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Abstract 
 

Several European telecommunications regulatory agencies have recently 
introduced a fixed capacity charge (flat rate) to regulate access to the incumbent’s 
network. The purpose of this paper is to show that the optimal capacity charge and the 
optimal access-minute charge analysed by Armstrong, Doyle, and Vickers (1996) have 
a similar structure and imply the same payment for the entrant. I extend the analysis to 
the case where there is a competitor with market power. In this case, the optimal 
capacity charge should be modified to avoid that the entrant cream-skims the market, 
fixing a longer or a shorter peak period than the optimal. Finally, I consider a 
multiproduct setting, where the effect of the product differentiation is exacerbated. 
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1 Introduction

The liberalisation of the electricity, gas and water industries has frequently
used vertical desaggregation to promote competition. In the telecommuni-
cations sector, however, this policy has not been adopted, except in some
countries like the United States, Chile, Bolivia and Brazil. When the main
local network operator is also a supplier of long distance telecommunications
services, the most valuable instrument to guarantee that all the firms compete
at the same playing field level, is to regulate the access to the incumbent firm’s
network.
The British and the Spanish telecommunications regulatory agencies have

recently introduced a system of access by capacity for regulating access to the
incumbent’s network. This system is based on a fixed charge (flat rate) for
the use of some of the incumbent’s circuits. Indeed, the principal driver of
network costs is the peak-hour capacity cost. Moreover, the proponents of this
rule emphasise that a fixed capacity charge would promote an efficient use of
the network and the introduction of innovative services. They argue that in
contrast to the system of access by time the entrants will have more flexibility
to manage their load curve and to fix their end-to-end prices.
The primary objective of this essay is to derive the optimal capacity charge,

and to analyse whether the received theory of optimal access pricing may also
be applied to the capacity charge problem. I aim to analyse this problem
considering a continuous and interdependent demand for telecommunications
services and various assumptions for the supply conditions.
The theory of access pricing has been extensively developed by Baumol

(1983), Baumol and Sidak (1994), Laffont and Tirole (1994), Armstrong,
Doyle, and Vickers (1996), Lewis and Sappington (1999), Carter and Wright
(1999) and others.1In all these studies the optimal access price is derived from
the following assumptions: (a) the demand of the final service does not fluc-
tuate with time; and (b) the access charge is set for one unit of service (e.g.
one access-minute).
The purpose of this paper is to provide a theory of how to price capacity

when these assumptions are relaxed. The consideration that demand fluctuates
with time is relevant, because one of the most important strategies used by the
firms that enter the telecommunications sector is to differentiate their service
from that of the incumbent by offering different peak and off-peak prices.
When this occurs, it is also relevant to consider the interdependencies between
the peak and the off-peak demands. On the other hand, in view of the most
recent regulatory practice, it is important to modify these models and consider
an access system based on a fixed capacity charge rather than on a variable

1For a complete analysis of the access pricing problem see Laffont and Tirole (1996),
Laffont and Tirole (2000) and Armstrong (2001).
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per minute access charge. Finally, for simplicity I consider a model of one-way
interconnection. Indeed, after several years of liberalisation the incumbent
national operators are still responsible of terminating the main part of the
calls. And more importantly for the purpose of this paper, in practice only the
incumbent is forced to offer to the market a system of access by capacity.
I begin by considering a market with a regulated incumbent and an un-

regulated fringe of price-taking entrants. The incumbent operates a network
and produces a service which is sold in the final market. The fringe offers the
same final service but in order to convey it, it needs to use the monopoly’s
network. Laffont and Tirole (1994) and Armstrong, Doyle, and Vickers (1996)
have characterised the optimal per minute access charge in this setting but, as
stated above, they consider a time independent demand. Armstrong, Doyle,
and Vickers (1996) derive the optimal access price formulae under various as-
sumptions. These consist of the direct access cost, the incumbent’s opportunity
cost of providing access and, if the budget constraint of the incumbent firm is
an issue, a Ramsey markup.2 I show that a model of access by time, like the
one developed by these authors, and a model of access by capacity, generally
imply the same access payment for the entrant.
As in Armstrong, Doyle, and Vickers (1996), the optimal capacity charge

consists of the direct capacity costs, the opportunity costs incurred by the
incumbent when it provides a unit of capacity to the fringe, and a positive
Ramsey term if the incumbent’s break-even constraint is an issue. However,
with "time-of-use" retail prices, the incumbent’s opportunity costs reflect the
loss in profit during the peak and the off-peak period.
As an extension to the previous framework, I analyse the capacity charge

problem when there is a competitor with market power rather than a compet-
itive fringe. In this case, the length of the pricing periods plays a fundamental
role in the establishment of the optimal capacity charge. In particular, I show
that the entrant may choose a duration time for the peak period which is
longer or shorter than the optimal. By doing so the entrant modifies the peak
period price and attracts a part of the customers. However, this affects the
optimal length of the incumbent’s pricing periods, which in turn affects the
optimal prices. In this situation, the optimal policy consists of avoiding the
product differentiation by increasing or reducing the capacity charge. If the
entrant fixes a lower peak price by enlarging the length of the peak period, an
increase of the capacity charge increases the peak price and reduces product
differentiation. Subsequently, less capacity is required to satisfy the demand,
and so the management of the load improves. If the entrant fixes a higher peak

2The authors show how product differentiation, bypass and input substitution possibil-
ities reduce the opportunity cost of access. They demonstrate that these situations reduce
the extent to which the incumbent loses final product sales per each additional unit of access
supplied.
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price but reduces the length of the peak period, a reduction of the capacity
charge forces him to extend the duration of the peak price. This would reduce
the peak price, and as a result, more capacity is required.
Finally, we study a multiproduct setting where the incumbent and one

entrant with market power provide several services. In this case, if the services
provided by the incumbent and the entrant differ, the capacity charge should
be corrected in order to force the entrant to choose the optimal length of the
pricing periods. This may occur even when the entrant has no market power
because each service has a particular load curve, and the length of the peak
period chosen by the entrant depends on the particular set of services provided.
Therefore, as in the single-product case, the optimal capacity charge does not
guarantee an efficient use of the network.
The idea of this paper is closely related to the more specific issue of peak-

load pricing and access charge. There has been a great deal of research about
the properties of peak-load pricing.3 The research has mostly dealt with the
regulation of one utility that faces constant demand within pricing periods,
and in the case where the demand in one period is independent to the demand
in the other. On the other hand, very few studies consider the problem of the
optimal pricing period. Pressman (1970) considers demand interdependencies
under conditions of constant demand within exogenously given pricing peri-
ods. Craven (1971), Craven (1985), Dansby (1975) and Dansby (1978) allow
time varying demand within pricing periods and examine what the optimal
length of the pricing periods could be. Crew and Kleindorfer (1986) consider
both time-varying and independent demands, but they consider a fixed period
length. Burness and Patrick (1991) consider continuous and interdependent
demands and determine the optimal pricing period length. These assump-
tions are specially relevant for the purpose of this paper. The main results
emerging from their study are that welfare-optimal prices are set equal to the
load-adjusted average, over the respective pricing period, of marginal costs.
On the other hand, the pricing period lengths are set so that the optimal value
of the welfare function is continuous at the time when the price changes.
Unfortunately, however, the literature on peak-load pricing has scarcely

analysed this problem in a multiproduct market with competition. Gersten
(1986) examines a model of competition in unregulated markets such as restau-
rants, theatres, hotels and airlines. Here, firms use peak-load pricing to spread
consumers across periods in a profitable way.
Crew and Kleindorfer (1991) examine Ramsey optimal peak-load pricing

for postal services and some effects of competitive entry.4 Competition derives

3For survey on peak-load pricing see Crew and Kleindorfer (1986) and Crew, Fernando,
and Kleindorfer (1995).

4This paper expands Crew, Kleindorfer, and Smith (1990) which consider the problem
of peak-load pricing with product differentiation. Product differentiation emerges through
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from the capture of a part of postal business by a competitor, e.g. external
presorting of mail. They analyse the appropriate discounts per letter to be al-
lowed for external operation, as excessive discounts would encourage inefficient
entry into the pre-sort business. They find that when marginal costs for each
class of service are constant, the welfare-optimal pre-sort discount (when the
break-even constraint of the incumbent is not an issue) is set at exactly the
unit cost of pre-sorting. When marginal costs are not constant, the pre-sort
discount would depend on the magnitude of the peak problem, with larger
discounts given to ameliorate peak loads. Laffont and Tirole (2000) derive
optimal Ramsey prices for one unit of peak and off-peak access. In this case
the peak-load approach is justified because the network operator has different
marginal costs in each pricing period. These two papers have a simple setting
in terms of consumer preferences (there are not demand interdependencies and
the pricing periods are fixed) and are not suited to analyse the capacity charge
problem which, on the contrary, is studied in this paper.
Finally, Escribano and Zaballos (2002) analyse the optimal capacity charge

problem. They consider a detailed model of the Spanish market where an
incumbent and one entrant provide short and long distance calls to three con-
sumers. The entrants have to face capacity constraints in those points of
interconnection through which they are connected to the incumbent network.
The authors find that in a model of interconnection by capacity, the entrants’
price strategies are detached from those of the incumbent. Therefore, compe-
tition is expected to become harder. Although this paper analyses a model of
interconnection by capacity, the authors do not provide an explicit formula-
tion of the optimal capacity charge, and do not consider the peak-load pricing
strategy that the firms face.
The rest of the paper continues as follows. Section 2 explains the main

motivation of the capacity charge policy, and describes some recent applica-
tions of this regulation. Section 3 explains the continuous and interdependent
demands from consumers. Section 4 describes and solves the model when there
is a competitive fringe of price-taking entrants. Section 5 extends the model
to consider an entrant with market power. Section 6 analyses a multiproduct
setting, given an entrant with market power. Finally, Section 6 concludes the
analysis.

deferred processing of lower priority mail at peak times.
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2 The capacity charge in the telecommunica-
tions industry

In network industries (telecommunications, electricity, airlines, postal services)
demand fluctuates with time.5 If the price was uniform over time, the amount
demanded would rise and fall periodically. Meeting the demand at the peak
would require the installation of a capacity that would be under-utilised over
the remainder of the cycle. The theory of peak-load pricing developed in the
1940’s and 1950’s made an important contribution to this problem through the
introduction of "time of use" rates. Since then, national authorities regulate
utilities using a peak-load pricing policy in order to discourage consumption
during the peak periods and encourage off-peak consumption.
In the telecommunications industry, the fast growth of Internet in the mid

1990’s has introduced a new problem. As Voice and Internet traffic use the
same capacity, an efficient management of the aggregate load curve requires a
more careful fixation of retail prices. Demands in each period are controlled
by sellers by means of pricing. Reality has shown us that firms can easily move
Internet consumption to off-peak periods by increasing its peak price. This is
due to the fact that for residential users Internet is more elastic with respect to
price than telephony, in spite of the fact that residentials do not have a strong
preference for consuming Internet at a concrete time of the day.
In some countries, the use of a excessively low flat rate price for Internet

in the off-peak period has caused the so called "evening peak problem" or
shifting peak-problem. This implies that consumers stay online during the
evening and blow up the incumbent’s network. As a result, the evening off-
peak consumption may be higher than the morning peak consumption.
With the same goal of ensuring an efficient management of the load curve,

and with the additional objective of promoting the entry in the retail market,
the "time-of-use" policy is also applied to regulate access to the incumbent’s
network. Indeed, it is a general practice to fix a peak and an off-peak price for
the call-minute access charge.6 As a consequence, the entrants can establish a
peak and an off-peak retail price to emulate the incumbent’s tariffs. However,
is there any economic sense in applying an access price that depends on call-
minutes instead of capacity units?
In the telecommunications sector the principal driver of network costs is

the peak-hour capacity cost, which is fixed and does not directly depend on the
amount of minutes provided by the network. Therefore, it seems more natural

5Koschat, Srinagesh, and Uhler (1995) provide a detailed quantitative study of the opti-
mal peak-load pricing of local telephone calls. Their model incorporates intraperiod variation
and uncertainty of demand. Other studies for the telecommunications industry are Park and
Mitchell (1987) and Griffin and Mayor (1987).

6See Cave (1994) and Mitchell, Neu, Neumann, and Vogelsang (1995).
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and efficient to establish a system of interconnection based on a fixed price 
for the capacity made available to the entrants (i.e. one circuit of access) 
rather than on one unit of access (i.e. one access-minute), as it occurs at 
present.7  

An access system based on call-minutes access charges generates several 
distortions in the market. 
 
(1)  The incumbent does not have reliable information on the 

entrant’sneeds for capacity. The incumbent may become 
overflownwhen the e.ective capacity requested by the entrant exceeds 
his projected capacity. Whereas, if the capacity requested by the 
entrant is smaller than the capacity projected, the incumbent has to 
cover the costs of theoverinvestment of the plant with its own budget. 

 
(2) The entrants have to programme their retail prices taking into account 

the periods set by the regulator for the access charges. Consequently, 
they cannot di.erentiate their service from that of the incumbent’s by 
o.ering a di.erent length for each pricing period, or a di.erent number 
of pricing periods. This problem worsens when the incumbent’s retail 
prices are regulated by means of a price cap, as then, the incumbent 
can freely modify the pricing periods with the only constraint of 
meeting the cap. 

 
(3) The entrants do not take advantage of the scale economies that they 

generate. Indeed, although the capacity cost decreases with the number 

                                                 
7 Cave and Crowther (1999) describe some advantages of a capacity charge. 



of interconnection circuits, the entrants are charged with a constant price
per call-minute. Therefore, while the incumbent gets a reduction in costs
when it produces more traffic, the entrants do not have any advantage
for providing more minutes.

(4) The system does not stimulate an efficient use of the network. An access
system based on access-minutes does not provide an incentive to the
entrants to use the off-peak excess capacity for providing other services.

The recognition of these problems has led the regulatory authorities of some
countries to look for an alternative interconnection system which is not based
on access-minutes. In the UK, in 2000, OFTEL compelled BT to commer-
cialise a flat tariff for access to the Internet, called Digital Local Exchange
Flat Rate Internet Access Call Origination (FRIACO).8 This mechanism per-
mits the Internet service providers to emulate the flat tariff offered by BT for
the provision of Internet. With the same aim, in February 2001 the German
Regulatory Authority introduced a wholesale flat rate additional to its linear
pricing scheme.9

In Spain, in the summer of 2001, the Telecommunications Regulatory Agency
(CMT) developed a system of interconnection by capacity.10 This system es-
tablishes a fixed price per access-circuit and does not take into account the
access traffic effectively offered by it.11 The operators can buy elementary
units of 64 Kbit/s of capacity (or multiples of it) that have a predetermined
quality. The capacity may be used in all pricing periods, for voice traffic and
for the Internet. Moreover, the entrants may resell the contracted capacity
that exceeds their needs.12

When a system of access by capacity is implemented, the operator who
buys capacity chooses the retail tariffs that maximise its profits, using the
minimum necessary capacity. The proponents of this system emphasise that
it promotes an efficient use of the network because the entrants fill in the
unoccupied capacity of the off-peak period with other services. What price

8OFTEL (2001).
9See Reutter (2001).
10CMT (2000).
11This tariff structure is not the only one possible. In France and Belgium there is a mixed

system in which in addition to a fixed price per circuit there is a variable tariff that depends
on the number of minutes that are effectively used.
12Aguilar (2002) analyses the case of an entrant in the Spanish market who will prefer to

use the system of interconnection by capacity instead of the interconnection by time. He
finds that with the actual regulation of the capacity in Spain, the entrant will have to reach
a critical mass of consumers before he will be interested in the model of interconnection by
capacity. On the other hand, with linear tariffs in the final market, the entrants prefer to
be aggressive and choose the system of interconnection by capacity, because in equilibrium
everything depends on the market share gained.

7



should be set for the capacity if these services also compete with those of the
incumbent’s?

3 Continuous Interdependent Demands

A regulated monopoly operates a network and produces a service, e.g. tele-
phone calls, which can be consumed in t ∈ [0, T ]. A rival firm offers the same
final service but in order to convey it, it needs to use the monopoly’s network.
In particular, the rival (i = 2) buys capacity from the monopoly (i = 1),
which can be used to convey the service at any time t. Moreover, a regulator
determines the price of the monopoly’s final service and the capacity charge in
order to maximise social welfare. In the following sections I will analyse how
the regulator sets the incumbent’s welfare-maximising price and the capacity
charge under various conditions. Before that, in this section I analyse the
demands of each firm and I define the consumer’s surplus.
Each consumer is restricted to buy all the services he consumes from only

one firm. Consider a heterogeneous population of consumers denoted by θ ∈
[0, 1], where the number of consumers of type θ is given by the distribution
function F (θ). This is assumed to have a continuous density f(θ).
Let’s consider that consumers have continuous and intertemporally depen-

dent quasi-linear preferences. This implies that the utility from consuming qi

at t depends on all values taken by qi(t) for t ∈ [0, T ]. On the other hand, let
us assume that there are only two pricing periods, the peak and the off-peak
periods. Taking into account this simplification, we have

P i =
P iU for t ∈ LiU
P iL for t ∈ LiL

where LiU = [0, τ i], LiL = [τ i, T ] and τ i is the time bound that separates
the peak and the off-peak periods. Therefore, the length of the period where
firm i sets the peak price, P iU , and the off-peak price, P

i
L, are L

i
U = τ i and

LiL = T − τ i = T − LiU , respectively.13 Burness and Patrick (1991) carefully
solve the consumer’s problem considering that there are continuous and in-
tertemporally dependent preferences and two pricing periods. Following their

13Joskow (1976) and Craven (1971; 1985) analyse the problem of choosing the optimal
number of pricing periods.
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work, the demand faced by firm i in each pricing period is14

qiU(t) = q(P
i
U , P

i
L, τ

i, t, θ),
qiL(t) = q(P

i
L, P

i
U , τ

i, t, θ).
(1)

Taking into account these demands, the consumer’s surplus of the type θ dur-
ing all the interval [0, T ] depends on the price in each period P i = (P iU , P

i
L)

and on the switch time τ i. Therefore, we denote the consumer’s surplus as
CS(P iU , P

i
L, τ

i, θ). According to Burness and Patrick (1991) this satisfies the
following conditions

∂CS(P iU , P
i
L, τ

i, θ)

∂P iU
= −

τ i

0

qiU(t) dt;
∂CS(P iU , P

i
L, τ

i, θ)

∂P iL
= −

T

τ i

qiL(t) dt. (2)

Moreover, it can be stated that

∂CS(P iU , P
i
L, τ

i, θ)

∂τ i
= icsU(P

i
U , P

i
L, τ

i, τ i, θ)− icsL(P iU , P iL, τ i, τ i, θ), (3)

where icsU(P iU , P
i
L, τ

i, τ i, θ) is the instantaneous consumer’s surplus of type
θ in the particular time τ i, when he is charged with the peak price. In the
same sense, icsL(P iU , P

i
L, τ

i, τ i, θ) is the instantaneous consumer’s surplus of
type θ in the particular time τ i, when he is charged with the off-peak price.15

Equation (3) means that when the length of the peak period is increased, the

14The authors consider utility at t as a functional of the function qi(t), t, and θ. Therefore,
utility from consuming q at any t is expressed as u(qi, t, θ), where qi = {q(t) : t ∈ [0, 1]}.
Taking this into account they solve the consumer’s problem and obtain the following indi-
vidual demand

qiI(t) = q(P
i
I,P

i
J, t, θ), I, J ∈ {U,L}, I 9= J,

where PiU = {P iU (t) : t ∈ LiU} and PiL = {P iL(t) : t ∈ LiL}. For tractability purposes, in this
paper we write this demand as

qiI(t) = q(P
i
I , P

i
J , τ

i, t, θ), I, J ∈ {U,L}, I 9= J,
where the prices are not a functional.
15This result can be obtained from Lemma 2 in Burness and Patrick (1991). This Lemma

states that, given optimal consumer behaviour with prices PI and PJ, a change in pricing
period length has no impact on the type θ consumption within each pricing period. That
is, for I, J ∈ {U,L}, I 9= J ,

t∈I
∇τq(PI,PJ, t, θ)dt = 0,

where ∇τ1q is the derivative of q with respect to τ at t ∈ [0, T ].
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aggregated consumer’s surplus is modified because the peak period lasts longer
and the off-peak period lasts less.
Clearly, a type θ buys from the entrant when his consumer’s surplus is

greater than the consumer’s surplus when he buys from the incumbent, i.e.,
when

CS(P 2U , P
2
L, τ

2, θ) ≥ CS(P 1U , P 1L, τ 1, θ). (4)

This could be the case, for example, when the type θ prefers the lower peak
price of the entrant, P 2U < P

1
U , although the entrant’s off peak price is higher,

P 2L > P 1L and the peak period lasts longer, τ
2 > τ 1. The following function

reflects the profitability of belonging to firm 2

γ(P 1, P 2, θ) = CS(P 2U , P
2
L, τ

2, θ)− CS(P 1U , P 1L, τ 1, θ), (5)

where P 1 = (P 1U , P
1
L) and P

2 = (P 2U , P
2
L). A series of partitions of [0, 1] exists,

which separates the consumers who choose the incumbent from those who
choose the entrant. These partitions could be characterised by a set of cut-
off points θ∗. For analytical convenience, we assume that there is only one
cut-off point that separates the consumers.16 This assumption implies that
when consumer θ∗ finds profitable to consume from firm 2 at prices P 2 and τ 2,
then so does every customer θ > θ∗. Bearing in mind the previous example,
if a consumer prefers firm 2 because it offers a lower peak price than firm 1,
although the peak period lasts longer, then any higher consumer type will also
prefers firm 2.
Define θ∗(P 1, P 2, τ 1, τ 2) as the market share of the incumbent. Thus, θ∗ ∈

(0, 1) is the largest customer type that consume from the incumbent. From (4)
and monotonicity of indirect utility in P i and in τ i, it is satisfied that ∂θ∗

∂P 1U
< 0,

∂θ∗
∂P 1L

< 0 and ∂θ∗
∂τ1

< 0. The opposite sign applies to P 2U , P
2
L, and τ 2. Therefore,

the demand for the incumbent and the entrant could be written as

q1j (P
1, P 2, τ 1, τ2, t) =

θ∗

0

q(P 1j , P
1
−j, τ

1, t, θ)dF (θ),

q2j (P
2, P 1, τ 2, τ1, t) =

1

θ∗
q(P 2j , P

2
−j, τ

2, t, θ)dF (θ),

(6)

where j,−j ∈ {U,L}. Moreover, we can write the aggregated consumers’
surplus in the following way

CS(P 1, P 2, τ 1, τ 2) =
θ∗

0

CS(P 1U , P
1
L, τ

1, θ)dF (θ) +
1

θ∗
CS(P 2U , P

2
L, τ

2, θ)dF (θ).

(7)

16An analogous constructions can be pursued considering that there is a finite number of
such cut-off points. Moreover, we conjecture that an infinite number of partitions would not
modify the conclusions of this paper.
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In the rest of the text we often take the convenient assumption that the de-
mand of each firm is additively separable between price and time. This ap-
proach is consistent with other works that analyse the peak-load problem. If
qij(P

i, P−i, τ i, τ−i, t) = f(P i, P−i, τ i, τ−i) + h(t), for j = {U,L}, then at each
moment t, a part of the demand depends on the peak and off-peak prices, and
the other part of the demand is fixed and does not depend on prices. Note
that with this representation, the elasticity of the demand depends only on the
prices and is independent of the time at which consumption occurs. Moreover,
this formulation allows intraperiod variations of elasticity.

4 A Model of Access by Capacity

We suppose that there is an industry with an incumbent and a large number
of entrants, all of whom offer the same service, e.g. telephone calls. When the
incumbent and the entrants provide the service to the final users, they incur
marginal costs, b1 and b2 respectively. These marginal costs reflect the part of
the cost of a call that depends on the traffic (backbone switching, information
services, billing, etc.). The capacity supply is monopolized by the incumbent.
Let β be the incumbent’s "stand alone" cost per unit of capacity when it
provides the final service to its consumers, or access to the entrants. In contrast
to the previous literature, I assume that the marginal cost of providing these
activities is negligible, as is generally considered in practice. The capacity
charge that the entrants pay to the incumbent for each unit of capacity is
denoted by a. The production technology is fixed-coefficient. Each unit of
downstream output requires one unit of capacity. Therefore, the firms require
as much capacity as the maximum number of units sold during the peak period.
Considering this stylised model of the market, it is possible to analyse how

the regulator establishes the welfare-maximising prices of the incumbent’s final
service and the capacity charge. In this section I consider that the regulator
optimally determines the time at which the off-peak price begins. As a con-
sequence of this, the incumbent’s switch time, τ 1, is equal to the switch time
of all the entrants, τ 2. Therefore, we can write τ = τ i for i = {1, 2}. If all
the entrants offer the consumers the same length for the peak and the off-peak
pricing period, they are not able to differentiate their services. As a result,
they can be considered as a fringe of price-taking firms.17 In this situation, it
is possible to apply a variant of Armstrong, Doyle, and Vickers (1996) to the
capacity charge problem.
Given the fringe prices P 2 = (P 2U , P

2
L), the switch time τ and the capacity

charge a, the fringe will choose to supply the peak period quantity s2U(t) and

17Alternatively, we can consider a unique entrant that takes as given the prices of the
incumbent.

11



the off-peak period quantity s2L(t) in order to maximise their aggregated profit
function. This can be formulated as

Π2(a, τ) ≡ maxs2U ,s2L :
τ

0

(P 2U − b2)s2U(t)dt+
T

τ

(P 2L − b2)s2L(t)dt− aK2

= maxs2U ,s2L : j
t∈L2j

(P 2j − b2)s2j(t)dt− aK2

(8)

subject to the capacity constraint

K2 ≥ s2Mj ,

where s2Mj = maxt∈L2j s
2
j(t) is the maximum level of supply in period j = {U,L}

and K2 is the capacity that the fringe contracts from the incumbent. The
capacity constraint implies that the quantity supplied by the fringe at any
time t can not be higher than the capacity bought from the incumbent. The

supply functions satisfy
∂s2j
∂P 2j
≥ 0 and

∂s2j
∂a
≤ 0. If s2U and s

2
L are the profit-

maximising quantities supplied by the entrants, then by the envelope theorem

∂Π2(a,τ)
∂a

= −s2Mj . (9)

Given the incumbent’s prices, P 1, and the capacity charge, a, the fringe’s
equilibrium price, P̂ 2(P 1, a), equates the aggregated equilibrium supply of the
fringe to the aggregated demand of the fringe in each moment t,

ŝ2j(P̂
2(P 1, a), a, τ , t) ≡ q2j (P 1, P̂ 2(P 1, a), τ , t). (10)

In order to simplify the model further we assume that given the incumbent’s
equilibrium prices, P 1, and the fringe’s equilibrium prices, P̂ 2(P 1, a), in equi-
librium, the quantity sold in the peak period by the fringe is always bigger
than the quantity sold in the off-peak period, s2U > s2L. This assumption is
important, because it allows us to elude the shifting-peak case.18

Taking this into account, the fringe’s equilibrium price, P̂ 2(P 1, a), equates
the capacity contracted by the fringe to the maximum number of units that the
fringe provides in equilibrium in the peak period, K2 ≡ ŝ2MU (P̂ 2(P 1, a), P 1, τ).
Therefore, the equilibrium demand for capacity is

ŝ2MU (P 1, a, τ) ≡ K2. (11)

18If this does not occur, the capacity constraint is binding during the off-peak period and
the off-peak price should increase in order to avoid an excess demand.

12



The incumbent’s profit over the demand cycle can be represented as

Π1(P 1, a, τ) ≡
j
t∈L1j

(P 1j − b1)q̂1j (P 1, a, τ , t)dt− βK1 + (a− β)ŝ2MU (P 1, a, τ),

(12)

subject to

K1 ≥ q̂1Mj ,

where q1Mj = maxt∈L1j q̂
1
j (P

1, a, τ , t) is the maximum level of demand in period

j = {U,L}, q̂1j (P 1, a, τ , t) ≡ q1j (P 1, P̂ 2(P 1, a), τ , t) is the incumbent’s equilib-
rium demand for the final service at each moment t, and K1 is the capacity
available to the incumbent.
The efficient rule for the capacity charge involves the maximization of social

welfare, which we define as the unweighted sum of the consumer’s surplus and
the firms’profits. The regulator considers the following welfare function

W (P 1, a, τ) ≡ CS(P 1, P̂ 2, a, τ) +Π1(P 1, a, τ) +Π2(P̂ 2, a, τ). (13)

In order to analyse the problem of the regulator, we first characterise the
incumbent’s welfare maximizing prices and the capacity charge. Further on, I
will show the condition that defines the optimal length of the pricing periods.
But let us consider the following results

∂(CS+Π2)

∂P 1j
= −

t∈L1j
q̂1j dt, j ∈ {U,L}; ∂(CS+Π2)

∂a
= −ŝ2MU .

If we write µ ≥ 0 as the multiplier associated to the incumbent’s capacity
restriction, λ ≥ 0 as the multiplier of the break-even constraint Π1 ≥ 0 and
using the Kuhn-Tucker theorem we obtain the following first-order conditions
for P 1 = (P 1U , P

1
L) and a

j
t∈L1j

(P 1j − b1)
∂q̂1j
∂P 1U

dt−
j

µj
∂q̂1Mj
∂P 1U

+ (a− β)
∂ŝ2MU
∂P 1U

= − λ

1 + λ
t∈L1U

q̂1Udt,

(14)

j
t∈L1j

(P 1j − b1)
∂q̂1j
∂P 1L

dt−
j

µj
∂q̂1Mj
∂P 1L

+ (a− β)
∂ŝ2MU
∂P 1L

= − λ

1 + λ
t∈L1L

q̂1Ldt,

(15)
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j
t∈L1j

(P 1j − b1)
∂q̂1j
∂a
dt−

j

µj
∂q̂1Mj
∂a

+ (a− β)
∂ŝ2MU
∂a

= − λ

1 + λ
ŝ2MU , (16)

µj ≥ 0; µj(K1 − q̂1Mj ) = 0, (17)

j

µj ≤ β; K1(
j

µj − β) = 0. (18)

Note that as I discard the shifting-peak case, from (17)-(18) it results that
µU = β and µL = 0. Moreover, given the optimal prices, when the incumbent’s
break-even constraint does not bind, it should be that λ

1+λ
= 0. In this case,

from (14)-(16) the socially optimal prices are

a = β, (19)

j
t∈L1j

(P 1j − b1)
∂q̂1j
∂P 1U

dt− β
∂q̂1Mj
∂P 1U

= 0, (20)

j
t∈L1j

(P 1j − b1)
∂q̂1j
∂P 1L

dt = 0. (21)

If we assume that demand is additively separable between time and price
∂q̂1MU
∂P 1U

=
∂q̂1U
∂P 1U
. Moreover, we can use the simplification Lij =

t∈Lij
dt. Therefore,

P 1U = b1 +
β

L∗U
, (22)

P 1L = b1. (23)

where L∗U is the optimal length of the peak period set by the regulator.
Equation (19), (22) and (23) show the first best prices that would guarantee
allocative and productive efficiency. Equation (19), in particular, states that
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the capacity charge is set equal to the direct capacity cost. However, as stated
by Armstrong, Doyle, and Vickers (1996), it is not evident that regulators will
set the retail prices of the incumbent following the Ramsey principles. On the
contrary, it may be more realistic to consider that they will fix P 1 at some
level higher than the first best in order to guarantee a certain profit to the
incumbent. In this case, from equation (16) the optimal capacity charge is
given by the following proposition.

Proposition 1. When λ
1+λ

= 0, P 1 = (P 1U , P
1
L) are higher than the first best

and there are demand interdependencies, the optimal capacity charge is

a = β +
j

L∗j(P
1
j − b1)σj − βσU , (24)

where σj =
∂q̂1j
∂a

∂ŝ2M
U
∂a

.

This proposition states that the optimal capacity charge is higher than the
direct costs. The reason for this is that increasing the capacity charge above
the direct costs relaxes the need to increase retail prices. Notice that the first
term of the right-hand side of equation (24) is the direct cost of the capacity
supply. The second term is the incumbent’s opportunity cost of providing the
marginal unit of capacity to the fringe.
As in Armstrong, Doyle, and Vickers (1996), the opportunity costs can be

separated into the product of two factors: the incumbent’s marginal profit
per unit of final service during all the length of the pricing period, and the
displacement ratio defined by σj. The displacement ratio is the change in
the incumbent’s final service sales in period j divided by the change in the
incumbent’s sales of capacity as the capacity charge is modified. Notice that
there is a displacement ratio for each pricing period.
The fringe can use the capacity in all periods. Therefore, when the incum-

bent supplies the marginal unit of capacity to the entrant, this does not only
cause a loss in his peak period profit, but also a reduction in his marginal
profit in the off-peak period. Consequently, the incumbent’s opportunity costs
are the sum of his losses in the peak and off-peak periods. Taking this into ac-
count, the optimal pricing rule in (24) could easily be generalised for a different
number of pricing periods.
Armstrong, Doyle, and Vickers (1996) show that the optimal per minute

access charge is equal to the ECPR.19 The ECPR states that the access charge
should be equal to the direct cost of the access plus the incumbent’s oppor-
tunity cost of providing access to the fringe. As I have shown, the optimal

19This rule was originally proposed by Willig (1979). See Laffont and Tirole (2000) or
Armstrong (2001) for a detailed analysis of its properties.
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capacity charge should be set in the same way. In this case, however, the term
in the ECPR that reflects the opportunity cost of providing capacity should
reflect the incumbent’s losses in all the pricing periods.
If we now turn to the case where λ

1+λ
> 0, the optimal capacity charge

should be corrected. The incumbent’s break-even constraint binds, for in-
stance, when the incumbent has an increasing return technology for any of the
inputs.

Proposition 2. When λ
1+λ

> 0, P 1 = (P 1U , P
1
L) are higher than the first best,

and there are demand interdependencies, the optimal capacity charge is

a = β + j L
∗
j(P

1
j − b1)σj − βσU − λ

1+λ

ŝ2U
∂ŝ2M
U
∂a

. (25)

This formula states that the optimal capacity charge is the same as in
equation (24) minus a negative Ramsey term. The capacity charge is even
higher than in (24) to contribute to satisfy the break-even constraint.
It is interesting to note that this pricing rule for the capacity charge has the

same structure than the optimal access-minute charge found by Armstrong,
Doyle, and Vickers (1996) when there is a fixed coefficient technology, no
bypass, and homogeneous products.20 However, if we modify equation (12) to
obtain the optimal time-of-use access prices with our cost structure (i.e. there
is a fixed cost of supplying access but the marginal cost of supplying it is zero)
we find the following peak and off peak access charges21

aU =
β
LU
+ (P 1U − b1 − β

LU
)σU − λ

1+λ

ŝ2MU
∂ŝ2M
U
∂a j Lj

(26)

aL = (P
1
L − b1)σL − λ

1+λ

ŝ2MU
∂ŝ2M
U
∂a j Lj

(27)

20In particular, when there is only one pricing period and T = 1 our expression (25)
becomes

a = β + (P 1 − b1 − β)σ − λ
1+λ

ŝ2

∂ŝ2M

∂a

Using our notation, Armstrong, Doyle, and Vickers (1996) equation (20) for the optimal ac-
cess charge per minute (when they take into account the budget constraint of the incumbent)
is

a = c+ (P 1 − b1 − c)σ − λ
1+λ

ŝ2

∂ŝ2M

∂a

where c is the incumbent’s marginal cost of providing access to the fringe. As the authors
demonstrate, their equation (20) can be seen as a variation of the Efficient Component
Pricing Rule (ECPR).
21Observe that the optimal off-peak access charge will be different when the fringe supply

services only in the off-peak period.

16



These two equations allows us to write the following proposition.

Proposition 3. When the regulator optimally chooses the switch time τ i, for
i = {1, 2}, a system of access by capacity and a system of access by time imply
the same access payments for the entrant.

In practice, the system of access by capacity is proposed by some authors
because it offers more price flexibility to the entrants. However, it is important
to emphasise that in a system of access by capacity the regulator can not use
the regulation of the time-of-use access charges to determine the number and
the length of the peak and off-peak retail prices. As we will see in the next
section, this is a relevant problem when the entrant have market power.
Finally, in order to completely define the optimal prices, we characterise

the condition that establishes the optimal length of the pricing periods L∗j , for
j = {U,L}. To obtain the welfare-maximising L∗j the regulator maximises the
social welfare function in (13) with respect to the time τ at which the peak
period ends. Before that, it is useful to consider the following result22.

t∈Lij

∂q̂ij(P
1,P 2,τ ,t)

∂τ
dt = 0. (28)

Taking this into account, the first order condition with regards to the switch
time τ is

icsU(P
1, P̂ 2, a, τ ∗, τ ∗) + (1 + λ)(P 1U − b1)q̂1U(P 1, a, τ ∗) + (P̂ 2U − b2)ŝ2U(P̂ 2, a, τ ∗) =

icsL(P
1, P̂ 2, a, τ ∗, τ ∗) + (1 + λ)(P 1L − b1)q̂1L(P 1, a, τ ∗) + (P̂ 2L − b2)ŝ2L(P̂ 2, a, τ ∗).

(29)

For notation reduction purposes, we write (29) as

VU(P
1, P̂ 2, a, τ ∗) = VL(P 1, P̂ 2, a, τ ∗). (30)

where Vj represents the net social welfare in time τ when prices are P 1j and
P̂ 2j . Considering equation (30), we can state the following proposition

Proposition 4. Given the optimal consumer behaviour with prices P 1 and P̂ 2,
τ ∗ is chosen so that the optimal value of the welfare function Vj is continuous
at the time when the prices are changed.

This implies that the length of the pricing periods is chosen so that at the
optimal switch time τ the value of the net social welfare in time τ with peak

22See footnote 13.
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prices, VU , is equal to the value of the net social welfare in time τ with off-peak
prices, VL.23

What is important about this result is that Vj does not consider the profit
obtained by the incumbent when it provides capacity to the fringe. Indeed,
given condition (28), a change in the length of the peak pricing period has no
impact on the maximum number of units that the fringe provides in equilibrium
during the peak period. On the other hand, the demand interdependencies
affect the capacity charge because as they affect the value of the net social
welfare Vj, they determine the duration of the pricing periods.

5 Competitor with market power

Competition in network industries is often imperfect. When one firm enters
the telecommunications sector it normally uses its market power to attract
some specific groups of consumers by offering them a bundle of prices that
differ from those of the incumbent. The entrant may choose different pricing
periods, beginning and/or ending each pricing period at different moments
than the incumbent. To account for this situation, I use the same framework
as in the previous section, but instead of considering a competitive fringe,
I derive the optimal capacity charge when there is one entrant with market
power.24

If the competitor has market power and is unregulated, the maximization
of social welfare must be carried out under the constraint that the competitor
maximises his profits by optimally choosing the price of each period as well
as the switch time from the peak period to the off-peak period. Firstly, I
derive the entrant’s first order profit-maximising conditions. Further on, I will
analyse the optimal capacity charge considering that the regulator uses these
first order conditions as constraints in his objective function.
Consider that the entrant’s profit is the following

Π2(P 2, a, τ) ≡
j
t∈L2j

(P 2j − b2)q2j (P 2, P 1, τ 2, τ 1, t)dt− aK2 (31)

subject to

K2 ≥ q2Mj .

23This principle that characterises the value of the welfare function when prices are
changed is derived and proven by Dansby (1975) and by Burness and Patrick (1991).
24Laffont and Tirole (1994) analyse the access charge problem when there is a competitor

with market power.
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Note that, as in this case the switch time of the entrant is unregulated,
τ 2 and τ 1 may be different. Denoting by α, the multiplier associated to the
capacity constraint, the first order Khun-Tucker conditions for the problem of
the entrant are

t∈L2U

q2Udt+
j
t∈L2j

(P 2j − b2)
∂q2j
∂P 2U

−
j

αj
∂q2Mj
∂P 2U

= 0, (32)

t∈L2L

q2Ldt+
j
t∈L2j

(P 2j − b2)
∂q2j
∂P 2L

−
j

αj
∂q2Mj
∂P 2L

= 0, (33)

αj ≥ 0; αj(K2 − q2Mj ) = 0, (34)

j

αj ≤ a; K2(
j

αj − a) = 0, (35)

(P 2U − b2)q2U(P 2, P 1, τ 2, τ 1) = (P 2L − b2)q2L(P 2, P 1, τ 2, τ 1). (36)

Assuming an interior solution (P 2j > 0, for j = {U,L}) from (32) we obtain

j
t∈L2j

(P 2j − b2) ∂q
2
j

∂P 2U
dt

t∈L2U
q2Udt

− j αj
∂q2Mj
∂P 2U

t∈L2U
q2Udt

= −1, (37)

which we rewrite in the form

j

Rj
RU
[

t∈L2j

(P 2j − b2)ηjUdt
P 2j

− αj
ηjU
P 2j
] = −1, (38)

where ηjU = (
∂q2j
∂P 2U
)(
P 2U
q2j
) and Rj = t∈L2j q

2
jdtP

2
j . Notice that when

∂q2j
∂P 2U

=

∂q2U
∂P 2j
, we can rewrite the above equation as25

25see Crew, Fernando, and Kleindorfer (1995).
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j

[

t2∈L2j

(P 2j − b2)ηUjdt
P 2j

− αj
ηUj
P 2j
] = −1, (39)

Analogously, repeating the same procedure from equation (33) we obtain

j

[

t2∈L2j

(P 2j − b2)ηLjdt
P 2j

− αj
ηLj
P 2j
] = −1, (40)

Using Cramer’s rule and assuming that demand is additively separable we
can further simplify equation (39) and (40) to obtain

(P 2U−b2−
αU
L2
U

)

P 2U
= − (ηLL−ηUL)

L2U (ηUUηLL−ηULηLU )
, (41)

(P 2L−b2−
αL
L2
L

)

P 2L
= − (ηUU−ηLU )

L2L(ηLLηUU−ηLUηUL)
, (42)

where L2j is obtained by solving equation (36). On the other hand, assuming
that q2U > q

2
L, from (34) and (35) it is satisfied that αU = a and αL = 0. Notice

that when there are no demand interdependencies (i.e., when ηUL = ηLU = 0),
then (41) and (42) become reduced to the standard Lerner index.
Now, defining AU ≡ (ηLL−ηUL)

L2U (ηUUηLL−ηULηLU )
and AL ≡ (ηUU−ηLU )

L2L(ηLLηUU−ηLUηUL)
, we

can write the entrant’s prices as

P 2U = (
1

1 +AU
)(b2 +

a

L2U
), (43)

P 2L = (
1

1 +AL
)b2. (44)

Given the incumbent’s prices, P 1, the switch time, τ 1, and the capac-
ity charge, a, the entrant’s equilibrium prices, P̂ 2, and the profit-maximising
switch time, τ̂ 2, equate the entrant’s equilibrium supply to its demand in each
moment t,

ŝ2j(P̂
2(P 1, a), a, τ̂ 2, τ 1, t) ≡ q2j (P̂ 2, P 1, τ̂ 2, τ 1, t). (45)
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Moreover, the equilibrium demand for capacity is

ŝ2MU (P 1, a, τ̂ 2, τ 1) ≡ K2. (46)

Now, taking into account the entrant’s profit-maximising prices we can
write the profit function that the regulator considers

Π2(P̂ 2, a, τ̂ 2) =
j
t∈L2j

[(
1

1 +Aj
)
αj
L2j
− Ajb2
1 +Aj

]ŝ2jdt− aŝ2MU . (47)

The regulator establishes the incumbent’s prices, the capacity charge and
the incumbent’s switch time to maximize

W (P 1, a, τ 1) = CS(P 1, P̂ 2, a, τ 1, τ̂ 2) +Π1(P 1, a, τ 1) +Π2(P̂ 2, a, τ̂ 2), (48)

where CS and Π1 are defined as in the previous section. Next I maximize
the welfare function in equation (48) with respect to the capacity charge. Writ-
ing µ ≥ 0 for the multiplier of the incumbent’s capacity constraint and λ ≥ 0
for the multiplier associated to the incumbent’s break-even constraint yields

λ(ŝ2U + a
∂ŝ2MU
∂a
) + j

t∈L2j
[( 1
1+Aj

)
αj
L2j
− Ajb2

1+Aj
]
∂ŝ2j
∂a
dt

+(1 + λ)[ j
t∈L1j

(P 1j − b1)∂q̂
1
j

∂a
dt− j µj

∂q̂1Mj
∂a
− β

∂ŝ2MU
∂a
] = 0.

(49)

where from (17) and (18) we know that µU = β and µL = 0. Assuming
that the demand is additively separable, we simplify equation (49) to obtain
the following result.

Proposition 5. Given a profit-maximising entrant, when λ
1+λ

> 0, P 1 =
(P 1U , P

1
L) are higher than the first best and there are demand interdependen-

cies, the optimal capacity charge is

a = ε[β + j L
∗
j(P

1
j − b1 − µj)σj − ( λ

1+λ
)
ŝ2U

∂ŝ2M
U
∂a

]

+ j L
∗
j(

Ajb2L
2
U

λL2U (1+Aj)+L
∗
U
)

∂ŝ2j
∂a

∂ŝ2M
U
∂a

(50)

where ε = (
L2U (1+AU )(1+λ)

λL2U (1+AU )+L
∗
U
) and L∗U is the optimal length of the peak period

set by the regulator.
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The rule for the optimal capacity charge is complex, but can be given a
natural interpretation. First of all, the reader should be convinced about the
fact that when the entrant does not have market power, A = 0 and L2U =
L∗U , the optimal capacity charge in (50) gives precisely the same price as in
Proposition 2. When the entrant has market power he finds it profitable to
fix a different length of the peak period than what is socially optimal. This is
explained in the following Lemma.

Lemma 1. If prices P 1∗ and a∗ are the optimal prices set by the regulator and
P̂ 2 is the optimal price set by the entrant, then a profit maximizing entrant will
choose a different length than the socially optimal, L2U 9= L∗U . The concrete
value of L2U depends on the consumers’ preferences.
See the proof in the Appendix.
Notice that from (43) an increase of L2U reduces the peak price and a reduc-

tion of L2U increases the peak price. Therefore, the entrant can differentiate
his product from that of the incumbent’s by offering a lower peak price during
a longer peak period, or by offering a higher peak price during a shorter peak
period.26 This behaviour allows the entrant to attract the group of consumers
with a higher type and to establish a mark-up over its costs in both the peak
and off-peak periods.
When some consumers leave the incumbent, the shape of the incumbent’s

load curve is modified and the optimal lengths of the pricing periods are dis-
torted. In this situation, to maximize social welfare the regulator’s objective
is to make the entrant choose the optimal retail prices. In particular, the
regulator sets a capacity charge that corrects the product differentiation.
In equation (50), the optimal capacity charge of Proposition 2 is modified

by the term ε and another negative term is added to this expression. When
L2U >

L∗U
1+AU

, the time correction term ε is larger than 1. This increases the
capacity charge and forces the entrant to reduce the lenght of the peak period
and increase the peak price. As a consequence, the differentiation between
the bundle of prices offered by the entrant and the incumbent disappears.
On the other hand, when L2U <

L∗U
1+AU

it follows that ε < 1. Therefore, the
optimal capacity will be lower than the one in Proposition 2. This reduces
the profit maximising peak price and the entrant increases the length of the
peak period. This also reduces the product differentiation between the entrant
and the incumbent. When P 2 = P 1∗ if follows that L2j > L

∗
j , for j = {U,L}.

Therefore, as the entrant has to reduce the length of the peak period to attract
consumers, the entrant’s product will not be different from the incumbent’s
anymore. As a consequence, the entrant will loos its market power (Aj = 0)
and we are back to equation (25).

26The particular strategy that the entrant chooses will depend on the consumers’ prefer-
ences.
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The entrant differentiates its product by enlarging the duration of the peak
period. This allows the entrant to fix a mark-up over the two prices. The
negative term at the end of equation (50) is a consequence of this behaviour.
From (48) it follows that the incumbent’s final prices are reduced to lower the
monopoly profits of the entrant. To rebalance the consumers’ choice between
the two firms, the entrant’s final prices must also be reduced, and so must be
the capacity charge.27

Finally, it is important to emphasise that the optimal capacity charge only
promotes an efficient use of the capacity when L2U >

L∗U
1+AU

. Indeed, only in
this case the optimal capacity charge forces the entrant to increase the peak
price. As a result, the demand in the peak period is reduced and less capacity
is required.

6 The multiproduct industry

In this section I extend the framework of section 4 to consider the case of mul-
tiproduct firms. In telecommunications, networks are used to provide different
services such as local and long distance telephony, or as dial-up connection to
Internet. However, capacity is expensive. Therefore, the prices and pricing
periods of each service are chosen to optimise joint use of the network. Our in-
terest here is to analyse whether the optimal pricing rule for the single-product
case can be extended to the more realistic multiproduct framework.28 What is
the optimal capacity charge when the incumbent and the entrant provide more
than one service? What is the optimal charge if they offer different services?
Consider that an entrant with market power offers the market N final

services and that the incumbent provides M services. The services offered by
the entrant and the incumbent can be different. As before, and as a matter
of convenience, we will only consider two pricing periods, j = {U,L}, for each
service. The consumers only have a provider for each service. This implies
that when a consumer buys the service m to the firm i, he is restricted to buy
this service to the firm in the peak and the off-peak period. In spite of this,
consumers can buy other services from other firms.
Let P 2 = (P 21j, ..., P

2
Nj) be a [1, N ]x[U,L] matrix of retail prices offered

by the entrant and P 1 = (P 11j, ..., P
1
Mj) be a [1,M ]x[U,L] matrix of retail

prices provided by the incumbent. As previously, I consider that there exist
intertemporally dependent demands for each service. Moreover, I assume that
the demand of each product is independent from the demand of the others.

27This effect also appears in Laffont and Tirole (1994), where the authors analyse the
optimal access charge when there is a competitor with market power.
28Armstrong, Doyle, and Vickers (1996) analyse the access charge problem in a multi-

product setting when the entrants have not market power.
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This implies that the aggregated demand of firm i for the product m, qimj(t),
is only determined by its own prices P im = (P

i
mU , P

i
mL), its own switch time,

τ i, the price of the other firm P−im = (P−imU , P
−i
mL), the switch time of the other

firm, τ−i, and the particular point in time.

qimj(t) = q(P
i
m, P

−i
m , τ

i, τ−i, t),

where j = {U,L}. Taking this into account, q1 = (q11j(t), ..., q1mj(t)) is the
matrix of final products offered by the incumbent and q2 = (q21j(t), ..., q

2
mj(t))

is the matrix of final products supplied by the entrant.
The entrant has market power and it is unregulated. Therefore, when the

regulator sets the capacity charge, she takes into account that the entrant
maximises its profits by optimally choosing the price of each service in each
pricing period as well as the switch time. The entrant’s aggregated profit
depends on the prices, P 2, on the switch time, τ 2, and on the capacity charge,
a,

Π2(P 2, a, τ 2) ≡
N

n=1 j
t∈L2j

(P 2nj − bn2)q2nj(P 2, P 1, τ 2, τ 1, t)dt− aK2, (51)

subject to

K2 ≥ (
N

n=1

q2nj)
M ,

where ( N
n=1 q

2
nj)

M = maxt∈L2j
N
n=1 q

2
nj(P

2, P 1, τ 2, τ 1, t) is the maximum
production level of the n services in the pricing period j = {U,L}. The
capacity constraint in the entrant’s problem implies that the pricing periods
are the same for all the services. If we denote by α ≥ 0 the multiplier associated
to the capacity constraint, the first order conditions for this problem are

t∈L2U

q2nUdt+
j
t∈L2j

(P 2nj − bn2)
∂q2nj
∂P 2nU

−
j

αj
∂q2Mnj
∂P 2nU

= 0, (52)

t∈L2L

q2nLdt+
j
t∈L2j

(P 2nj − bn2)
∂q2nj
∂P 2nL

−
j

αj
∂q2Mnj
∂P 2nL

= 0, (53)
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µj ≥ 0; µj(K2 − (
N

n=1

q2nj)
M) = 0, (54)

j

µj ≤ β; K2(
j

µj − β) = 0, (55)

N

n=1

(P 2nU − bn2)q2nU(P 2, P 1, τ 2, τ 1) =
N

n=1

(P 2nL − bn2)q2nL(P 2, P 1, τ 2, τ 1). (56)

If we simplify these conditions we find that the entrant’s profit-maximising
prices are

P 2nU = (
1

1 +AnU
)(bn2 +

a

L2U
), (57)

P 2nL = (
1

1 +AnL
)bn2, (58)

whereAnj ≡ (ηn−j−j−ηnj−j)
L2nj(η

n
jjη

n
−j−j−ηnj−jηn−jj)

and where L2U is obtained by solving equa-

tion (56). This structure of prices represents a generalisation of the Ramsey
prices when demand interdependencies exist. This is reflected in the following
proposition.

Proposition 6. In a multiproduct setting with demand interdependencies, the
smaller (higher) the difference between the own price elasticity (ηnjj) and the
cross-price elasticity (ηnj−j) of a service n, the smaller (higher) the peak and
off-peak prices.

The intuition behind this proposition is that the services, for which the
price is more important than the moments in which they are consumed, will
have a smaller peak and off-peak price and will proportionally contribute less
to the firm’s profits.
This pricing policy implies a displacement in the consumption of the ser-

vices that have a higher difference between their own price elasticity and the
cross price elasticity, towards the off-peak period. The result of doing so is a
better management of the capacity because less capacity is required in the peak
period. On the other hand, there is more capacity used during the off-peak
period.
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Given the incumbent’s prices, P 1, the switch time, τ 1, and the capacity
charge, a, the entrant’s equilibrium prices, P̂ 2(P 1, a), equates the entrant’s
equilibrium supply to its demand in every moment t,

ŝ2nj(P̂
2(P 1, a), a, τ̂ 2, τ 1, t) ≡ q2nj(P̂ 2, P 1, τ̂ 2, τ1, t). (59)

Moreover, these prices equate the capacity bought by the entrant to the max-
imum aggregated number of units that the entrant provides in equilibrium
during the peak period,

(
N

n=1

ŝ2nU(P
1, a, τ̂ 2, τ 1))M ≡ K2. (60)

Considering the entrant’s profit-maximizing prices, we can rewrite its profit
function as

Π2(P̂ 2, a, τ̂ 2) =
N

n=1 j
t∈L2j

[(
1

1 +Anj
)
αj
L2j
− Anjb2
1 +Anj

]ŝ2njdt− a(
N

n=1

ŝ2nU)
M .

(61)

Taking into account the maximum aggregated number of units that the
entrant provides in equilibrium, K2 ≡ ( N

n=1 ŝ
2
nU)

M , the incumbent’s profit
can be written as

Π1(P 1, a, τ 1) =
M

m=1 j t∈j

(P 1mj − bm1)q̂1mj(P 1, a, τ 1, t)dt− βK1 + (a− β)(
N

n=1

ŝ2nU)
M ,

(62)

subject to

K1 ≥ (
M

m=1

q̂1mj)
M .

In order to derive the optimal capacity charge, a welfare-maximising regu-
lator considers the following unweighted welfare function

W (P 1, a, τ 1) = CS(P 1, P̂ 2, a, τ 1, τ̂ 2) +Π1(P 1, a, τ 1) +Π2(P̂ 2, a, τ̂ 2), (63)

The aggregated consumer’s surplus in (63) is defined by
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CS(P 1, P̂ 2, a, τ 1, τ̂ 2) = S
s=1CSs(P

1, P̂ 2, a, τ 1, τ̂ 2), (64)

where CSs(P 1, P̂ 2, a, τ 1, τ̂ 2) is the aggregated consumer’s surplus from con-
suming service s. On the other hand, S represents all the services provided
by the incumbent and the entrant. Therefore, when all firms provide the same
services, S = M = N . Finally, notice that we assume that all services have
the same weight in the welfare function.
The regulator maximizes the total welfare subject to Π1 ≥ 0 and the incum-

bent’s capacity constraint. Denoting λ ≥ 0 the multiplier of the incumbent’s
break even constraint and µ ≥ 0 the multiplier of its capacity constraint, the
first order condition for a is

λ( N
n=1 ŝ

2
nU + a(

N
n=1

∂ŝ2nU
∂a
)M) + N

n=1 j
t∈L2j

[( 1
1+Anj

)
αj
L2j
− Anjbn2

1+Anj
]
∂ŝ2nj
∂a
dt+

(1 + λ)[ M
m=1 j

t∈L1j
(P 1mj − bm1)∂q̂

1
mj

∂a
dt− j µj(

M
m=1

∂q̂1mj
∂a
)M − β( N

n=1
∂ŝ2nU
∂a
)M ] = 0,

(65)

The Khun-Tucker conditions also require that,

µj ≥ 0; µj(K1 − (
M

m=1

q̂1mj)
M) = 0, (66)

j

µj ≤ β; K1(
j

µj − β) = 0. (67)

By simplifying and rearranging equation (65) we obtain the optimal capac-
ity charge rule.

Proposition 7. In a multiproduct industry where the incumbent provides M
services and the entrant provides N services, when λ

1+λ
> 0, P 1 are higher

than the first best, and there are demand interdependencies,

a = ε[β + M
m=1 j L

∗
j(P

1
mj − bm1 − µj)σmj − ( λ

1+λ
)

ŝ2nU

( N
n=1

∂ŝ2
nU
∂a

)M
]

+ N
n=1 L

∗
j(

Anjbn2
λL2U (1+Anj)+L

∗
U
)

∂ŝ2nj

(
N
n=1 ∂ŝ

2
nU

∂a
)M
.

(68)
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where σmj =
∂q̂1mj
∂a

(
N
n=1 ∂ŝ

2
nU

∂a
)M
and where ε = ( N

n=1
L2U (1+AnU )(1+λ)

λL2U (1+AnU )+L
∗
U
)

These formulae can be seen as a generalisation for a multiproduct industry
of the optimal capacity charge as seen in the previous section. However, now
the interpretation is more complex. The expression inside the brackets has
the same interpretation as in the single-product case. The term σmj is the
multiproduct extension of the displacement ratio. It reflects the change in the
incumbent’s final product m in period j divided by the change in aggregated
sales of capacity as the capacity charge is modified. The second term inside
the brackets is the incumbent’s aggregated opportunity cost when it provides
the marginal unit of capacity to the fringe. Remember that in a multiprod-
uct setting, when the incumbent supplies one unit of capacity to the entrant,
the entrant can then use the capacity to provide different services. On the
other hand, it is interesting to notice that when all the services offered by the
incumbent and the entrant are independent, M 9= N , the opportunity costs
vanish.

a = ε[β + (
λ

1 + λ
)(

ŝ2nU
N
n=1

∂ŝ2nU
∂a

)] +
N

n=1

L∗j(
Anjbn2

λL2U(1 +Anj) + L
∗
U

)
∂ŝ2nj
∂ŝ2nU
∂a

. (69)

In this particular case, however, the capacity charge still considers the time
correction, ε. Indeed, to maximise social welfare the time correction ε must
modify the capacity charge when the length of the peak period chosen by the
entrant, L2U , is different from the optimal length, L∗U . This also occurs in the
general case defined by the equation (68). L2U and L

∗
U are different when the

entrant has market power. But they are also different when the entrant has
not market power but the bundle of services offered by the incumbent and the
entrant differ: One of the firms can produce more services than the other, or it
may be that each firm specialises in different services. Only when both firms
offer the same services and the entrant has not market power, it follows that
L2U = L

∗
U . In this case, the time correction term vanishes.

Finally, note that depending on the specific load curve of the services sup-
plied by the incumbent and the entrant, ε increases or decreases the capacity
charge.

Proposition 8. If ε > 1, the time correction increases the capacity charge
and induces an efficient use of the capacity. If ε < 1, the time correction
decreases the capacity charge and can induce an inefficient use of the capacity.

When ε > 1 the time correction increases the capacity cost of the entrant.
As a consequence, the entrant increases peak prices, which moves a part of its
sales to the off-peak period. The higher are the demand interdependencies the
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more important is the shift in the consumption from the peak to the off-peak
period. Moreover, the entrant can fill in the excess capacity of the off-peak
period with more sales. Therefore, the time correction not only allows to
maximize social welfare, but it also gives incentives for an efficient use of the
network. In the opposite sense, when ε < 1 the time correction reduces the
entrant’s cost of capacity and hence its peak prices. As a result, a part of the
sales would shift to the peak period, increasing the requirement for capacity
in the peak period. The overall outcome is a higher excess capacity during the
off-peak period.

7 Conclusions

In the telecommunications industry, the recent practices in the regulation of
the access to the incumbent’s network are challenging the traditional system
of interconnection by time. One alternative to the call-minute access charge
which has been implemented in the United Kingdom and in Spain is the system
of interconnection by capacity. While both countries employ this system, only
in Spain it is applied for the provision of all telecommunications services.
The justifications explained by the Spanish Regulatory Agency (CMT) at

the time of the introduction of the system emphasised that the principal driver
of the incumbent’s network’s cost is the peak-hour capacity cost. Moreover, the
nature of the peak-load problem in the telecommunications industry requires
an interconnection system that allows the entrants to emulate the incumbent’s
"time-of-use" policy in the retail market.
An access system based on a fixed price for capacity made available to

the entrants (i.e. one circuit of access) rather than for one unit of access
(i.e. one access-minute) may serve to alleviate both problems. As stated
by CMT (2001), "it will be the management of the load curve, the efficient
use of the interconnection traffic, the opening of new businesses as sales of
the excess capacity, the activities that will determine the optimisation of the
interconnection capacity and the way to secure lower interconnection costs".
However, considering that each capacity circuit could be used for the provision
of different services at different times, which price should be established for
capacity?
This paper has shown how the theory on access charge can be extended to

the capacity charge problem. As in the case of the access charge analysed by
Armstrong, Doyle, and Vickers (1996), the optimal capacity charge consists
of the direct cost of capacity plus the incumbent’s opportunity cost of access
provision to its competitors. Moreover, we have shown that with a time-
varying demand, the opportunity cost of the incumbent accounts for the loss
of profits during the peak and off-peak periods. Determining the optimal
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capacity charge is more complex when competitors have market power, or
when they are multiproduct firms. In this case, the optimal charge should
take into account that the competitors will try to differentiate their services
by choosing a duration of the pricing periods that is not the optimal.
The proponents of the system of access by capacity emphasize that this

rule gives incentives for an efficient use of the network because the entrants
fill in the unoccupied capacity of the off-peak periods with other services. In
this paper I have shown that the optimal capacity charge will not forcedly
imply a more intensive use of capacity by the entrants. Indeed, under some
circumstances the capacity charge can shift a part of the sells of the entrant
from the off-peak to the peak time period.
To sum up, a system of access by capacity can improve the efficiency of

the market and induce a more aggressive competition. But it is important to
be aware that if the entrants have market power they can "cream-skim" the
market and leave the lesser profitable users to the incumbent. In a system
of access by time the regulator determines the moment in which the peak
period begins and ends, and as a consequence, the entrants can not modify
the duration of the peak period to cream-skim the market. A system of access
by capacity gives more flexibility to the firms to manage their load. However,
this does not forcedly imply a maximization of the social welfare.

Appendix

Proof of Lemma 1. The difference between the welfare function with socially
maximizing prices P 1∗, P 2∗ and a∗ and the entrant’s profits when it fixes the
profit maximizing price P̂ 2 is given by

R =W (P 1∗, a∗, τ)−Π2(P̂ 2, a, τ)

= CS(P 1∗, P 2∗, a∗, τ) +Π1(P 1∗, a∗, τ) +Π2(P 2∗, a∗, τ)−Π2(P̂ 2, a, τ).
(70)

With socially optimal prices when λ
1+λ

> 0, Π1(P 1∗, a∗, τ) = 0. More-
over, as τ 2 = τ 1, the entrant cannot differentiate its product from that of the
incumbent. As a consequence, P 2∗ = P 1∗ and Π2(P 2∗, a∗, τ) = 0. Therefore,

R = CS(P 1∗, P 2∗, a∗, τ)−Π2(P̂ 2, a, τ). (71)

Consequently, in view of equations (3) and (7)

∂R
∂τ
= icsU(P

1∗, P 2∗, a∗, τ , τ)− icsL(P 1∗, P 2∗, a∗, τ , τ)
−(P̂ 2U − b2)q2U(P̂ 2U , P̂ 2L, P 1∗, τ , τ) + (P̂ 2L − b2)q2L(P̂ 2L, P̂ 2U , P 1∗, τ , τ).

(72)
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Following Lemma 1 in Burness and Patrick (1991) we can write (72) in the
following way

∂R
∂τ
= + 2

i=1

∞

P iU

qi(pi, P iL, P
−i, τ , τ)dpi − 2

i=1

∞

P iL

qi(pi,∞, P−i, τ , τ)dpi

−(P̂ 2U − b2)q2U(P̂ 2U , P̂ 2L, P 1∗, τ , τ) + (P̂ 2L − b2)q2L(P̂ 2L, P̂ 2U , P 1∗, τ , τ).
(73)

The proof consists of showing ∂R
∂τ
< 0, so that the sufficient conditions

imply that the optimal profit maximising peak length of the entrant, L2U ,
exceeds the optimal welfare maximising peak length that the regulator sets,
L∗U . Considering that there are demand interdependencies, we can further
simplify equation (73) as

∂R
∂τ
= 2

i=1

∞

P iU

(qi(pi, P iL, P
−i, τ , τ)− qi(pi,∞, P−i, τ , τ))dpi

+ 2
i=1

P iL

P iU

qi(pi,∞, P−i, τ , τ)dpi − (P̂ 2U − b2)q2U(P̂ 2U , P̂ 2L, P 1∗, τ , τ)

+(P̂ 2L − b2)q2L(P̂ 2L, P̂ 2U , P 1∗, τ , τ).

(74)

Note that as ∞ > P iU > P iL the first three terms of this expression are
negative. If the entrant’s profit during the off-peak period is sufficiently small,
equation (74) will be negative. This implies that L2U > L

∗
U . However, it may

also occur that L2U < L
∗
U .

Finally, we must note that when the entrant’s prices and the prices fixed by
the regulators are the same, R = CS(P 1, P 2, a, τ). In this case, it is clear that
∂R
∂τ
< 0. This result is obtained by Burness and Patrick (1991), and implies

that for any exogenously given price, a monopoly will establish a longer length
of the peak price than the regulator. However, this is not necessarily the case
when the entrant and the regulator optimise their objective functions. Indeed,
the entrant may decide to fix a higher price by reducing the length of the peak
period.
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