently able to have a better approach to the behavior observed

in the longitudinal responses.

4.6 Discussion of the Joint Model for Counts Results

We have fitted a Bayesian JM to account for discrete outcomes and delayed entries. The

variable of interest in the longitudinal analysis was the annual rate of emergency claims,

where Poisson and NB distributions were considered for the fit. The JM was fitted using the

JAGS software, applied for the first time to such a large health insurance dataset. We focused

on the influence of the cumulative and recency-weighted effect of the whole longitudinal

profile until a specific time. The results show that relatively high cumulative demand for

ambulance services, hospitalizations, and non-routine medical visits, is positively related to

a deterioration in the subject’s health status and, consequently, to lower survival rates. The

most interesting conclusion is that the emergency demand with the greatest impact is that

in the most recent past, and it is this that the JM is able to capture. Moreover, the results

confirm the adequacy of assuming a NB distribution in the longitudinal process as a first

step to handle overdispersed count data. However, further extensions in the longitudinal

part can be considered to specifically deal with zero inflation, as different versions of zero-

inflated models. We will delve deep into this issue in the next chapter, and additionally, we

will investigate the benefits of including a time-varying association parameter.





CHAPTER 5

JOINT MODEL FOR ZERO-INFLATED COUNTS WITH

TIME-VARYING EFFECTS

5.1 Principles of Time-Varying Joint Models with Excess Zeros

The use of hierarchical regression models for handling correlated count data over time is

very common in both biomedical and health care contexts. Of special interest is to properly

model frequency demand when the longitudinal response can be expressed as the number of

claims related to the process we want to characterize. The recorded outcome is then usually

restricted to a small range of non-negative integer values per subject, therefore expressing an

overall highly right-skewed distribution. Aside from within-subject dependence inherent to

hierarchies, panel counts are often affected by unmeasured factors between subjects, which in

practice translates into the fact that the observed variance is much larger than the observed

mean; that is, the occurrence of overdispersion in the observed response commented in

Chapter 4. Furthermore, counts with a large number of zeros become highly usual due

both to the highly infrequent nature of the data itself and to the existing interplay between

private and universal health coverage in some countries. Then, an extra residual variation

arises in the response, which overlaps with the latent heterogeneity among individuals. An

appropriate inclusion of these two stochastic sources may be achieved by artificially increasing

the expected number of zeros. A common approach advocates for following straightforward

generalizations of Lambert’s methodology (Lambert, 1992; Greene, 1994), where a zero-

inflated response is induced by a mixture of a point mass at zero with a hierarchically

structured counts, so an additional subset of null measurements is then recorded. The merge

of both can be explained by the existence of a hidden subgroup of subjects whose behavior

pattern is not observed during the corresponding trajectory within the overall study period.

Consequently, a non-real null response is observed regarding an important proportion of the

longitudinal outcomes. These commonly termed structural zeros are not randomly generated

by the considered count distribution, but originate from independent external causes with

probability equal to 1. These are well differentiated from the sampling zeros derived from a

typical counting process and thus randomly arising.

In addition, a key benchmark in the classical joint model formulation is that the survival

analysis is undertaken under time-constant coefficients within the analyzed period. Conse-

quently, the coefficient effects on the hazard for survival remain fixed across time. However,

in some cases, departure from a stationary association parameter becomes a more realistic

approach to describe the underlying relationship between the two responses. At this point,

65
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we must refer to Song and Wang (2008), where the interest is focused on inferences about the

hazard relationship, and in which time-varying parameters are allowed. Specifically, this is

achieved through either a corrected score estimator (Wang, 2006) or a local conditional score

estimator (Song et al., 2002). More recently, Andrinopoulou et al. (2016) have proposed

a so-called varying-coefficient joint model in which, unlike the standard parametrization,

a time-varying association parameter between longitudinal and survival outcomes is intro-

duced. Specifically, this is achieved by allowing for flexible shape for the unknown association

structure via its expansion into penalized B-splines. In our paper, such an approximation

is taken as the starting point to improve the accuracy with which our model describes the

behavior of the data that make up our illustrating example.

As commented in Subsection 2.3, one of the defining characteristics of the HI dataset is the

presence of a large quantity of zeros in the observed longitudinal response, representing 63.1%

of the overall measurements. In addition, it is not clear that the effect of the emergency

demand on the mortality risk is constant with age, as was indicated in Subsection 1.2. In this

regard, it seems reasonable to assume that there are age segments that are more predisposed

to accumulate emergency claims (from 85 years old onwards, many people are affected by

multimorbidity), for which reason the health impact of one of these emergency claims may

not be as high as if it would have happened in another age range. Thus, it seems reasonable

to assume a time-varying association parameter.

5.2 Analysis of Longitudinal Count Data with Excess Zeros

In a hierarchical discrete context, let yi = {yi(tij), i = 1, . . . , n} accounts for observed

longitudinal outcomes per subject at a fixed set of time points tij, j = 1, . . . , ni. In many

studies the recorded observations relies on different periods of time, so the raw expected

mean outcome µ̂i(t) must be related to the associated exposure time, ei(t), which plays the

role of an offset variable. With this data pattern it is more relevant to model ratios of counts

instead of raw counts, then focusing on the expected mean rates of counts per time unit,

µi(t) = µ̂i(t)/ei(t).

Now, let us assume that an excess zeros is observed in the longitudinal response, so each

measurement comes from the overlapping of a binary variable vi(t) and the observed count

rate yCi(t), so that yi(t) = vi(t) yCi(t). The variable vi(t) captures a subject’s propensity

to use private services and follows a Bernoulli distribution, vi(t) ∼ Be{πBi(t)}. Hence,

structural zeros arise with probability 1−πBi(t), whereas for each-subject counting sequence,

{yi}, a Poisson or standard NB distributions are usually assumed.

Figure 5.1 displays the zeros generation process, in which the zeros may come from a classic

count distribution or from a binary distribution. Then, we say that the expected response

at zero value is inflated.
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Figure 5.1. Scheme for zero count generation in a zero-inflated model.

The preponderance of zeros and clustered counts over time are simultaneously modeled,

adopting in this thesis a separate random effects extension in each of the two mixture parts.

Several authors have focused their research on these hierarchical zero-inflated responses,

either by assuming a Poisson counting scheme, e.g. Yau and Lee (2001), Min and Agresti

(2005), Liu and Powers (2007), and Neelon et al. (2010), or a NB distribution, e.g. Yau et al.

(2003), Fang et al. (2016). Specifically, both the zero-inflated probability and the expected

count outcome for the i-th subject at time t are related to a set of both fixed and random

explanatory covariates through the corresponding one-to-one monotonic and differentiable

link functions, gB(·) and gC(·), respectively. The mixture to accommodate many zeros in

each subject pattern can be concisely expressed by

Zero-Inflated Model: py
[
yi(t) |{biB,biC}

]
=

{1− πBi(t)} δBi(t) + πBi(t) fC{yi(t) |biC} {1− δBi(t)},

Binary Process: πBi(t) = g−1
B

[
x>i (t)βB + z>i (t)biB

]
,

Counting Process: µCi(t) = g−1
C

[
log{ei(t)}+ x>i (t)βC + z>i (t)biC

]
,

E
[
yi(t) |{biB,biC}

]
= µi(t) = πBi(t)µCi(t),

bBi ∼ NqB+1(0, DB), biC ∼ NqC+1(0, DC).

(5.1)

Here, πBi(t) is the subject-specific Bernoulli probability of private care usage at time t,

related trough a first monotonic link function g−1
B (·) to a set of of pB + 1 fixed and qB + 1

random effects from binary process, respectively denoted by βB = (βB0 , . . . , βBpB )> and

biB = (biB0 , . . . , biBqB )>. Further, µCi(t) is the expected value of the underlying count model

fC{yi(t) |biC} (Poisson or NB) to handling the sampling zeros and the non-zero counts, re-

lated trough a second monotonic function g−1
C (·) to pC + 1 fixed and qC + 1 random effects,

respectively denoted by βC = (βC0 , . . . , βCpC )
> and biC = (biC0 , . . . , biCqC )

>. Additionally,
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δBi(t) = I{vi(t) = 0} acts as an indicator of private-services usage per subject and time-point

to undertake the increasing mass at zero value over the default count model. Furthermore,

µi(t) is the expected longitudinal value of the zero-inflated model. The distribution of the

random effects for both the binary and counting processes is established to follow a multi-

variate normal distribution, with a zero mean and unspecified variance-covariance matrices,

DB and DC , respectively. Notice in the above scheme that both processes are independent,

so the associated covariance matrices are not only different, but in general are also obtained

by considering different sets of fixed and random covariates (i.e., pB 6= pC and qB 6= qC).

Finally, ei(t) is the exposure time, while x>i (t) and z>i (t) respectively denote the row vectors

of the fixed and random design matrices, as usual notation in previous chapters.

Building on the above scheme, we can formulate the zero-inflated versions of the Poisson

and NB mixed models.

The Zero-Inflated Poisson Model with Random Effects

The Zero-Inflated Poisson (ZIP) mixed model is specially designed to accommodate the

overdispersion generated by the presence of excess zeros in our panel count data. In this

model, the marginal mean responses for the binary part are usually related to the fixed

and random effects using a logit link, gB(·) = logit(·), whereas the marginal mean responses

for the counting part are related to the fixed and random effects using a logarithmic link,

gC(·) = log(·). Consequently, we have

g−1
B (·) = logistic(·) =

exp (·)
1 + exp(·)

,

g−1
C (·) = exp(·),

and the general form of the ZIP mixed model can be expressed as:

yi(t) ∼ ZIP{πBi(t), µCi(t)}, πBi(t), µCi(t) > 0,

py
[
yi(t) |{biB,biC}

]
=

{1− πBi(t)} δBi(t) + πBi(t)
exp{−µCi(t)}µCi(t)yi(t)

yi(t)!
{1− δBi(t)},

Binary Response: πBi(t) =
exp{x>i (t)βB + z>i (t)biB}

1 + exp{x>i (t)βB + z>i (t)biB}
,

Counting Response: µCi(t) = ei(t) exp {x>i (t)βC + z>i (t)biC} ,

E
[
yi(t) |{biB,biC}

]
= µi(t) = πBi(t)µCi(t),

biB ∼ NqB+1(0, DB), biC ∼ NqC+1(0, DC).

(5.2)

However, in some cases the zero-inflated component from the binary part is not able by itself

to allow for data expressing the amount of heterogeneity, this being necessary in order to
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consider a proper count distribution to explicitly account for this variability source.

The Zero-Inflated Negative Binomial Model with Random Effects

A widely used alternative to consider heterogeneity effects consists of assuming a hierarchical

NB distribution for the count part. Despite the fact that the standard NB can be formulated

using different parametrization schemes, in most of the cases it establishes a quadratic mean-

variance relationship to handle additional sources of variability, and for this reason that

distribution is also referred to as NB2 in literature (Cameron and Trivedi, 2005). Combining

a hierarchical NB assumption with a random binary process for generating structural zeros,

a zero-inflated NB mixed model (ZINB) is derived. This model uses the same link functions

as those used in the ZIP mixed model for binary and counting processes:



yi(t) ∼ ZINB{πBi(t), µCi(t), κ}, πBi(t), µCi(t), κ > 0,

py
[
yi(t) |{biB,biC}

]
=

{1− πBi(t)} δBi(t) + πBi(t)
Γ{κ+ yi(t)}
Γ(κ) yi(t)!

µCi(t)
yi(t) κκ

{µCi(t) + κ}κ+yi(t)
{1− δBi(t)},

Binary Response: πBi(t) =
exp{x>i (t)βB + z>i (t)biB}

1 + exp{x>i (t)βB + z>i (t)biB}
,

Counting Response: µCi(t) = ei(t) exp{x>i (t)βC + z>i (t)biC},

E
[
yi(t) |{biB,biC}

]
= µi(t) = πBi(t)µCi(t),

biB ∼ NqB+1(0, DB), biC ∼ NqC+1(0, DC).

(5.3)

5.3 A Time-Varying Joint Model for Overdispersed Counts with

Excess Zeros

Let T ∗i be the true survival time for the i-th individual, defined as a non-negative random

variable that collects the time lag from the point an individual reaches t years until subject’s

death. These subjects can not have been observed since reaching the demanded condition,

leading to a lag between the start of follow up and the time origin fixed by the condition

of the HI dataset, which leads to random left-truncated survival times, τi. As a result, we

can only know the observed time to the event of interest for the i-th recruited individual,

Ti = min{T ∗i , Ci}, and we can introduce a dichotomous event indicator δi = I(Ti∗ ≤ Ci).

The probabilistic distribution of the time-to-event is defined by considering the proportion

of living subjects beyond time point t and conditional on being older than left truncation

time, Si{t |T ∗i > τi,Mi(t)} = Pr{T ∗i > t |T ∗i > τi,Mi(t)}.
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Building on the longitudinal modeling considered in section 5.2, repeated count rates and

time-to-event approaches can be joined in one statistical model by assuming independence

between both processes given the shared random effects (i.e. conditional independence).

From this perspective, we postulate a JM with a time-varying association, (JMTV), in which

the association parameter α(t) is assumed time-dependent, so the relationship between the

expected longitudinal value, µCi(t), and the hazard outcomes, hi{t | T ∗i > τi,Mi(t),wi}, is

subject to temporal variation. In particular, the time-dependent association parameter is

expanded into Bayesian P-splines of degree dα = 2 in the same way as the baseline hazard

function:

α(t) =
Rα∑
r̃=1

αr̃ Bdα,r̃(t,λα), (5.4)

where {Bdα,r̃(t,λα), r̃ = 1, . . . , Rα} is the same B-spline basis functions that the used for

log{h0(t)}, λα = {λ1, . . . , λQα} are the equally-spaced knots on [tmin, tmax] (we take the same

8 knots that we used for log{h0(t)}), and the set of parameters α = (α1, . . . , αRα) denotes

the Rα-dimensional vector (Rα = 9) of B-spline coefficients of the association parameter.

Furthermore, the JMTV consists of two submodels: a zero-inflated mixed effects model for

the counts, and a semi-parametric relative risk survival model to account for time-dependent

covariates. In this thesis we consider two options for the longitudinal submodel: ZIP and

ZINB. For the i-th subject, the general expression of our JMTV at each time t is summarized

by the set of equations

πBi(t) =
exp{x>i (t)βB + z>i (t)biB}

1 + exp{x>i (t)βB + z>i (t)biB}
,

µCi(t) = ei(t) exp{x>i (t)βC + z>i (t)biC},

µi(t) = πBi(t)µCi(t),

hi{t |T ∗i > τi,Mi(t), wi} = h0(t) exp
[
γ>wi + α(t)F{µi(t)}

]
=

h0(t) exp

[
γ>wi + α(t)

∫ t

τi

ν exp{−ν(t− s)}µi(s) ds

]
,

biB ∼ NqB+1(0, DB), biC ∼ NqC+1(0, DC),

(5.5)

where πBi(t) is the expected value of the Bernoulli model (i.e. the subject-specific probability

of using private services), µCi(t) is the expected value of the counting model (i.e. Poisson

or NB), and µi(t) is the expected value of the zero-inflated mixed model (ZIP or ZINB).

The parameters of the JMTV are estimated under the Bayesian framework, with using non-

informative priors whenever possible (see Chapter 3 and Chapter 4). The only novelty here

is the presence of the fixed and random effects for the binary part, βB and biB, respectively,

for which univariate and diffuse normal priors are assumed.
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5.4 Results for the Time-Varying Joint Model with Excess Zeros

In the same manner we have done in the previous chapters, we have fitted the corresponding

JM, but in this case, the parameter association results will be presented in graphical way, by

comparing the JM with a constant association parameter and the JMTV (Figure 5.2). For

the binary part, we assume a constant subject-specific rate of private care usage, πBi(t) ≡ πBi,

only considering fixed and random intercept effects. The reason for taking this decision relies

on the fact that the longitudinal data analysis performed in Chapter 2 did not provide any

evidence to include an slope effect when modeling zero values. For the counting part, we

assume fixed effects for intercept and slope terms, and also single random intercept, thus

maintaining the same longitudinal structure used for counting distributions in Chapter 4.

In the case of assuming a ZIP longitudinal submodel, the JMTV for the HI dataset is

yi(t) ∼ ZIP {πBi, µCi(t)} , πBi, µCi(t) > 0,

πBi =
exp{βB0 + biB0}

1 + exp{βB0 + biB0}
,

µCi = ei(t) exp (βC0 + biC0 + βC1t),

µi(t) = πBi µCi(t),

hi{t |T ∗i > τi,Mi(t), wgi} = h0(t) exp
[
γg wgi + α(t)F {µi(t)}

]
=

h0(t) exp

[
γg wgi + α(t)

∫ t

τi

ν exp{−ν(t− s)}µi(s) ds

]
,

biB0 ∼ N (0, σ2
B0

), biC0 ∼ N (0, σ2
C0

).

(5.6)

and in the case of assuming a ZINB longitudinal submodel, the JMTV expression is:

yi(t) ∼ ZINB{πBi, µCi(t), κ}, πBi, µCi(t), κ > 0,

πBi =
exp{βB0 + biB0}

1 + exp{βB0 + biB0}
,

µCi(t) = ei(t) exp (βC0 + biC0 + βC1t),

µi(t) = πBi µCi(t),

hi{t |T ∗i > τi,Mi(t), wgi} = h0(t) exp
[
γg wgi + α(t)F{µi(t)}

]
=

h0(t) exp

[
γg wgi + α(t)

∫ t

τi

ν exp{−ν(t− s)}µi(s) ds

]
,

biB0 ∼ N (0, σ2
B0

), biC0 ∼ N (0, σ2
C0

).

(5.7)



72 CHAPTER 5. Joint Model for Zero-Inflated Counts with Time-Varying Effects

JMTV with ZIP counts JMTV with ZINB counts

Parameter Mean SE q 2.5% q 97.5% Mean SE q 2.5% q 97.5%

Longitudinal

βB0 0.406 0.001 0.323 0.481 1.292 0.002 1.112 1.438

βC0 −0.293 0.003 −0.357 −0.225 −0.462 0.001 −0.525 −0.395

βC1 0.030 < 0.001 0.027 0.033 0.031 < 0.001 0.027 0.035

ν 8.237 0.047 7.068 9.421 11.147 0.032 10.287 11.882

κ – – – – 2.283 0.003 2.046 2.546

σB0 1.346 0.001 1.255 1.438 1.977 0.002 1.798 2.236

σC0 0.782 0.001 0.750 0.815 0.775 0.001 0.742 0.810

Survival

γg −0.083 0.002 −0.267 0.107 −0.081 0.005 −0.249 0.102

Goodness-of-fit

DIC 115739.4 115253.5

Table 5.1. Posterior summaries for all parameters of the JMTV when considering the

exponentially-weighted cumulative effect of the expected emergency claims per year. Mean,

standard error, 95% credible interval and DIC are sampled for each parameter from the corre-

sponding posterior distribution.

Figure 5.2. Comparison between the constant association parameter of JM with weighted

cumulative effects and ZINB longitudinal response, and the time-dependent association param-

eter of the JMTV with weighted cumulative effects and ZINB longitudinal response.

Firstly, in accordance with the results obtained in previous chapters, we observe that the
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JMTV which considers a ZINB longitudinal submodel provides a better fitting than the

JMTV which assumes a ZIP longitudinal response. This result is logical, since the ZINB

mixed model accounts in a natural way for both inherent overdispersion and excess zeros in

the longitudinal observed response. In addition, the gender baseline covariate does not lead

to a significantly different mortality risk between men and women, as occurred with the joint

models fitted in previous chapters.

However, the main point in this chapter concerns the true behavior of the mortality risk

pattern, whose real trend is not constant from the age of 65 onwards (as traditional joint

modeling techniques assume). Although the time-dependent association parameter α(t) con-

tinues to indicate that the relationship between the expected cumulative emergency demand

and death hazard is positive from the age of 65, it also points out that such a risk is much

more important for people under 75 years and not so much for ages around 85 years old,

precisely the ages range at which the emergency requirement achieves its maximum annual

rates (Subsection 3.2.1). In particular, the results show that the mortality risk associated

with one-unit increase in the weighted area under the expected longitudinal profile decreases

from the age 65 to the age around 85 years old, and then it increases again. Hence, in the

last potential ages of life (from the age of 90 onwards) the policyholder’s mortality risk is

mainly controlled by factors associated with subject’s age, being less dependent on emer-

gency services usage. The evolution over time of the association parameter over time is

displayed in Table 5.2, and we also provide the value obtained by assuming a constant link

between longitudinal and time-to-event outcomes.

Age (years)
Mortality hazard ratio at time t, exp {α(t)},

for a one-unit increase in F {µi(t)}
65 2.44
70 2.19
75 2.04
80 1.87
85 1.77
90 1.79
95 1.85
100 1.93

Constant 1.84

Table 5.2. Estimation of the mortality hazard ratio from 65 to 100 years for one-unit increase
in the weighted area under the expected longitudinal profile.

5.5 Discussion of the Joint Model with Time-Varying Association

Parameter

This section has introduced a JM approach which considers a time-varying association pa-

rameter between the longitudinal and time-to-event outcomes. In addition, counts affected



74 CHAPTER 5. Joint Model for Zero-Inflated Counts with Time-Varying Effects

by an excess of zeros are also accounted for in the longitudinal submodel, as well as left

truncation and right censoring in time-to-event submodel. After applying the JMTV to the

HI dataset, the results highlight the different effect on subject’s death hazard that annual

rate of emergency claims has, depending of the subject’s age at which this rate claims are

recorded (as well as subject-specific features). Although the expected emergency claims per

year and time-to-event outcomes are positively related between the ages 65 and 100, we can

infer that those emergency services collected under the age of 75 are highly related to death

hazard than those observed around 85 years. In fact, as a subject ages from 65 years, it

is more common requiring emergency services due by multimorbidity (Section 1.1). Con-

sequently, these type of services will not be so representative of a critical health status as

in ages under 75. To conclude, we observe that, from approximately 90 years onwards, the

mortality process is mainly an aging issue.



CHAPTER 6

DYNAMIC PREDICTIONS

6.1 Individualized Survival Predictions

One of the key features of the Bayesian joint framework is that personalized and dynamically-

updated survival predictions can be obtained by considering each subject-specific longitu-

dinal profile (Proust-Lima and Taylor, 2009; Rizopoulos, 2011). Let us consider a new

subject, denoted by k = i + 1, not included in the original dataset but sampled from the

target population. If emergency claims are recorded until time t, we implicitly know that

this new subject is at least alive until t, thus providing a historical set of measurements,

Yk(s) = {yk(skj), τk ≤ skj ≤ t, j = 1, . . . , nk}, as well as a specific value for gender factor

wgk. In the case of this information, we can obtain the conditional subject-specific predic-

tions at any future time u > t, given survival up to t. This prognosis task can be carried out

quite straightforwardly by adopting a Bayesian strategy. Let Ω = (θ,bk) denote the mean

estimates of full-parameter vector and random effects of the new subject, and let us assume

that the inclusion of a new subject does not entail the updating of the previous estimates.

Then, the posterior predictive distribution of survival can be written as

π̃k(u |s) = pt(T
∗
k ≥ u |T ∗k ≥ s,Yk(s), wgk,Dn)

=

∫∫
Ω

pt(T
∗
k ≥ u |T ∗k > s,Yk(s), wgk,bk,θ)π(θ |Dn) dθ dbk (6.1)

=

∫∫
Ω

pt(T
∗
k ≥ u |T ∗k > s,wgk,bk,θ) pb(bk |T ∗k > s,Yk(s), wgk,θ) π(θ |Dn) dθ dbk

=

∫∫
Ω

Pr(T ∗k ≥ u |Mk(s), wgk,bk)

Pr (T ∗k > s |Mk(s), wgk,bk)
pb(bk |T ∗k > s,Yk(s), wgk,θ)π(θ |Dn) dθ dbk,

so that a MCMC estimate of π̃k(u | s) has been carried out by combining the previous

assumptions.

Using an example, let us consider a male and female policyholder, both aged 70 upon enter-

ing the study (τk = 5), and both not included in the original dataset. A common history of

emergency claims Ys is simulated for the next decade, with measurements collected at ages

{70, . . . , 80}, i.e. s ∈ {5, . . . , 15}. Moreover, a NB counting sequence within the basic JM ap-

proach is assumed. We first focus on estimating the survival probability for both subjects at

age 90, conditioned on their being alive at s, π̃k(u = 25 |s). The results are obtained for the

75
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JM with weighted cumulative parametrization which considers a NB longitudinal submodel,

presented in Chapter 4. In particular, we have modified the survfitJM function of the

JMbayes package, and the results show how the Monte Carlo estimates update dynamically

as new longitudinal information is considered (Table 6.1). Dynamic updating of this kind

emphasizes the need for a well-characterized follow-up for each policyholder when we aim

towards personalized decisions and an accurate prediction of the insurance capital needed

to cover the corresponding health insurance plan. We conclude that there is an increasing

probability of being alive at age 90 when no claims are reported, whereas this probability

decreases sharply when a large number of emergency claims are reported. The survival es-

timates for the female are slightly higher than those for the male policyholder, since the

gender coefficient regression indicates that ceteris paribus males have a slightly higher mor-

tality hazard than females. Hence, by the age of 80, the survival estimate at the age of 90 for

male policyholder is π̃k,m(u = 25 |s = 15) = 0.708, whereas a woman under the same demand

process presents an estimate of π̃k,w(u = 25 |s = 15) = 0.717.

Age (yr)
Observed

claims, yk(s)
Man’s survival at 90 yr Woman’s survival at 90 yr

Mean q 2.5% q 97.5% Mean q 2.5% q 97.5%

70 0 0.775 0.484 0.853 0.781 0.501 0.854
71 0 0.798 0.630 0.857 0.803 0.622 0.858
72 1 0.786 0.597 0.852 0.792 0.590 0.856
73 0 0.801 0.659 0.857 0.806 0.635 0.861
74 2 0.770 0.587 0.848 0.776 0.577 0.854
75 0 0.791 0.645 0.851 0.797 0.633 0.855
76 0 0.803 0.685 0.858 0.808 0.674 0.861
77 8 0.674 0.392 0.816 0.682 0.383 0.823
78 1 0.685 0.430 0.822 0.697 0.421 0.827
79 2 0.683 0.432 0.817 0.692 0.421 0.825
80 0 0.708 0.502 0.824 0.717 0.486 0.832

Table 6.1. Dynamic survival probabilities from the JM considering the NB response with

the cumulative and recency-weighted parametrization for expected claims. Mean and 95% CI

of being alive at age 90 for a man and a woman with identical claims information collected

between the ages of 70 and 80.

If we know for certain that both subjects from the previous example remain alive at age

80, then we can assess their future survival from the information contained in our dataset

of policyholders over the age of 80. In this regard, Table 6.2 provides the survival estimates

from the age of 80 to the age of 90. Recall that the last row in this table logically provides

the same results as those in Table 6.1, since both survival estimates at the age of 90 are

performed under the same assumptions.
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Age (years)
Man’s survival at 90 yr Woman’s survival at 90 yr

Mean q 2.5% q 97.5% Mean q 2.5% q 97.5%

80 1.000 1.000 1.000 1.000 1.000 1.000
82 0.973 0.951 0.983 0.974 0.952 0.984
84 0.934 0.890 0.962 0.938 0.892 0.963
86 0.885 0.807 0.929 0.892 0.797 0.932
88 0.810 0.675 0.885 0.815 0.652 0.887
90 0.708 0.502 0.824 0.717 0.486 0.832

Table 6.2. Prognosis of survival from the JM considering the NB response with the cumulative

and recency-weighed parametrization of expected claims. Mean and 95% CI for a man and a

woman who remain alive at age 80.

6.2 Assessing the Effect of Emergency Demand and Longevity on

Insurance Rates

We provide a brief overview of contributions in the literature that are aimed at studying the

statistical analysis of insurance problems. Joint modeling in insurance has been addressed

by many authors. Sarabia and Guillén (2008) analyzed models in the general context of

risk management. Count data models for insurance are specially relevant in the context

of automobile insurance (Boucher et al., 2007). An analysis of a long-term care insurance

portfolio was studied by Guillén and Pinquet (2008), and the costs were considered by Guillén

et al. (2011). Furthermore, time-varying effects were considered in Guillén et al. (2012). In

this section, the relationship between the demand for medical service, the survival, and the

price of insurance is addressed.

The results in Table 6.3 present the predicted survival probabilities at age 75 for an example

of an insured man and woman, aged 65 at study entry. They both demand a number of

emergency claims per year equal to 3, 1, 5 and 15 in the first four years.

Age (yr)
Observed

claims, yk(s)

Mean survival
at 75 yr for

man

Mean survival
at 75 yr for

woman

65 3 0.964 0.967
66 1 0.968 0.969
67 5 0.958 0.960
68 15 0.942 0.948

Table 6.3. Dynamic survival probabilities from the JM considering the NB response with
the cumulative and recency-weighted parametrization for expected claims. Mean probability
of being alive at age 75 for a man and a woman with identical claims information collected
between the ages of 65 and 68.

If we carefully look at the example of the man, we observe that when at the age of 65,
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he requests for three emergency claims and he has an estimated probability of survival to

75 years equal to 96.4%; however, when he turns 66 and he has only one claim, then his

probability of survival to age 75 increases to 96.8%. On the contrary, if a man reports 15

claims at age 68, his probability to survive to age 75 decreases to 94.2%, as expected by the

association between bad health condition and risk of death.

When looking at the example presented in Table 6.3, we observe that when the annual rate

of emergency claims increases from 5 to 15, at the age of 67 and 68, then the decrease in the

survival probability is 0.958− 0.942 = 0.016 for men, and 0.960− 0.948 = 0.012 for women.

A simple extrapolation implies that an increase in the rate of emergency claims implies

a reduction of the probability of survival of roughly 0.167% per claim in men and about

0.125% in women. This result follows from dividing the reduction in survival probability

by the initial survival estimate (0.016/0.958) · 100% = 1.67%, and dividing this percentage

by the difference in emergency claims per year, 15 − 5 = 10. The analysis of the interplay

between emergency claims per year and survival reveals that there is an association between

them, so that an increase in emergency claims implies a decrease in survival. However, the

decrease in survival is low.

Let us consider that the cost of a claim equals CT . In order to analyze the effect on the

price of the premium, we next describe the procedure to follow. Assume that for a given

insured the expected number of claims is equal to E and the survival probability is p, then

the pure premium price (we do not consider general additional expenses here) would be equal

to CT E p. When the expected claims increase by one then we must consider E + 1, but the

survival probability of a later age decreases by r, so we must substitute p by (1− r) p, and

the pure premium is CT (E + 1) p (1− r). We obtain that the new premium is

CT (E + 1) p (1− r) = CT E p− r CT E p+ CT p (1− r).

So, the premium would be equivalent to the initial one if

CT p (1− r) = r CT E p.

Then, the survival reduction which exactly compensates the cost of additional claims is:

E =
1− r
r

.

This equality would imply perfect diversification of the two processes. For values of r ranging

from 0.05% to 20%, we have calculated the corresponding expected number of claims that

would imply equilibrium in the premium. The results are presented in Table 6.4.
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R(%) Expected claims

5.0 19
7.5 12
10.0 9
12.5 7
15.0 6
17.5 5
20.0 4

Table 6.4. Reduction in survival probability and the corresponding expected number of claims
that implies no change in the premium.





CHAPTER 7

DISCUSSION AND FUTURE RESEARCH

7.1 Contributions to Health Insurance

In this thesis we study health insurance for elderly people together with their survival rates.

We defined elderly people as those with a chronological age equal to 65 years or more. In

aging societies, the longevity phenomenon implies that elderly people live longer than they

did in the previous decades, but with poorer health conditions. In the context of private

health care, this shifting demographic trend has given rise to an increasing demand for

services, because it is widely known that elderly individuals require medical assistance (they

have a larger number of claims) more often than younger ones, thus creating a problem for

pricing products correctly. If elderly policyholders were charged proportionally to their own

risk, then they would not be able to afford health insurance costs. So, insurers introduce

corrections in the premium setting process. In practice, younger members of private health

insurance schemes have to subsidize the older ones.

Traditionally, insurance companies have not analyzed the underlying compensation between

the demand for health services and the survival rate. This thesis is a unique contribution in

this field. It also contributes to the development of statistical methods designed to jointly

model non-negative integer outcomes and survival. We want to emphasize that, apart from

the methodological results that have been described in detail in the previous chapters, this

thesis has a practical contribution to the development and sustainability of health insurance

products for elderly people. It has been shown that the demand for health services together

with survival rates provides a way for the insurance company to compensate costs. In

actuarial terms this is usually called risk compensation. Elderly people who have a poor

health status make more claims than the healthy ones, and therefore they cost more to

the company than expected. However, due to a deterioration of health conditions, these

insured people tend to have bleaker survival prospects than those who are healthy. So,

this thesis argues that the higher costs of medical care can be compensated by less costs in

the products that are associated with life expectancy. For instance, if an individual has a

medical insurance policy and, at the same time, receives a life annuity from the insurance

company, the question is whether there is an association between the longevity risk and the

medical risk so that both mechanisms can compensate each other. This thesis demonstrates

that in the particular dataset that has been analyzed, the association between emergency

claims and survival exists, being positive and significantly different from zero. In addition,

it is shown that there is no difference between men and women in this respect. Finally, it is
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also proven that the association intensity varies with age, so that it is much more important

for people under 75 years and not so much for ages around 90 years. This result per se is

a genuine output and can be directly implemented in the real world. However, the thesis

is limited in the immediate application because the actuarial methods have not been fully

addressed, as they were not the main purpose of this work.

The insurance sector in general stores large portfolios of individual policyholders monitored

over long periods of time, thus constituting a benchmark example of the potential appli-

cations of joint modeling techniques in a context of large datasets. This feature is also a

characteristic of this thesis, where methods have been developed under the premise that the

size of the motivating dataset is very large. An increasing number of statistical studies report

on the individualized monitoring of time-dependent covariates prior to the occurrence of a

particular event. We have shown that the joint analysis of the individualized and expected

longitudinal evolution over the lifetime is the proper approach for detecting the strength of

association between these two responses.

7.2 Contributions to Joint Modeling

As mentioned before, the thesis makes some contributions to statistical methodology in the

field of joint modeling of longitudinal counts and survival outcomes. Looking back to the

initial objectives, we summarize the main key findings in the methodology.

We have proposed an adequate model to accommodate correlated counts observed in the

longitudinal outcome, taking into account the potential overdispersion at subject-specific

level, that is, when the within-subject variability is larger than the mean. The two main

causes of overdispersion derive from a inherent heterogeneity among measurements and an

abundance of zeros. Additionally, time-to-event data should account not only for the usual

right censoring, but also for the left truncation caused by the late entry into the study of a

moderate percentage of subjects.

We have shown how to analyze the adequate functional form to relate the subject’s count

history within the study window to death risk. Standard joint models assume a constant

relationship between the current expected value and the survival rate, but in our case it does

not seem reasonable to summarize the health status by only considering the longitudinal

information from a single time point. Instead, we have considered the impact of past health

status on the current death hazard. Moreover, all past medical information does not have

the same importance; the closer measurements are to the current time, the more weighted

their consideration should be compared to those that are more distant.

As a main idea in this thesis, we have incorporated a time-varying association parameter

between longitudinal and time-to-event outcomes, hence allowing for a more flexible rela-

tionship between emergency demand and death hazard. This point becomes essential in the

insurance field, since the result of this connection is the one which may prove that expected
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costs from subjects with a higher emergency demand are compensated with lower survival

rates.

Insights into the underlying trends at this individualized level enable professionals to provide

more accurate service demand predictions and to adjust the risk of mortality to capture better

the baseline factors of age and gender. To date, joint modeling techniques have usually been

used with quite small datasets (in the order of a few hundred individuals) and it is not easy

to find applications to larger sets or discussions of the computational obstacles that need

to be overcome. Nevertheless, it has been reported the challenging task of implementing

a single joint model with a large data sample of policyholders aged 65 and over, and it

has demonstrated a statistically significant dependence between a subject’s past medical

care usage (their use of ambulance and emergency services together with admissions to the

hospital) and their current hazard of death. While we have no information about the number

of days the subjects spent in hospital or in the emergency room, nor about the condition that

required their seeking health care, we are able to provide a personalized survival prediction.

The functional form proposed to include complete historical information in the hazard model

considers the cumulative effect of the health-status weighted biomarker outcome over the

preceding years. In addition, the impact of health-status exposure on survival response is

weighted by an exponential function, so that the most recent claims with respect to the

present are assigned greater weights, while the impact of distant outcomes falls sharply with

increasing distance from the present. Hence, we have shown that health risks are not greatly

affected by long-term cumulative critical claims from the past, but rather by those recorded

more recently.

7.3 Further Remarks and Future Research

After looking at the dynamic predictions, we conclude that the reduction in survival should

be much greater than that observed in our data to compensate for the increase in the

demand for emergency care. This conclusion indicates that risk diversification may not be

possible if the insured person only has one medical insurance product, but in case that the

insured person has several products linked to longevity risk such as life annuities, then the

compensation of risks could be feasible.

Here, it should be noted that we do not consider dependence between the number of events

and severity in terms of cost. Further, a limitation of the thesis is that we only consider

severe medical care events (namely, ambulance services, hospitalizations, and non-routine

medical visits), whereas other medical treatments are not analyzed and, as such, do not

form a part of the insurance policy under evaluation.

The conclusion for practitioners is, therefore, that health insurance for the older group

remains a matter of pooling the risk with younger customers or of increasing the price of

the policy with age. However, we argue that joint modeling of frequency and survival is
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a method that must be considered when developing dynamic pricing techniques, which are

aimed at policy durations shorter than one year, especially for elderly of not-too-advanced

ages. In that case, knowledge of the claim history should be combined with an update to

the survival prediction.

There are some issues that still remain on the agenda for future research. First, the models

proposed here, when implemented in large databases, require an intensive computational

effort, so there is a need for optimization of the numerical and estimation procedures in

order to have quicker solutions. Second, the inclusion of multiple longitudinal outcomes

has not been addressed in the thesis. We think that models could have been addressing

the three counts separately (ambulance, hospitalizations, and non-routine medical visits).

Third, joint latent class models have not been been analyzed. This could be an area for

further improvement. Fourth, financial evaluation had to be discarded from the original

objectives due to the lack of information on the costs of the claims. Finally, we believe that

other types of models could have also been considered for handling longitudinal count data,

such as the Hurdle models or some other generalized alternatives.



Appendix A

R CODE FOR HI DATASET CONFIGURATION

A.1 Importing the Claims File: claims.R

import claim <- function(data, open info, close info, keeptown = c("all", "Barcelona")) {

keeptown <- match.arg(keeptown)

# Import the claims file via an adequate format and removing those contracts related

# to subjects who were born before 1900-01-01 (so avoiding impossible ages for being

# too high), as well as those contracts related to subjects who were born on a date

# equal to or later than the study closing date, on 2014-02-01.

# We also keep those contracts whose "town" variable is the one we are interested in.

# Regard this "town" variable, remove all characters after:

# 1) Comma: ", E" - ", L" - ", L’" - ", LA" - "," - ", ELS" - ", PARTIDA"

# 2) Slash (to avoid duplicates in nomenclature)

# 3) Open parenthesis

# After that, all the white spaces at the end of a "town" name will also be removed,

# and the letters are changed from capital to lower case except the first letter of

# each word.

# De Morgan’s laws: !(X | Y) is the same as !X & !Y

# -----------------------------------------------------------------------------------

claims ini <- fread(data, na.strings = "", drop = c("edad", "VAR19"))[,

list(

id = snip,

dborn = as.Date(fnacim, format = "%d/%m/%Y"),

sex = factor(c(1, 0))[match(factor(sexo), c("D", "H"))],

cp = cpostal,

town = {
town0 <- sub("\\s+$", "", gsub("(.*)[/(,].*", "\\1", poblacion))

factor(gsub("\\b(\\w)", "\\U\\1", tolower(town0), perl = TRUE))

},
dclaim = as.Date(facto, format = "%d/%m/%Y"),

cfam = factor(cfamilia, labels = c("hosp", "prostheses", "non_routine", "hosp_2",

"visit", "test", "analysis", "treatment", "carnet", "healthcare", "homevisit",

"homeats", "ambulance", "ats")),

cspe = factor(cespecialidad),

cclaim = factor(cacto),

quantity = cantidad)][!(dborn < as.Date("1900-01-01") | dborn >= close_info)]

# Multi-replacement of special characters

# ---------------------------------------

mgsub <- function(pattern, replacement, x) {
result <- x

for (i in 1:length(pattern)) {
result <- gsub(pattern[i], replacement[i], result)
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}
result

}

inichar <- c("Ca’N", "D", "D‘", "D’", " d’En ", " De ", "Del ", "Els ", " I ",

"L’", "La", " Les ", " Na ", " S’", " Sa ", " San ", " Santa ",

"Sant ", "Santa ", " Ses ")

finchar <- c("Can", "d’", "d’", "d’", " d’en ", " de ", "del ", "els ", " i ",

"l’", "la", " les ", " na ", " s’", " sa ", " S. ", " Sta ",

"St. ", "Sta. ", " ses ")

claims_ini$town <- factor(mgsub(inichar, finchar, as.character(claims_ini$town)))

# Replacement of names from different neighborhoods in the municipality

# "town" = "Palma de Mallorca", as well as names of the three villages

# that belong to "town" = "Gavet de la Conca"

# ---------------------------------------------------------------------

levels(claims ini$town)[levels(claims ini$town) %in%

c("Can Pastilla", "Maravillas las", "S’Aranjassa", "Sa Indioteria", "Son Anglada",

"Son Espanyolet", "Son Ferriol", "Son Sardina")] <- "Palma de Mallorca"

levels(claims ini$town)[levels(claims ini$town) %in%

c("Aransis", "St. Salvador de Tolo", "St. Serni")] <- "Gavet de la Conca"

# Rename those two levels which have a common string in "town" = "Sta. Eulalia"

# -----------------------------------------------------------------------------

levels(claims ini$town) <- c(levels(claims ini$town), "Sta. Eulalia de Aren")

claims_ini[town == "Sta. Eulalia" & cp == "22583", town := "Sta. Eulalia de Aren"]

claims_ini[town %in% c("Cala Llonga", "Es Cana", "Sta. Eulalia"),

town := "Sta. Eularia des Riu"]

# Multi-replacement of provided geographical names for the correct

# assignment of their municipality and to correct spelling mistakes

# -----------------------------------------------------------------

initown <- c("5100 Jambes", "Aeroport del Prat", "Ampolla l’",

"Arenal", "Bossa", "Bruselas 1000",

"Cala Vias", "Castellfollit de la Roc", "Castillo de Bendinat",

"Chinchilla de Monte Ara", "Es Calo", "Fontpineda",

"Granyena de les Garrigu", "Lligallo del Ganguill", "Llosses, Les",

"Madrigal de las Altas T", "Maioris X", "Massalc0reig",

"Montmany- Figaro", "Nuestra Seora del Pila", "Palmeras Park",

"Platja de Alcudia", "Poligono Industrial De", "San Fernando",

"San Lazaro", "San Miguel de Son Carri", "Siesta",

"Sigena", "St. Carles de la Rapit",

"St. Fost de Campsentel", "St. Fost de Campsentell",

"St. Francesc", "St. Francesc de s’Esta",

"St. Joan", "St. Joan de Les Abad", "St. Joan de Vilatorrad",

"St. Jordi de ses Salin", "St. Josep de la Atalai",

"St. Julia del Llor i B", "St. Just",

"St. Miquel de Campmajo", "St. Pere de Riudebitll",

"St. Pol", "St. Salvador", "St. Salvador - Coma-Ru",

"St. Salvador de Guardi", "Sta. Agnes de Malanyan",

"Sta. Cecilia de Voltre", "Sta. Coloma de Cervell",

"Sta. Coloma de Gramene", "Sta. Eulalia de Riupri",
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"Sta. Eulalia de Ronan", "Sta. Fe D", "Sta. Gertrudis de Frui",

"Sta. Margarida de Mont", "Sta. Margarida i els M",

"Sta. Maria", "Sta. Maria d’Olo",

"Sta. Maria de Martorel", "Sta. Maria Montmagastr",

"Sta. Perpetua de Mogod", "Vallcanera", "Vallfogona de Riucorp",

"Vilars, Els", "Villafruela de Porma")

fintown <- c("Jambes (BE)", "Prat de Llobregat", "Ampolla",

"S’Arenal", "Platja d’en Bossa", "Bruxelles (BE)",

"Cala Vinyes", "Castellfollit de la Roca", "Bendinat",

"Chinchilla de Montearagon", "Es Calo de St. Agusti", "Palleja",

"Granyena de les Garrigues", "Lligallo del Ganguil", "Llosses",

"Madrigal de Altas Torres", "Maioris", "Massalcoreig",

"Montmany-Figaro", "Pilar de la Mola", "Ses Palmeres",

"Alcudia", "Marratxi", "St. Ferran de ses Roques",

"St. Llatzer", "St. Miquel de son Carrion", "Torrevieja",

"Villanueva de Sigena", "St. Carles de la Rapita",

"St. Fost de Campsentelles", "St. Fost de Campsentelles",

"St. Francesc de Formentera", "St. Francesc de s’Estany",

"Alicante", "St. Joan de les Abadesses", "St. Joan de Vilatorrada",

"St. Jordi de ses Salines", "St. Josep de sa Talaia",

"St. Julia del Llor i Bonmati", "Pi de St Just",

"St. Miquel de Campmajor", "St. Pere de Riudebitlles",

"St. Pol de la Bisbal", "Gelida", "St. Salvador de Coma-Ruga",

"St. Salvador de Guardiola", "Sta. Agnes de Malanyanes",

"Sta. Cecilia de Voltrega", "Sta. Coloma de Cervello",

"Sta. Coloma de Gramanet", "Sta. Eulalia de Riuprimer",

"Sta. Eulalia de Ronana", "Oluges", "Sta. Gertrudis de Fruitera",

"Sta. Margarida de Montbui", "Sta. Margarida i els Monjos",

"Sta. Maria d’Eivissa", "Sta. Maria d’Olot",

"Sta. Maria de Martorelles", "Sta. Maria Montmagastrell",

"Sta. Perpetua de Mogoda", "Sils", "Vallfogona de Riucorb",

"Vilars", "Villafruela del Porma")

for (i in 1:length(initown)) {
levels(claims ini$town)[levels(claims ini$town) == initown[i]] <- fintown[i]

}

# Order alphabetically the levels of the variable "town"

# ------------------------------------------------------

claims ini$town <- factor(claims ini$town, levels = sort(levels(claims ini$town)))

# Order alphabetically the character levels of the variable "cfam"

# ----------------------------------------------------------------

claims ini$cfam <- factor(claims ini$cfam, levels = sort(levels(claims ini$cfam)))

# Remove those rows in which variable "quantity" = 0.

# ATTENTION: It has been checked that inside corresponding "id", each of these

# rows is duplicated, so that in one appears "quantity" = 0 and in the other we

# can see "quantity" = 1 (unknown reason). Thus, in this case removing those rows

# does not entail any losses in the number of contracts.

# -------------------------------------------------------------------------------

id add <- setdiff(unique(claims ini$id), # Contracts to recover

unique(claims_ini[!(quantity == 0)]$id))

claims <- switch(keeptown,
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all = rbind(

claims_ini[!(quantity == 0)],

claims_ini[!(duplicated(id)) & (id %in% id_add)]),

Barcelona = rbind(

claims_ini[!(quantity == 0)],

claims_ini[!(duplicated(id)) & (id %in% id_add)])[town == "Barcelona"]

)[, c("cp", "town") := NULL]

# Remove contract’s rows which contain claims information before the corresponding

# subject’s birthdate (dborn > dclaim), and also the contract’s rows in which the

# claim date "dclaim" is equal to or later than the date of study close. Moreover,

# drop the levels that do not occur in categoric variables.

# De Morgan’s laws: !(X | Y) is the same as !X & !Y

# --------------------------------------------------------------------------------

catclaims <- which(sapply(claims, is.factor))

return(subset(claims, !(open info > dclaim | dclaim >= close info))[,

names(claims)[catclaims] := lapply(.SD, factor), .SDcols = catclaims])

}

A.2 Importing the Time-to-Event Information: lifetimes.R

# NOTE:

# When importing the time-to-event information, we must take into account that there

# are some contracts whose connection between "snip" and "npoliza" is not bijective,

# because the same subject could have been changing the contract conditions during

# subject’s stay in the insurance company. Therefore, there are contracts (identified

# by variable "snip" in the original lifetimes file) with multiple dates associated

# for both enrollment in the company (variable "fingreso" in the original file) and

# for ending their follow-up interval (variable "ffinal" in in the original file).

# ------------------------------------------------------------------------------------

import lifetimes <- function(data, first control, close info, lag) {

# Import the subjects’ contracts under the following conditions:

# 1) All these variable names are replaced: "snip" by "id", "npoliza" by "npolicy",

# "fingreso" by "dini", "ffinal" by "dfinal", and "tmotivo" by "endcause".

# 2) Overwrite the date "close_info" in all contracts where "dfinal" = NA, or where

# "dfinal" is later than "close info". In addition, we change the date format of

# the variables "dini" and "dfinal".

# 3) Overwrite the string "None" in missing values of variable "endcause".

# Since we are really interested in the minimum initial date (the oldest) of a subject’s

# contract and in its final date within the study period, only one observation for each

# "id" is considered (even though it has several "npolicy" associated).

# To obtain this single observation per subject’s contract, we distinguish between the

# following situations:

# A) If there are more than one "dini", we take the oldest of them.

# B) Regarding "dfinal" and "endcause" variables, there are three options:

# 1B) If endcause = "Defuncio del risc" IS NOT present in any of the contract’s rows,

# then we take the maximum "dfinal" among these rows, with the corresponding

# "endcause".

# 2B) If "endcause" = "Defuncio del risc" is present in ONLY ONE of the contract’s

# rows, then "dfinal" is that associated with this "endcause".

# 3B) If "endcause" = "Defuncio del risc" is present in TWO OR MORE of the contract’s

# rows, then "dfinal" is that associated with the "endcause" = "Defuncio del risc"
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# with an oldest date.

# ---------------------------------------------------------------------------------------

lifetimes ini <- fread(data, na.strings = "")[order(snip)][, list(

id = snip,

npolicy = npoliza,

dini = as.Date(fingreso, format = "%d/%m/%Y"),

dfinal = replace(as.Date(ffinal, format = "%d/%m/%Y"), is.na(ffinal) |

as.Date(ffinal, format = "%d/%m/%Y") > close_info, close_info),

endcause = as.factor(replace(tmotivo, is.na(tmotivo), "None")))][, {
if (all(endcause != "Defuncio del risc")) {

indx <- which.max(dfinal)

list(dini = min(dini), dfinal = dfinal[indx], endcause = endcause[indx])

} else {
if (sum(levels(endcause) == "Defuncio del risc") == 1) {

indx <- which(endcause == "Defuncio del risc")

list(dini = min(dini), dfinal = dfinal[indx], endcause = endcause[indx])

} else {
indx <- which(id & endcause == "Defuncio del risc" &

dfinal == min(dfinal[endcause == "Defuncio del risc"]))

list(dini = min(dini), dfinal = dfinal[indx], endcause = endcause[indx])

}
}

}, by = id]

# There may be a same "id" which has "endcause" = "Defuncio del risc" in two or more

# rows, with their corresponding "dfinal" being equally old (and older than the rest

# of contract’s rows). In such cases, duplicities are removed.

# Moreover, the variable "endcause" is replaced by the dichotomous variable "status"

# ----------------------------------------------------------------------------------

lifetimes <- unique(lifetimes ini[, c("endcause", "status") :=

list(NULL, as.numeric(endcause == "Defuncio del risc"))], by = "id")

# Finally, the following rows (contracts) are removed from the time-to-event file:

# 1) Rows with "dini" equal to "dfinal"

# 2) Rows with "dini" equal to or later than "lag" days before "close_info"

# 3) Rows with "dfinal" equal to or earlier than "lag" days after "first_control"

# --------------------------------------------------------------------------------

return(lifetimes[!(dini == dfinal | dini >= close info - lag |

dfinal <= first control + lag)])

}

A.3 Merging Longitudinal and Survival Data: fusion.R

fusion <- function(dtable1, dtable2, age.u, lag, open info, close info) {

# Merge the claims and lifetimes files, and dropping those levels that do not occur.

# From this moment on we are not dealing with contracts any more, but working directly

# with subjects’ information.

# ------------------------------------------------------------------------------------

dt ini <- merge(dtable1, dtable2, by = "id", allow.cartesian = TRUE)[,

list(id, dborn, sex, dini, dclaim,

cfam = factor(cfam, order = TRUE, levels = sort(levels(cfam))),

cspe = factor(cspe),
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cclaim = factor(cclaim),

quantity, dfinal, status)][order(id, dclaim)]

# NATURAL ORDER: dborn ----> dini ----> dclaim ----> dfinal

# The above chronological order must be always kept for each subject’s row, so that in

# several cases we will remove those subjects’ information for whom the aforementioned

# order is not respected. Nonetheless, there are some cases in the provided files in

# which the logical order between two subsequent dates is altered no longer than "lag"

# days by administrative issues. These specific cases will be also included in our final

# dataset after assigning consistent dates.

# --------------------------------------------------------------------------------------

# ROWS TO REMOVE # ROWS TO KEEP

# -----------------------------------------------------------------------

# A) dborn - dini > 30 Logical: dini - dborn >= 0

# Admitted: 0 <= dborn - dini <= 30

# (We set "dini" = "dborn")

# -----------------------------------------------------------------------

# B) dborn - dclaim > 30 Logical: dclaim - dborn >= 0

# Admitted: 0 <= dborn - dclaim <= 30

# (We set "dclaim" = "dborn")

# -----------------------------------------------------------------------

# C) dborn - dfinal >= 0 Logical: dfinal - dborn > 0

# -----------------------------------------------------------------------

# D) dini - dclaim > 30 Logical: dclaim - dini >= 0

# Admitted: 0 <= dini - dclaim <= 30

# (We set "dclaim" = "dini")

# -----------------------------------------------------------------------

# E) dini - dfinal >= 0 Logical: dfinal - dini > 0

# -----------------------------------------------------------------------

# F) dclaim - dfinal > 30 Logical: dfinal - dclaim >= 0

# Admitted: 0 <= dclaim - dfinal <= 30

# (We set "dclaim" = "dfinal - 1")

# -----------------------------------------------------------------------

dt ini_2 <- dt_ini[!(dborn - dini > lag | dborn - dclaim > lag | # Remove A, B

dborn - dfinal >= 0 | dini - dclaim > lag | # Remove C, D

dini - dfinal >= 0 | dclaim - dfinal > lag)][(dborn - dini) %in% 0:lag, # Remove E, F

dini := as.Date(dborn, origin = "1970-01-01")][, # Keep A

dclaim := as.Date(ifelse((dclaim - dfinal) %in% 0:lag, dfinal - 1, # Keep F

ifelse((dini - dclaim) %in% 0:lag, dini, # Keep D

ifelse((dborn - dclaim) %in% 0:lag, dborn, dclaim))), # Keep B

origin = "1970-01-01")]

# WORKING HYPOTHESIS: A subject can enter into the study at any of the eight control

# points, also called "starting points", placed right at the days January 1 across

# the time window ("open_info", "close_info"].

# If someone had been born on February 29, it would not imply any problem since this

# individual would only be able to enter on the day January 1 from the following year

# (when the subject will certainly be more than 65 years).

# The eight starting points are obtained via the components of "sp[i]". It contains

# all the first days of January located between the years 2007 and 2014, and, for the

# i-th subject, the first and last components of vector "sp[i]" fit these rules:

# a) Regard to the first component of the vector: "sp.1[i]"

# a1) If "open_info" and the following January 1 are spaced at greater or equal than

# "lag" days, then "sp.1[i]" will be located on that January 1.

# a2) If "open_info" is located right on a January 1, then "sp.1[i]" will be located
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# on the January 1 from the following year.

# a3) If "open_info" and the following January 1 are spaced at less than "lag" days,

# then "sp.1[i]" will be located on the January 1 of the year after the year of

# the initially mentioned January 1.

# b) Regard to the last component of the vector: "sp.n[i]"

# b1) If "close_info" and the previous January 1 are spaced at greater or equal than

# "lag" days, then "sp.n[i]" will be located on that January 1.

# b2) If "close_info" is located right on the January 1, "sp.n[i]" will be located

# on the January 1 previous to "close_info".

# b3) If "close_info" and the previous January 1 are spaced at less than "lag" days,

# then "sp.n[i]" will be located on the January 1 of the year previous to the

# year of the initially mentioned January 1.

# --------------------------------------------------------------------------------------

sp.start <- as.Date(ifelse(

as.Date(paste(as.numeric(format(open_info, "%Y")) + 1, 1, 1, sep = "-"))

- open_info >= lag,

as.Date(paste(as.numeric(format(open_info, "%Y")) + 1, 1, 1, sep = "-")),

as.Date(paste(as.numeric(format(open_info, "%Y")) + 2, 1, 1, sep = "-"))),

origin = "1970-01-01")

sp.end <- as.Date(ifelse(

close_info - as.Date(paste(format(close_info, "%Y"), 1, 1, sep = "-")) >= lag,

as.Date(paste(format(close_info, "%Y"), 1, 1, sep = "-")),

as.Date(paste(as.numeric(format(close_info, "%Y")) - 1, 1, 1, sep = "-"))),

origin = "1970-01-01")

sp <- seq(sp.start, sp.end, by = "year")

# From the data table "dt ini 2", only those subjects who reach the age of 65

# at any of the eight starting points are kept

# -----------------------------------------------------------------------------

dt <- dt ini_2[round((sp[length(sp)] - dborn)/365.25, 2) >= age.u, ]

# Loop to obtain eight data tables, each of which includes those subjects whose

# "sp.1[i]" from vector "sp[i]" is respectively associated to one of the eight

# possible starting points

# -----------------------------------------------------------------------------

dt sp ini <- dt sp <- id add sp <- list()

for (i in 1:length(sp)) {
tp <- c(open info, sp[- length(sp)])

date0 <- as.Date("1000-01-01")

vp <- wp <- as.POSIXlt(c(date0, sp))

vp$year <- vp$year - age.u # At least aging 65 years to enter into the study

wp$mon <- wp$mon - 4 # At least 4 months in insurance before entering

dt.cut.dborn <- as.numeric(cut(x = as.POSIXlt(dt$dborn),

breaks = vp, right = TRUE, include.lowest = TRUE))

dt.cut.dini <- as.numeric(cut(x = as.POSIXlt(dt$dini),

breaks = wp, right = TRUE, include.lowest = TRUE))

dt.cut <- pmax(dt.cut.dborn, dt.cut.fini)

dt sp ini_[i] <- split(dt, factor(dt.cut, i))

dt sp ini_[[i]] <- dt sp ini [[i]][!(dfinal <= sp[i])][format(dfinal, "%m") == "01",

dfinal := as.Date(ifelse(status == 0 | status == 1 & format(dfinal, "%Y") != "2014",

as.Date(paste(format(dfinal, "%Y"), "02", "01", sep = "-")), dfinal),

origin = "1970-01-01")]
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# Getting the longitudinal information regarding the follow-up interval for each subject

# entering at specific sp[i]: [dent = sp[i], dfinal].

# To get the subject’s first "claimyr" value (that is, the annual "quantity" of medical

# claims), that corresponds to the date "sp[i]" at which the subject enters into the

# study, only those "dclaim" which occur from the corresponding "tp[i]" onwards are

# considered. Therefore, all the longitudinal information occurred on "dclaim" (rows)

# previous to the date "tp[i]" must be removed.

# Attention: Removing all subject’s claims before "tp[i]" could result in the

# disappearance of all subject’s rows (it would be the case in which the subject only

# has claims before "tp[i]"). In that case, such a subject must be recovered by one

# single and "artificial" row such that it automatically assigns "dclaim" = "tp[i]" and

# "quantity" = 0 (these rows are also given null family codes). This subject will report

# both longitudinal information (registering "claimyr" = 0 in the subsequent starting

# points that the subject crosses) and survival information.

# --------------------------------------------------------------------------------------

id add sp [[i]] <- setdiff(unique(dt sp ini [[i]]$id),

unique(dt sp ini [[i]][!(dclaim < tp[i])]$id)) # Subjects to recover

dt_sp_[[i]] <- rbind(

dt sp ini [[i]][!(id %in% id add sp [[i]])][!(dclaim < tp[i])],

dt sp ini [[i]][!(duplicated(id)) & (id %in% id_add sp [[i]])][,

c("dclaim", "cfam", "cspe", "dclaim", "quantity", "expo") :=

list(tp[i], factor(0), factor(0), factor(0), 0, 1), ])[,

list(id, dborn, sex,

age dent = as.vector(round((sp[i] - dborn) / 365.25, 2)),

dini, dent = sp[i], dclaim,

cfam = factor(cfam, levels = c("0", levels(dtable2$cfam))),

cspe = factor(cspe, levels = c("0", levels(dtable2$cspe))),

cclaim = factor(cclaim, levels = c("0", levels(dtable2$cclaim))),

quantity, dfinal,

age_dfinal = as.vector(round((dfinal - dborn) / 365.25, 3)),

status)][age dfinal < 105 & order(id, dclaim)]

assign(paste0("dt sp ", 1:length(sp))[i], dt sp [[i]])

}

# Merging data tables of subjects who enter at different starting points

# ----------------------------------------------------------------------

union <- do.call(

what = rbind,

args = lapply(X = paste0("dt sp ", 1:length(sp)),

FUN = get,

envir = environment()),

envir = parent.frame())[, dini := NULL][order(id, dclaim)]

catunion <- which(sapply(union, is.factor))

return(union[, names(union)[catunion] := lapply(.SD, factor), .SDcols = catunion])

}

A.4 Scrubbing Process and Variable Selection: clean.R

clean <- function(dat, keepfam = c("all", "ambulance", "hosp", "non routine")) {
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cats <- which(sapply(dat, is.factor))

keepfam <- match.arg(keepfam)

# ------------------------------

# Cleaning of the neutral claims

# ------------------------------

# Only those rows whose values of "cfam" belong to one of the levels considered in the

# vector "keepfam" provide non-null emergency claims. Moreover, attention must be paid

# to those "id" in which none of their claims are associated with the mentioned "cfam"

# codes. They are subjects whose variable "quantity" will subsequently record zero, but

# also must be considered, being recorded for analysis using the data table "dt0". At

# the moment, these subjects provide single row with "quantity" = 0 (later, when the

# longitudinal mesh is implemented, they will have as many rows with "quantity" = 0 as

# different starting points crossed by the subject’s longitudinal trajectory, i.e.

# ["dent", "dfinal"], within the study period. These rows will be joined the rows with

# the null codes already existing from the previous step.

# -------------------------------------------------------------------------------------

dt0 <- switch(keepfam,

all = rbind(

unique(dat[dat$id %in% unique(dat$id[!ave(cfam %in%

c("0", "ambulance", "hosp", "non_routine"), list(id), FUN = any)])], by = "id")[,

c("cfam", "cspe", "cclaim", "quantity") := c(lapply(rep(0, 3), FUN = factor), 0)],

dat[cfam == "0"]),

ambulance = rbind(

unique(dat[dat$id %in% unique(dat$id[!ave(cfam %in%

c("0", "ambulance"), list(id), FUN = any)])], by = "id")[,

c("cfam", "cspe", "cclaim", "quantity") := c(lapply(rep(0, 3), FUN = factor), 0)],

dat[cfam == "0"]),

non routine = rbind(

unique(dat[dat$id %in% unique(dat$id[!ave(cfam %in%

c("0", "non routine"), list(id), FUN = any)])], by = "id")[,

c("cfam", "cspe", "cclaim", "quantity") := c(lapply(rep(0, 3), FUN = factor), 0)],

dat[cfam == "0"]),

hosp = rbind(

unique(dat[dat$id %in% unique(dat$id[!ave(cfam %in%

c("0", "hosp"), list(id), FUN = any)])], by = "id")[,

c("cfam", "cspe", "cclaim", "quantity") := c(lapply(rep(0, 3), FUN = factor), 0)],

dat[cfam == "0"])

)[order(id, dclaim)][, names(dat)[cats] := lapply(.SD, factor), .SDcols = cats]

# -------------------------------------------------------

# Cleaning of the claims associated to ambulance services

# -------------------------------------------------------

if (keepfam %in% c("all", "ambulance")) {

# All rows are selected whose "cfam" = "ambulance" and whose "cclaim" belongs to one of

# the following ambulance codes:

# "880001", "880002", "880003", "880004", "880005", "880006", "880007"

# The meaning of each one of the previous codes is:

# Call an ambulance (normal service or ICU): "cclaim" = {"880001", "880002"}
# Km by normal ambulance or ICU: "cclaim" = {"880003", "880004"}
# Hours waited for the normal ambulance or ICU: "cclaim" = {"880005", "880006"}
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# Medical fees for the ambulance services: "cclaim" = "880007"

# Since only absolute frequencies of ambulance claims are of interest, for each single

# pair ("id", "dclaim") we prior remove those rows whose "cclaim" belongs to the set of

# codes: {"880003", "880004", "880005", "880006", "880007"}. However, there are some

# single pairs ("id", "dclaim") that have a set of rows in which the rows with codes

# "cclaim" to remove are not found together with rows associated to the general codes

# "880001" or "880002". In such a cases, removing these rows would mean disappearance

# of any information about ambulance services within the single pair ("id", "dclaim").

# To begin with, all the single pairs ("id", "dclaim") associated to a single row are

# identified, and all those codes of "cclaim" not belonging to {"880001", "880002"}
# are replaced in the following way: Those single rows whose code of variable "cclaim"

# is {"880003", "880005", "880007"} are replaced by rows with "cclaim" = "880001",

# while those single rows with "cclaim" = {"880004", "880006"}, are replaced by rows

# with "cclaim" = "880002".

# -------------------------------------------------------------------------------------

sing_amb <- dat[cfam == "ambulance", if (.N == 1) .SD,

by = .(id, dclaim)][, c("cclaim", "quantity") := list(

factor(ifelse(cclaim %in% c("880003", "880005", "880007"), "880001",

ifelse(cclaim %in% c("880004", "880006"), "880002", as.character(cclaim)))), 1)]

# Later, the single pairs ("id", "dclaim") which have more than one row associated with

# the ambulance codes are identified. The procedure is then the following:

# a) In single pairs ("id", "dclaim") in which at least one their rows have the codes

# "cclaim" = {"880001", "880002"}, all their rows associated with the codes

# "cclaim" = {"880003", "880004", "880005", "880006", "880007"} will be removed.

# b) In single pairs ("id", "dclaim") in which none of their rows are associated with

# "cclaim" = {"880001", "880002"}, all their rows will be replaced with a single

# row whose "cclaim" will be either "880001", if the number of rows with "cclaim" =

# {"880003", "880005"} is greater than or equal to the number of rows that have

# "cclaim" = {"880002", "880004"}, or with "880002" if the opposite is true.

# -------------------------------------------------------------------------------------

mult_amb <- rbind(

dat[cfam == "ambulance", if (.N > 1) .SD, # a)

by = .(id, dclaim)][ave(cclaim %in% as.character(880001:880002),

list(id, dclaim), FUN = any)][cclaim %in% as.character(880001:880002)],

unique(dat[cfam == "ambulance", if (.N > 1) .SD, # b)

by = .(id, dclaim)][!ave(cclaim %in% as.character(880001:880002),

list(id, dclaim), FUN = any)][, cclaim := factor(

ifelse(sum(cclaim %in% c("880003", "880005")) >= sum(cclaim %in%

c("880004", "880006")), "880001", "880002")), by = .(id, dclaim)],

by = c("id", "dclaim"))

)[, quantity := 1]

all_amb <- setcolorder(rbind(sing amb, mult amb), names(dat))[,

names(dat)[cats] := lapply(.SD, factor), .SDcols = cats][order(id, dclaim)]

}

# ---------------------------------------------------------

# Cleaning of the claims associated with non-routine visits

# ---------------------------------------------------------

if (keepfam %in% c("all", "non routine")) {
all nonroutine <- dat[cfam == "non routine"][, quantity := 1][,
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names(dat)[cats] := lapply(.SD, factor), .SDcols = cats]

}

# -------------------------------------------------------

# Cleaning of the claims associated with hospitalizations

# -------------------------------------------------------

if (keepfam %in% c("all", "hosp")) {

# STEP 1 with hospitalizations:

# Firstly, we identify all rows belong to subjects who do not have any rows associated

# with a "cclaim" code belonging to one of the following group of codes:

# {"169997", "359997", "790001", "790002", "790007", "790018",

# "790019", "790021", "790993", "790997", "790998", "790999"}
# All rows of each these subjects will be replaced with a single row in which "cfam" =

# "cspe" = "cclaim" = "0", and "quantity" = 0.

# In the cases in which keepfam = "all", a certain single row will be removed (because

# is unnecessary) if its ""id" is already present in other "cfam" codes, while it will

# be kept if the opposite is true.

# In cases where keepfam = "hosp", all single rows will be kept.

# ------------------------------------------------------------------------------------

keephosp <- c("169997", "359997", "790001", "790002", "790007", "790018",

"790019", "790021", "790993", "790997", "790998", "790999")

hosp 0 <- unique(dat[cfam == "hosp" &

id %in% unique(id[!ave(cclaim %in% keephosp, list(id), FUN = any)])][,

c("cfam", "cspe", "cclaim", "quantity") :=

c(lapply(rep(0, 3), FUN = factor), 0)], by = "id")

if (keepfam == "all") {
sing 0 <- hosp 0[!id %in% unique(rbind(all amb, all nonroutine)$id)]

} else {
sing_0 <- hosp 0

}

# STEP 2 with hospitalizations:

# Now we focus on those subject’s rows that have a minimum of one row whose "cclaim"

# belongs to the "keephosp" group. Of these rows, we only keep those rows whose code

# "cclaim" is included in "keephosp".

# Within each single pair ("id", "dclaim"), we reduce to a single row all those rows

# with repeated hospitalization codes, in other words, those rows whose "cclaim"

# levels are associated with the following group of codes:

# duphosp = c("790001", "790002", "790007", "790018", "790993", "790999")

# 2a) If the code "790002" is present, The first row with said code is kept.

# 2b) In the opposite case, the "cclaim" levels of the group of rows are replaced by

# the code "790001".

# 2c) The rows with "cclaim" in "keephosp" but not in "duphosp" are kept.

# ----------------------------------------------------------------------------------

hosp any <- dat[cfam == "hosp" & !(id %in% hosp 0$id) & cclaim %in% keephosp]

# 2a)

rhosp 2a <- hosp any[, if (any(cclaim == "790002")) .SD, by = .(id, dclaim)]

hosp 2a <- unique(rhosp 2a[cclaim == "790002"], by = c("id", "dclaim"))

# 2b)
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# The rows within "rhosp_2a" are removed from the data table "hosp_any",

# and the rows from single pairs ("id", "dclaim") whose "cclaim" belongs

# to "790001", "790007", "790018", "790993", "790999" are replaced by

# a single row with the code cclaim = "790001".

# ----------------------------------------------------------------------

rhosp 2b <- hosp_any[!do.call("paste", hosp any) %in%

do.call("paste", setcolorder(rhosp 2a, names(dat)))]

duphosp <- c("790001", "790002", "790007", "790018", "790993", "790999")

hosp 2b <- unique(rhosp 2b[, if (any(cclaim %in% duphosp[- 2])) .SD,

by = .(id, dclaim)], by = c("id", "dclaim"))[, cclaim := "790001"]

# 2c)

# We finally have single pairs ("id", "dclaim") in which all their rows have some

# code from "keephosp", but that in no case the code belongs to the vector "duphosp"

# ----------------------------------------------------------------------------------

hosp 2c <- rhosp 2b[, if (!any(cclaim %in% duphosp[- 2])) .SD, by = .(id, dclaim)]

# STEP 3 with hospitalizations:

# Join: sing 0, hosp 2a, hosp 2b, hosp 2c

# ---------------------------------------

all hosp <- rbind(sing 0,

setcolorder(rbind(hosp 2a, hosp 2b, hosp 2c), names(dat))[, quantity := 1])[,

names(dat)[cats] := lapply(.SD, factor), .SDcols = cats][order(id, dclaim)]

}

# -------------------------------------

# RESULT DEPENDING ON THE CHOSEN CLAIMS

# -------------------------------------

out <- switch(keepfam,

all = rbind(dt0, all_amb, all_nonroutine, all_hosp),

ambulance = rbind(dt0, all_amb),

non_routine = rbind(dt0, all_nonroutine),

hosp = rbind(dt0, all_hosp))[, c("cfam", "cspe", "cclaim") := NULL][order(id, dclaim)]

return(out)

}

A.5 Obtaining the HI Dataset: mesh.R

mesh <- function(data) {

# a) The following data is joined:

# 1) Data available after the elimination of possible rows where "dclaim" is after

# the date of the last control point, as these do not compute due to no trajectory

# reaching the year 2015 (however, we will keep those rows in the described case

# if "quantity" = 0, because in that situation they provide information to use in

# the longitudinal analysis).

# 2) A new data table where each "id" is assigned a reference row (that is, provides

# a row with "quantity" = 0) for each of the starting points crossed by subject’s

# profile within the study period.

# --------------------------------------------------------------------------------------

all_a <- rbind(

data[!(dclaim > as.Date("2013-12-31") & quantity > 0)],

unique(data[, list(dborn, sex, age_dent, dini, dent,
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dclaim = as.Date(c(paste0((year(dent[1]) - 1):(year(dfinal[1]) - 1), "-12-31"))),

quantity = 0, dfinal, age_dfinal, status), by = id])

)[order(id, dclaim)]

# b) After ordering the previous joining, within each single pair ("id", "year") we move

# all the values of the variable "quantity" to the corresponding December 31, and we

# add all these values for "quantity".

# --------------------------------------------------------------------------------------

all_b <- unique(all_a[, c("dclaim", "quantity") := list(dclaim[.N], sum(quantity)),

by = .(id, as.POSIXlt(dclaim)$year)])

# c) For each "id", we only keep all those rows whose "dclaim" is a December 31. At

# this point, we have all the annual information of emergency claims summarized

# just before the control points. In each case, we move this information to the

# day immediately after each (a starting point) by means of the variable "start".

# Moreover, the variable "quantity" is replaced by the variable "claimyr".

# ----------------------------------------------------------------------------------

all_c <- all_b[month(dclaim) == 12 & as.POSIXlt(dclaim)$mday == 31][, list(

id, dborn, sex, age_dent, dini, start = dclaim + 1 , claimyr = quantity,

dfinal, status)]

# d) Almost all the exposure times, "expo" variable, are equal to 1, since most of the

# subjects have been observed the whole period between two consecutive "starting

# points" (i.e. a whole calendar year). Those subjects whose "expo" value is lesser

# than 1 are subjects who have not been observed during the whole calendar year prior

# to their entering into the study. Due to this, the value of "claimyr" is corrected

# by the corresponding "expo" value, so that yearly claims are weighted depending of

# the exposure time.

# At this stage, we will have all the longitudinal information situated just at the

# beginning of each calendar year within study period.

# --------------------------------------------------------------------------------------

all_d <- all_c[, expo := 1][start - dini < 365, expo :=

ifelse(as.numeric(format(dini, "%m")) >= 7, 0.5, round((start - dini)/365.25, 2))]

# e) We add the variable "obstime" by setting, for the i-th subject, the time counter

# t = 0 at "sp.1[i]" (time at which the subject enters the study). Finally, the

# variables "dborn" and "dfinal" disappear.

# Attention: Due to the fact that we work with a precision of two decimals in the

# timing variables, it is not necessary to remove the last records of those "id"

# where practically "obstime" = "stop". They are "id" characterized by some of

# these two cases: a) they begin to be observed shortly after a December 31,

# b) they stop being observed shortly after a December 31.

# -----------------------------------------------------------------------------------

all_e <- all_d[, list(id, dborn, sex, age_dent,

obstime = as.vector(round((start - dborn)/365.25, 2)) - 65,

claimyr, expo,

start = as.vector(round((start - dborn)/365.25, 2)) - 65,

stop = 0, dfinal, status)][, stop :=

c(obstime[- 1], as.vector(round((dfinal[.N] - dborn[.N])/365.25, 2)) - 65), by = id][,

c("dborn", "dfinal") := NULL]

# f) We obtain a data table in "long format", with the annual rate of emergency claims

# for each of the subjects reaching a minimum threshold age of "age_u" years (here 65)

# at one of the eight possible starting points within the study, from 2006-01-01 to

# 2014-02-01.
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# We also introduce the variable "event", that collects in a longitudinal manner the

# information provided by the variable "status" (it may assign a value 1 to the last

# subject’s record in case the individual has associated "status" = 1)

# --------------------------------------------------------------------------------------

all_f <- all_e[, event := 0][!duplicated(id, fromLast = TRUE) & status == 1, event := 1]

# We only keep those subjects who:

# a) Do not go over "claimyr" = 20 in any of their measurements (we drop 19 subjects)

# b) Start to be followed at an age not above 100 years (we drop 7 subjects)

# -----------------------------------------------------------------------------------

return(all_f[, if (start[1] <= 35) .SD, by = id][!(id %in% all_f[claimyr > 20]$id)])

}

Organization of R Source Code

The code of different R scripts detailed in each of the previous sections are subsequently

called using a single script, named as HI dataset.R. In the final dataset, we include the

longitudinal information provided for each of the subjects who reach a minimum age of 65

within the study window, and therefore meet the criteria to be observed. Additionally, the

time-to-event information is recorded for each subject: age at study entry, age at study exit,

and the cause due to which the subject is no longer observed.

# =============================

# Load the library "data.table"

# =============================

library(data.table)

# ========================================================================

# 1) Import all those medical claims which occur in the study period,

# from January 1, 2006 to February 1, 2014, and are related to subjects

# living in the city of Barcelona.

# SCRIPT: claims.R

# ========================================================================

source("claims.R")

claims <- import_claims(

data = "ACT20140225.csv",

open_info = as.Date("2006-01-01"),

close_info = as.Date("2014-02-01"),

keeptown = "Barcelona")

# length(unique(claims$id)) # 33311 unique contracts

# nrow(claims) # 2162538 measurements

# =================================================================

# 2) Import those subjects whose membership of the health insurance

# company extends to a date strictly later than January 1, 2006,

# when the study period starts.

# SCRIPT: lifetimes.R

# =================================================================
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source("lifetimes.R")

lifetimes <- import_lifetimes(

data = "SOC20140225.csv",

first_control = as.Date("2007-01-01"),

close_info = as.Date("2014-02-01"),

lag = 30)

# length(unique(lifetimes$id)) # 145742 unique contracts (one row by each "id")

# ================================================================================

# 3) Merging the claims file and the lifetimes information with two conditions:

# A) Each subject has, at least, 65 years when entering the study in any of the

# eight starting points. These points are placed on 1st January days from

# year 2007 to year 2014.

# B) Each subject’s follow-up interval, ["dent", "dfinal"] within the study

# period entails longitudinal information if the subject’s profile crosses,

# at least, one starting point (regardless of whether the value of emergency

# claims per year is or not zero).

# SCRIPT: fusion.R

# ================================================================================

source("fusion.R")

all_ini <- fusion(

dtable1 = claims,

dtable2 = lifetimes,

age.u = 65,

lag = 30,

open_info = as.Date("2006-01-01"),

close_info = as.Date("2014-02-01"))

# length(unique(all_ini$id)) # 5496 unique subjects

# nrow(all_ini) # 531580 measurements

# =======================================================================

# 4) Select those claims associated to the following medical topics:

# Neutral codes (associated to subjects who register zero counts),

# ambulance services, hospitalization, and non-routine medical visits.

# SCRIPT: clean.R

# =======================================================================

source("clean.R")

all <- clean(dat = all_ini, keepfam = "all")

# length(unique(all$id)) # 5496 unique subjects

# nrow(all) # 31170 measurements

# =================================================================================

# 5) Annual mesh for the longitudinal follow-up of subjects within the study period

# [2006-01-01, 2014-02-01]. Each subject enters the study in any of the called

# starting points, and remains in until the corresponding "dfinal". Thus, the

# subjects provide both longitudinal and time-to-event information between the

# corresponding dates associated to their entry into the study and exit of it,

# that is, in the interval ["dent", "dfinal"]. We finally obtain the HI dataset.

# SCRIPT: mesh.R

# =================================================================================

source("mesh.R")
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tot <- mesh(all)

# length(unique(tot$id)) # 5470 subjects

# nrow(all) # 32269 measurements of emergency claims per year

# ========================================

# HI dataset with longitudinal information

# ========================================

HIdata <- tot

# length(unique(HIdata$id)) # 5470 subjects

# nrow(HIdata) # 32269 measurements of emergency claims per year

# =========================================

# Time-to-event file with final information

# =========================================

HIdata.id <- HIdata[, .SD[(.N)], by = id][,

list(id, sex, start = age_dent, stop, status)]

# nrow(HIdata.id) # 5470 subjects

# sum(HIdata.id[status == 1]) # 509 death events



Appendix B

JAGS CODE TO FIT THE STANDARD JM

# ############################################################################

# This code is used to fit the standard joint model which considers a constant

# relationship between the expected current value in the longitudinal response

# (with normal distribution), and left-truncated time-to-event data. The code

# is an adaptation of that contained in the R package JMbayes.

# ############################################################################

# Simultaneously loading of the R packages which are needed

# ---------------------------------------------------------

lapply(c("data.table", "survival", "splines", "lme4", "jagsUI", "MASS"),

require, character.only = T)

# The HI Dataset

# --------------

length(unique(HIdata$id)) # 5470 subjects

nrow(HIdata) # 32269 observations

sum(HIdata$event) # 509 events

# Definitions regarding the longitudinal process

# ----------------------------------------------

dataL <- HIdata

lmeObject <- # "lme4" package

lmer(log(1 + claimyr) ∼ offset(log(expo)) + obstime + (1 | id), data = dataL)

id <- as.integer(transform(dataL, id = as.numeric(factor(id)))$id)

n <- length(unique(id))

offset <- as.vector(c(1, 1 + cumsum(tapply(id, id, length))))

timeVar <- "obstime"

times <- as.vector(dataL[[timeVar]])

# Definitions regarding the survival process:

# Left-truncated and right-censored event times

# ---------------------------------------------

survObject <- coxph(Surv(start, stop, event) ∼ sex,

data = HIdata, x = TRUE, model = TRUE)

W <- survObject$x # Baseline covariates part

SurvInf <- survObject$y

typeSurvInf <- attr(SurvInf, "type")

# Only right-censored event times

if (typeSurvInf == "right") {

Time <- SurvInf[, "time"]

Time[Time < 1e-04] <- 1e-04

nT <- length(Time)

event <- SurvInf[, "status"]

LongFormat <- FALSE

}

101
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# Left-truncated and right-censored event times

if (typeSurvInf == "counting") { # TRUE

idT <- as.vector(unclass(survObject$model$cluster))

strata <- seq_len(nrow(survObject$model))

idT <- dataL$id

idT <- match(idT, unique(idT))

LongFormat <- length(idT) > length(unique(idT))

TimeL <- SurvInf[, "start"]

TimeL <- tapply(TimeL, idT, head, n = 1)

anyLeftTrunc <- any(TimeL > 1e-07)

TimeR <- SurvInf[, "stop"]

TimeR[TimeR < 1e-04] <- 1e-04

Time <- tapply(TimeR, idT, tail, n = 1)

nT <- length(Time)

eventLong <- SurvInf[, "status"]

event <- tapply(eventLong, idT, tail, n = 1)

}

# Information regarding the K control points used in the Gauss-Kronrod

# quadrature rule to approximate the integral in the hazard function,

# which does not have a closed-form solution

# --------------------------------------------------------------------

# G-K points

sk <- c(-0.949107912342758524526189684047851, -0.741531185599394439863864773280788,

-0.405845151377397166906606412076961, 0,

0.405845151377397166906606412076961, 0.741531185599394439863864773280788,

0.949107912342758524526189684047851, -0.991455371120812639206854697526329,

-0.864864423359769072789712788640926, -0.586087254867691130294144838258730,

-0.207784955007898467600689403773245, 0.207784955007898467600689403773245,

0.586087254867691130294144838258730, 0.864864423359769072789712788640926,

0.991455371120812639206854697526329)

# G-K weights

wk <- c(0.063092092629978553290700663189204, 0.140653259715525918745189590510238,

0.190350578064785409913256402421014, 0.209482141084727828012999174891714,

0.190350578064785409913256402421014, 0.140653259715525918745189590510238,

0.063092092629978553290700663189204, 0.022935322010529224963732008058970,

0.104790010322250183839876322541518, 0.169004726639267902826583426598550,

0.204432940075298892414161999234649, 0.204432940075298892414161999234649,

0.169004726639267902826583426598550, 0.104790010322250183839876322541518,

0.022935322010529224963732008058970)

K <- length(sk) # Points in G-K quadrature: K = 15

P <- if (typeSurvInf == "counting" && anyLeftTrunc) {

(Time - TimeL)/2

} else Time/2

st <- if (typeSurvInf == "counting" && anyLeftTrunc) {

outer(P, sk) + c(Time + TimeL)/2

} else outer(P, sk + 1)

id.GK <- rep(seq_len(nT), each = K)

# Design matrices of fixed effects (X, XT and Xs). We do not consider design matrices

# of random effects since only random intercepts are accounted for in our model

# -----------------------------------------------------------------------------------

formYx <- log(1 + claimyr) ∼ offset(log(expo)) + obstime
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mfX <- model.frame(terms(formYx), data = dataL)

TermsX <- attr(mfX, "terms")

X <- model.matrix(formYx, mfX) # Design matrix fixed-effects

v.offset <- model.offset(mfX) # The offset variable is log(expo)

expo <- exp(v.offset) # The exposure time

y.long <- model.response(mfX, "numeric")

dataL.id <- dataL[!duplicated(id)]

dataL.id[[timeVar]] <- pmax(Time, 0) # Survival time for each subject

mfX.id <- model.frame(TermsX, data = dataL.id)

XT <- model.matrix(formYx, mfX.id) # Design matrix fixed-effects in Part I

av.expo.T <- unique(dataL[, av := mean(expo),

by = id], by = "id")$av # Average exposure per subject in part I

dataL.id2 <- dataL.id[id.GK, ]

dataL.id2[[timeVar]] <- pmax(c(t(st)), 0) # K knots from lower start to higher stop

mfX.id2 <- model.frame(TermsX, data = dataL.id2)

Xs <- model.matrix(formYx, mfX.id2) # Design matrix fixed-effects in Part II

av.expo.s <- replicate(K, av.expo.T) # Average exposure per subject in part II

# Obtention of a B-spline basis from the computation of truncated power functions

# of degree "p". R Code provided in Eilers and Marx (2010).

# --------------------------------------------------------------------------------

tpower <- function(x, t, p) (x - t) ^ p * (x > t)

bbase <- function(x, xl, xr, ndx, deg) {
dx <- (xr - xl) / ndx

knots <- seq(xl - deg * dx, xr + deg * dx, by = dx) # Extended knots

P <- outer(x, knots, tpower, deg)

n <- dim(P)[2]

D <- diff(diag(n), diff = deg + 1) / (gamma(deg + 1) * dx ^ deg)

B <- (-1) ^ (deg + 1) * P %*% t(D)

B }

# Extra design matrices to approximate the log-baseline hazard (W2T and W2s) with

# P-splines of degree dh0 = 2 and placing Qh0 = 8 equally-spaced knots on [tmin, tmax]

# ------------------------------------------------------------------------------------

W2T <- # Matrix 5470 x 9

bbase(x = Time, xl = 0, xr = ceiling(max(times)), ndx = 7, deg = 2)

W2s <- # Matrix 82050 x 9

bbase(x = c(t(st)), xl = 0, xr = ceiling(max(times)), ndx = 7, deg = 2)

# Fitting a time-dependent Cox model to get initial values for gam.w and alpha

# ----------------------------------------------------------------------------

DF <- data.frame(id = id, Time = Time[id], event = event[id])

Wdat <- as.data.frame(W)

DF <- cbind(DF, Wdat[id, ])

long <- unname(as.data.frame(c(X %*% fixef(lmeObject)) + b[id, ]))

DF <- cbind(DF, long)

DF$start <- times

splitID <- split(DF[c("start", "Time")], DF$id)

DF$stop <-

unlist(lapply(splitID, function (d) c(d$start[-1], d$Time[1])))

DF$event <-

with(DF, ave(event, id, FUN = function (x) c(rep(0, length(x) - 1), x[1])))
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DF <- DF[!names(DF) %in% c("Time", "id")]

tdCox <- coxph(Surv(start, stop, event) ~ ., data = DF[DF$stop > DF$start, ])

init.gam.w <- unname(coef(tdCox)[1]) # Initial value for the baseline covariate

init.alpha <- unname(coef(tdCox)[2]) # Initial value for the association parameter

# Prior penalty matrices (order k = 2) for coefficients of vector gam.h0

# ----------------------------------------------------------------------

DD <- diag(ncol(W2T))

M.gam.h0 <- crossprod(diff(DD, differences = 2)) + 1e-06 * DD

# =====================================================

# JAGS CODE FOR FITTING A STANDARD JM TO THE HI DATASET

# =====================================================

writeLines(" # The JAGS code is stored in an external file

model {

for(i in 1:n) {

# Longitudinal process

# --------------------

for (j in offset[i]:(offset[i + 1] - 1)) {

y[j] ∼ dnorm(mu[j], tau.e)

mu[j] <- log(expo[j]) + inprod(beta[1:ncX], X[j, 1:ncX]) + b0[i]

}

# Survival process, part I (time T)

# ---------------------------------

log.h0T[i] <- inprod(gam.h0[1:ncW2T], W2T[i, 1:ncW2T]) # Baseline log-hazard

eta.W[i] <- inprod(gam.w[1:ncW], W[i, 1]) # Baseline covariates

mu.T[i] <- log(av.expo.T[i]) +

inprod(beta[1:ncX], XT[i, 1:ncX]) + b0[i] # Expected long. outcome

log.hazard.T[i] <- log.h0T[i] + eta.W[i] + alpha * mu.T[i] # Log-hazard

# Survival process, part II (time s): Loop over the K = 15

# control points of the Gauss-Kronrod quadrature

# --------------------------------------------------------

for (k in 1:K) {

log.h0s[i, k] <- inprod(gam.h0[1:ncW2s],

W2s[K * (i - 1) + k, 1:ncW2s]) # Baseline log-hazard

# Ws is a null matrix (constant covariates)

# eta.Ws[i, k] <- 0

mu.s[i, k] <- log(av.expo.s[i, k]) + inprod(beta[1:ncX],

Xs[K * (i - 1) + k, 1:ncX]) + b0[i] # Expected long. outcome

SurvLong[i, k] <- wk[k] * exp(log.h0s[i, k] + # Survival integrand

alpha * mu.s[i, k])

}

approxIntegral[i] <- P[i] * sum(SurvLong[i, ])

log.Survival[i] <- - exp(eta.W[i]) * approxIntegral[i]

# Zeros trick to work with the likelihood of the JM without specifying the function

# ---------------------------------------------------------------------------------

zeros[i] ∼ dpois(phi[i])
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log.Lik[i] <- (event[i] * log.hazard.T[i]) + log.Survival[i]

phi[i] <- C - log.Lik[i]

# Random effects part

# -------------------

b0[i] ∼ dnorm(0, tau.b0) # Random intercept

}

# Priors for the fixed effects of longitudinal submodel

# -----------------------------------------------------

beta[1] ∼ dnorm(0, 0.001) # Fixed effect for intercept

beta[2] ∼ dnorm(0, 0.001) # Fixed effect for slope

# Prior for the sd of the perturbation term in longitudinal submodel

# ------------------------------------------------------------------

tau.e <- 1 / (sig.e * sig.e)

sig.e ∼ dunif(0, 50)

# Prior for the sd of the random intercepts

# -----------------------------------------

tau.b0 <- 1 / (sig.b0 * sig.b0)

sig.b0 ∼ dunif(0, 50)

# Prior for the coefficient of baseline survival covariate (gender)

# -----------------------------------------------------------------

for (p in 1:ncW) {

gam.w[p] ∼ dnorm(0, 0.001)

}

# Priors for the coefficients of the penalized B-splines

# to approximate the logarithm of baseline risk function

# ------------------------------------------------------

gam.h0[1:ncW2T] ∼ dmnorm(priorMean.gam.h0[],

tau.gam.h0 * M.gam.h0[, ])

tau.gam.h0 ∼ dgamma(a.gam.h0, b.gam.h0) # Smoothing parameter

# Prior for the constant parameter of association

# -----------------------------------------------

alpha ∼ dnorm(0, 0.001)

}", con = "JM.LOG.txt")

# =============================================================================

# Run two MCMC chains of 25000 iterations each one (burn-in period is included)

# =============================================================================

# Bundled data

# ------------

data.JM.LOG <- list(

n = n,

y = log(1 + dataL$claimyr),

zeros = rep(0, nrow(dataL.id)),

C = 100000, K = length(wk), P = P, wk = wk, offset = offset,

X = X, XT = XT, Xs = Xs, ncX = ncol(X),
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W = W, W2T = W2T, W2s = W2s,

ncW = ncol(W), ncW2T = ncol(W2T), ncW2s = ncol(W2s),

expo = expo, av.expo.T = av.expo.T, av.expo.s = av.expo.s,

event = event,

priorMean.gam.h0 = seq(-8.5, 0, len = ncol(W2s)),

M.gam.h0 = M.gam.h0, a.gam.h0 = 1, b.gam.h0 = 0.005)

# Initial values for the parameters to estimate

# ---------------------------------------------

inits.JM.LOG <- function() {list(

beta = as.vector(fixef(lmeObject)),

sig.b0 = as.data.frame(VarCorr(lmeObject))[1, 5],

sig.e = as.data.frame(VarCorr(lmeObject))[2, 5],

gam.w = init.gam.w,

gam.h0 = numeric(ncol(W2s)),

alpha = init.alpha)}

# Gibbs sampling with JAGS

# ------------------------

JM.LOG <- jags(

data = data.JM.LOG,

inits = inits.JM.LOG,

parameters.to.save =

c("beta", "b0", "gam.h0", "gam.w", "sig.b0", "sig.e", "alpha"),

model.file = "JM.LOG.txt", parallel = TRUE,

n.thin = 25, n.chains = 2, n.burnin = 5000, n.iter = 30000, n.adapt = 5000)

print(JM.LOG, digits = 3)
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