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Resumen

Existe bastante evidencia empirica a favor de que muchos fenémenos de la Naturaleza se
comportan como objetos Fractales. Aunque los fractales son muy dtiles en ese sentido,
debemos redefinir el concepto para aplicarlo en Finanzas.

Con ese objeto y debido a la extraordinaria importancia del movimiento Browniano en el
ambito de la Fisica, Quimica o Biologia, consideraremos la generalizacion que presupone el
movimiento Browniano Fracccionario presentado por Mandelbrot.

El principal objetivo de este trabajo es, por tanto, analizar la existencia de memoria o
dependencia a largo plazo en tasas instantdneas del tipo interés de diferentes mercados
financieros. Concretamente, realizamos un analisis empirico sobre tasas del mercado
interbancario espafiol, mexicano y norteamericano. Trabajamos, por tanto, con tres series
temporales de datos diarios correspondientes a operaciones a 1 dia y considerando un
periodo comprendido entre el 28 de Marzo de 1996 y el 21de Mayo 2002. De todos los test
existentes en ese tema aplicamos la metodologia propuesta en Taqgqu, Teverovsky and
Willinger (1995).

Abstract

Evidence exists that many natural facts are described better as a fractal. Although fractals
are very useful for describing nature, it is also appropiate to review the concept of random
fractal in finance.

Due to the extraordinary importance of Brownian motion in physics, chemistry or biology,
we will consider the generalization that supposes fractional Brownian motion introduced by
Mandelbrot.

The main goal of this work is to analyse the existence of long range dependence in
instantaneous forward rates of different financial markets. Concretelly, we perform an
empirical analysis on the Spanish, Mexican and U.S. interbanking interest rate. We work
with three time series of daily data corresponding to 1 day operations from 28th March
1996 to 21st May 2002. From among all the existing tests on this matter we apply the
methodology proposed in Tagqu, Teverovsky and Willinger (1995).

JEL Classification Numbers: C13, C82, E43

Keywords: Long-memory processes, interest rate analysis, Fractional Brownian Motion.



1 Preliminaries

1.1 Statistical Self-Similarity

Definition 1 We say that a random process X = (X¢)i>0 with state space R
is self-similar or satisfies the property of (statistica/) self-similarity if for each

a > 0 there exists b > 0 such that
Law(Xat, t>0)=Law(bX;, t=0) (1)

In other words changes of the time scale (¢ — at) produce the same results
as changes of the phase scale (x — bzx).

We can see in Shiryaev(1999) that for (nonzero) strictly stable processes
there exists a constant H such that b = a®. In addition, for strictly a-stable

processes we have,

H:a (2)

In the case of (general) stable processes, in place of (1), we have the property
Law(Xga, t>0)= Law(a®X; +tD,, t>0) (3)
In this point we introduce the following definition.

Definition 2 If b = a¥ in Definition 1 for each a > 0, then we call X =
(Xt)e=0 a self-similar process with Hurst exponent H or we say that this process
has the property of statistical self-similarity with Hurst exponent H. The quantity

D :% is called the statistical fractal dimension of X.

A classical example of a self-similar process is a Brownian motion X =
(X¢)t=0, wich has the property of statistical self-similarity with Hurst exponent
H=.

5.

1.2 Fractional Brownian motion

The Fractional Brownian motion was introduced by Mandelbrot(1983), as a

generalisation of the classical Brownian motion. In that line, we consider the



function
A, ) = s+t = [t —s"™  steR (4)

For 0 < H < 1 this function is nonnegative definite (see, e.g., Shiryaev
(1998)), therefore there exists a Gaussian process on some probability space

that has the zero mean and the autocovariance function
1
Cov(Xs, Xy) = §A(s,t)
i.e., a process such that

BIX, X)) = 5 [l + 1 — |t - o) (5)

N =

Hence
E[XosXat) = ™M E[X,X{] = E[(a™ X,) (™ X})) (6)
so that
Law(Xas, Xat) = Law(a® X, a" X;)

As in the case of a Brownian motion, By (5),
E[X; - X, = [t — /" (7)

Definition 3 We call a continuous Gaussian process X = (Xy¢)i=0 with zero
mean and the covariance function (5) a (standard) fractional Brownian motion

with Hurst self-similarity exponent 0 < H < 1.

By this definition, a (standard) fractional Brownian motion X = (X})>0

has the following properties:
1. Xo=0and E[X; =0] forall ¢t >0
2. X has homogeneous increments, i.e.,
Law(Xiys — Xs) = Law(Xy) $,t>=0
3. X is a Gaussian process and
EX =1 t>0

where 0 < H < 1;



4. X has continuous trajectories.
And it could be represented by,

1 L gt
B )= FTD) / (t — )} By (s) (8)

where T is the gamma function, dB (s) the previous increments at time s < ¢
of an ordinary Gaussian random process B (t) with average 0 and variancel.

In Mandelbrot and Wallis(1969), the discrete fractional Brownian noise, X =
{X,,n € N}, is defined as

Xn=Bu(n+1)— Bu(n) with n=0,1,2... 9)

By formula (5), see Shiryaev (1998) for more deatils, for the covariance
function of a (standard) process By we obtain that the covariance function
pr (n) = Cov (By, Biyy) is as follows:

1

2H 2H
pre(n) = 5 [In+ 17 =2

+|n— 1" (10)

Hence

pr (n) ~ H (2H — 1) [

as n — 0o.

Thus, if H = £, then py (n) = 0 for n # 0, and (Bn)ns1 is a Gaussian
sequence of independent random variables. On the other hand, for H # % we
have that the correlation function is not equal to zero, independently of ¢. We

2—2H))

see from (10) that the covariance decreases fairly slowly (as |n| with

the increase of n, which is ussually interpreted as a long memory or a strong
aftereffect.

From this point, see that the covariance function is negative if H < % In
this case, we observe an anti-persistent behavior. On the other hand, if H > %
the covariance is positive, we would consequently obtain a persistent behavior.

For more details about these preliminaries see Beran(1994), Espinosa(2002),
Feder(1988), Feller(1951), Mandelbrot(1983), Mandelbrot and Van Ness(1968),
Mandelbrot and Wallis(1969), Shiryaev (1998) and Vervaat(1987).



2 A numerical comparative analysis

In this section we carry out an application from the previous sections, improving
the estimation methodology. The objective is to find evidence of fractional
Brownian motion behavior in the time series under analysis. We also develop a
comparative analysis from a random point of view by analyzing the fractability

of the time series.

2.1 The data

In this article we perform an empirical analysis on the Madrid Interbank Offered
Rate (MIBOR), The Intended U.S. Federal Funds Rate (FF) and the Mexican
"Tasa de Interés Interbancaria de Equilibrio" (TIIE).

First, we analyze a time series provided by the "Banco de Espana" from
28th March 1996 to 21st May 2002, with 1492 daily observations of the interest

rate for 1 month operations. We can see the behavior in the following figure.
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Secondly, we analyze a time series provided by the United States of America
Federal Reserve from 28th March 1996 to 21st May 2002, with 2247 daily obser-
vations of the overnight interest rate for 1 month operations. The behavior can
be seen in the figure below. Since 2001, the weakening in economic activity has
become widespread, prompting expectations of further monetary policy easing,

and interest rates going down.



Federal Funds

9%
8% 4
7% 4
6% -
5%
4%
3% 4
2%
1% -
0%
28/03/96 21/5/2002

Finally we analyze a time series provided by the "Banco de México" from
28th March 1996 to 21st May 2002, with 1540 daily observations of the interest
rate for 1 month operations. The highest interest rate in our time interval was
on September 15th, 1998. In August of 1998, Russia suffered a severe crises that
also affected countries like Mexico. The reaction of “Banco de México” was a

restrictive monetary policy that affected the interest rates.

TIE
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In order to work with the price logarithm (according to the classical time
series procedure or Osborne(1959) Theory), we consider that in the interest rate
time series, denoted by {R:(6),t > 0} where 6 is the operation maturity and ¢
the time, the loan of one unit of any currency, today (t), will become a quantity
e () at time ¢ + 6, where 6 is expressed in years. In other words, the unity

—0R, (0

return price at time t + 6, is given by e ). If we take into account that e®

could be approximated by 14 x, then we obtain the following expression for our



processes:

Ri(0) =~ os(P.(9))

where P;(6) denotes the price today (t) of a zero coupon bond, which pays one
monetary unity at maturity time ¢ + 6.

Therefore, in order to work with the logarithm of prices, it is only necessary
to take the first differences of our time series.

Other theoretical interpretations [but not a financial one] of this first dif-
ference procedure can be carried out by considering that the time series are
transformed into a differenced (d = 1) time series, according to a unit root test.
For example: the Advanced Dickey-Fuller Test or the The Phillips-Perron Test,
whence it is obtained that the time series was integrated once.

For more details about this procedure see Espinosa(2002) and (1997), Hamil-
ton(1994),Box and Jenkins(1970) and Mills(1999).

Taking the first differences of our time series, we can observe the behavior

of each one in Appendix 1.

2.2 Detecting Long memory

We estimate the self similarity parameter and/or the intensity of long-range
dependence in the time series presented using the methodology described in
Taqqu, Teverovsky and Willinger (1995). Summarizing, this estimators are as

follows:

e The R/S Method: This method implements the algorithm named
Rescaled Range Aanalysis which is dicussed for example in detail in B.
Mandelbrot andWallis (1969), Mandelbrot (1983). this method was first
proposed by Hurst, taken up again by Mandelbrot, and is nowadays ap-
plied to finance by Peters (1991) and (1993). This procedure, as it is
pointed in the literature about long-memory, produces important mistakes

that is why we will propouse a modification, in terms of data analysis.

e Aggregated Variance Method: This method computes the Hurst ex-



ponent from the variance of an aggregated Fractional Gaussian Noise time
series process. The original time series is divided into blocks of size m.
Then the sample variance within each block is computed. The slope from
the least square fit of the logarithm of the sample variances versus the

logarithm of the block sizes provides an estimate for the Hurst exponent

H.

Differenced Aggregated Variance Method: To distinguish jumps
and slowly decaying trends which are two types of non-stationary, from
long-range dependence, this method differences the sample variances of
successive blocks. The slope from the least square fit of the logarithm of
the differenced sample variances versus the logarithm of the block sizes

provides an estimate for the Hurst exponent H.

The Periodogram Method: This method estimates the Hurst exponent
from the periodogram. In the finite variance case, the periodogram is an
estimator of the spectral density of the time series. A series with long range
dependence will show a spectral density with a lower law behavior in the
frequency. Thus, we expect that a log-log plot of the periodogram versus
frequency will display a straight line, and the slopw can be computed as
1—2H. In practice, one uses only the lowest 10% of the frequencies, since
the power law behavior holds only for frequencies close to zero. Varying
this cut off may provide additional information. Plotting H versus the
cut off, one should select that cut off where the curve flattens out to
estimate H. More details can be found in the work of J. Geweke and S.

Porter-Hudak (1983) and in Taqqu (1995).

The Whittle Estimator: This method is based on a periodogram analy-
sis. The algorithm is based on the minimization of a likelihood function
defined in the frequency domain. For Fractional Gaussian Noise processes
the parameter H is the unknown parameter which minimizes the function.
This approach also allows to compute confidence intervals. For more de-

tails about this method see Beran (1994).



The following table summarizes the results obtained.

MIBOR 0.5739 0.6102 0.6125 0.6103 0.6099
FF 0.4414 0.6208 0.6211 0.625 0.6187
TIE 0.6013 0.5631 0.5653 0.5701 0.5603

Is important to note that while others estimators give a similar estimation
for H, the R/S method is given us a wrong lecture. That brings us to the next

point.

2.2.1 The modified R/S Analysis

As pointed out in Peters(1991) and (1994), the estimation of H under R/S
analysis could be biased due to the influence of linear dependency.

To solve this problem, first of all, we recall the methodology first proposed
in Hurst (1951). This procedure has the following steps:

We take the interest rate time series, with M observed values, and convert

this time series into a new series of first differences of N values,
Ny =M1 —M; i=1,2,3,...,(M—1) (11)

where N = M — 1. Following the Box-Jenkins procedure, we will work with

stationary time series.

1. We divide N into A continuous sub-periods of range n, performing Axn =
N. We call each sub-period I,, where a = 1,2,3,..., A. Each element
inside I, is called Ny, where k = 1,2,3,...,n. For every I, with range

n, we calculate the average using the expression,
1 ; ny
===
€a (n> ; boa (12)
where e, = the average of N; contained in sub-period I, of range n.

2. We calculate the series X}, for each subinterval I,, which will be the

accumulated difference series between the observations and the average,



for each subinterval,
Xia=» (Nia—ea) k=1,23...,n (13)

3. We define Range as the difference between the maximal value and the

minimal value of X}, ,, for each sub-period I,

R;, = max (Xy o) — min (X q) where 1 <k <n (14)

4. We calculate the standard deviation for each sub-period according to the

following expression

ol gm)

k=1

5. We take each range R;, and normalize it by dividing by S7,. In this way
we obtain a rescaled range for each sub-period I,, Ry, /S;,. As A are
contiguous sub-periods of range n, in order to obtain the R/S measure
for the n division, we now calculate the average of all the R/S of each
subinterval,

1 A
w9, = () * 2 /1) (16)

6. Now the value of A is increased to the next value. We will use A values

such as 2 < A < integer (251); or, in other words, n values such as

integer ( %) > n > 10, and the steps 1 to 6 are repeated.

Once all the processes for all n have been done, and if we consider that Hurst
found that the rescaled range R/S is described for many observations in time by

the following empirical relationship, where 7 is the full time range considered,

ris=(3)"

then, we can rewrite the expression as

(R/S), = c-n (17)
log (R/S),, = log(c)+ Hlog(n) (18)



were ¢ is a constant value equal to (%)H and n is equal to 7. Therefore, one
can see that the exponent H can be estimated by obtaining the slope in a
OLS regression where log (n) is the independent variable and log (R/S),, is the
dependent one. We have noted, before, that using this methodology we does
not obtain correct estimations for H.

First of all we must tackle the problem of the linear dependency. In order to
avoid this fact, we have filtered the data using ARM A filters. In other words,
using the Box-Jenkins procedure, we have fitted an ARM A model over the
differenced time series and applied the R/S analysis over the residuals of the
ARM A models. Thus, when the data is filtered with an ARM A model, the
short-term linear dependency is eliminated, as indicated in Beran(1994).

After filtering the data, we apply another modification. Not all the data
inside the time series has been considered. Only the first 1400 observations have
been taken into account, since 1400 is much more mathematically divisible than,
for example, 1490 in the case of the MIBOR time series. This has been carried
out according to the classical methodology: the n, the number of observations
included in each continuos sub-period, has to be a integer value. In the table
included in Appendix 2, we calculate the Hurst exponent for different values
of number of observations, T (correspond with the number of observations of
the differenced time series), considering that not all the range of N values can
be used; only NN values that produce an integer number of equal partitions
can be taken. Note that the results are different depending on the number of
observations used to calculate the Hurst exponent.

For example, in the FF time series, if we take a number of observations equal
to 1028, we obtain an H equal to 0.479... and, taking a number of observations
equal to 1398, H takes a value equal to 0.784. The question then follows: which
one is better? If the second number of observations is a much more divisible
number, does it mean that this is the best?. The answer is to modify the

traditional methodology in one step; that is, concretely by changing step 2:

2. We divide N into A continuous sub-periods of range n, performing Axn =

10



N, where A is an integer value. We begin with A = integer (%) Ifnis
not an integer value then it has to take the value of the integer of n for all
the sub-periods except the last one, which takes the value n + r , where
r =N — Axn. We call each sub-period I, where a = 1,2,3,..., A. Each
element inside I, is called Ny o where k =1,2,3,...,n. For every I, with
range n. Then we calculate the average using expression 12. Considering

this, we continue with the current methology of the R/S procedure.

Using all observations of the data in each time series, and the new metho-

dology proposed, we find the following Hurst exponent.

R/S R/S modified AVM

MIBOR 0.5739 0.6065 0.6102 0.6125 0.6103 0.6099
FF 0.4414 0.6161 0.6208 0.6211 0.625 0.6187
TIE 0.6013 0.5598 0.5631 0.5653 0.5701 0.5603

Note, that the problem is corrected. Furthermore, taking different values of
N, we obtain the table presented in Appendix 3.
As we can see, the Hurst exponent is much more stable than the proposed

by Hurst. The following figures show the comparisons of both methodologies.
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Finally we can say that, in most cases, H is dependent on the number of
divisions, applying traditional methodology. We can see that when we work
with a different number of divisions, H takes different values, and there is no
convergence. In the proposed improvement, the value of the parameter H is
more or less the same independently of the number of divisions taken. Also the
results obtained, by the modified methodology, is much more closely to other

methods.

3 Conclusions

First of all, concerning the proposed improvements to the traditional method-
ology, it is worth pointing out that the results obtained are much more reliable
than those obtained with the original methodology. However, before this can
be unequivocally affirmed further mathematical research is needed.

Moreover, The results obtained are not enough far away from 0.5 to justify

the existence of a Long-memory behaviour that rules the analised time series.

12



Concretelly, for the MIBOR time series we can say that the H will take a value
very close to 0.60, for the FF time series 0.61 and for the TIIE time series 0.55.
This last case is clarely very close to the Classical Brownian Motion (0.5), but
the FF and the MIBOR has a similar behaviour but, also, not so far to conclude
the existence of Long-run dependence in the data.

Finally we can state that there is no emprirical evidence of the existence of
a long memory process. All the time series analyzed are generated by a random

process.

13



Appendix 1

Differenced time series:
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Appendix 2

Time Series: FF Time Ser MIBOR Time Series: TIE
Observations H Observations H Observations H Observations H servations H Observations H
1547 0,61797951 1266 0,60363478 1490 0,63594356 1266 0,81981859 1534 0,56451224 1266 0,60366991
1545 0,62066567 1258 0,59564059 1488 0,63275042 1258 0,66716992 1526 0,56363979 1258 0,58587152
1544 0,67763902 1251 0,64926782 1485 0,60698768 1251 0,53651102 1519 0,56831195 1251 0,56159413
1534 0,64349166 1245 0,60833399 1480 0,62219858 1245 0,57916027 1512 0,56072782 1245 0,55031877
1525 0,59593992 1236 0,59750012 1475 0,57768027 1236 0,63052875 1505 0,53973094 1236 0,56546091
1521 0,60726487 1230 0,59702135 1470 0,62903169 1230 0,61889491 1498 0,56462832 1230 0,56720743
1510 0,62675184 1224 0,59300897 1464 0,64020376 1224 0,6131119 1491 0,57078994 1224 0,57370665
1505 0,56560191 1216 0,57219874 1460 0,62219419 1216 0,6310198 1484 0,55895464 1216 0,54921809
1500 0,61075932 1210 0,56466364 1455 0,62470841 1210 0,62818859 1476 0,55702792 1210 0,56600209
1490 0,62359758 1200 0,56429343 1450 0,63246308 1200 0,6067645 1470 0,55111 1200 0,55191707
1475 0,56470446 1196 0,55120216 1445 0,56745703 1196 0,6328322 1463 0,56480012 1196 0,53172527
1460 0,61158008 1189 0,45940154 1440 0,62162093 1189 0,6215299 1456 0,56819354 1189 0,60255033
1450 0,60671136 1182 0,38054485 1435 0,57960074 1182 0,75191829 1449 0,55357705 1182 0,6434203
1445 0,57207934 1175 0,57178613 1430 0,61809937 1175 0,61660347 1442 0,57087289 1175 0,54872127
1430 0,60235351 1168 0,54894181 1425 0,61896546 1168 0,61499917 1435 0,5129991 1168 0,54706419
1420 0,59989371 1161 0,56672712 1420 0,62521989 1161 0,53083093 1428 0,57062924 1161 0,56561711
1414 0,62752747 1152 0,56214295 1414 0,65258335 1152 0,58850098 1421 0,49364519 1152 0,55511101
1410 0,61880858 1147 0,54245739 1410 0,63429254 1147 0,59322559 1414 0,58416295 1147 0,72793473
1406 0,62581012 1140 0,57034069 1404 0,63204011 1140 0,58946859 1407 0,54285734 1140 0,55557488
1400 0,59913418 1133 0,59891775 1400 0,61721749 1133 0,58271404 1400 0,58144964 1133 0,61534073
1398 0,78418299 1125 0,57403267 1398 0,81386719 1125 0,56937789 1398 0,68622085 1125 0,5648954
1392 0,61082656 1118 0,52127772 1392 0,64475077 1118 0,64415576 1392 0,58370101 1118 0,55800004
1384 0,77610711 1112 0,44417394 1384 0,83067704 1112 0,74414794 1384 0,66837315 1112 0,51803146
1378 0,63341259 1105 0,58713889 1378 0,6674031 1105 0,58363692 1378 0,60623722 1105 0,5817739
1370 0,63004878 1098 0,52927131 1370 0,63690197 1098 0,62376364 1370 0,59471041 1098 0,52503333
1364 0,62460011 1090 0,53723669 1364 0,63683607 1090 0,62954153 1364 0,60563685 1090 0,57154875
1357 0,58577421 1083 0,56010687 1357 0,58642598 1083 0,58920016 1357 0,57920198 1083 0,57200137
1350 0,61538274 1076 0,49086504 1350 0,62448536 1076 0,93769911 1350 0,57960621 1076 0,55961216
1343 0,60660723 1070 0,54845832 1343 0,60438809 1070 0,62525243 1343 0,60202019 1070 0,56696353
1336 0,7064432 1062 0,53675164 1336 0,86433902 1062 0,62674466 1336 0,64525491 1062 0,56812378
1328 0,62564779 1056 0,5529559 1328 0,63691778 1056 0,60510956 1328 0,5842207 1056 0,57970319
1320 0,61210655 1048 0,55028807 1320 0,60186384 1048 0,70653681 1320 0,58617115 1048 0,51187036
1314 0,62519072 1040 0,53816839 1314 0,63687569 1040 0,60678017 1314 0,59210196 1040 0,57930332
1308 0,62811875 1035 0,54771091 1308 0,62384175 1035 0,58593135 1308 0,59263119 1035 0,59673794
1300 0,61598569 1028 0,47936282 1300 0,61902963 1028 0,94665338 1300 0,59244047 1028 0,62784376
1292 0,60855953 1020 0,53550195 1292 0,64318108 1020 0,59873653 1292 0,5987272 1020 0,56902057
1287 0,60718231 1014 0,52005957 1287 0,58752032 1014 0,60824696 1287 0,58170211 1014 0,56524012
1280 0,59789697 1007 0,5704099 1280 0,61287665 1007 0,60988009 1280 0,58875564 1007 0,66313391
1273 0,60838425 1000 0,53296544 1273 0,59904919 1000 0,60731756 1273 0,60071709 1000 0,55827564
A dix 3
Time Series: FF Time s: MIBOR Time Series: TIE
Observations H Observations H Observations H Observations H H Observations H
1547 0,61613731 1266 0,59268632 1490 0,60658747 1266 0,6005389 1534 0,55981936 1266 0,57663289
1545 0,6173635 1258 0,59928392 1488 0,60605315 1258 0,59503652 1526 0,55733488 1258 0,5749723
1544 0,61766792 1251 0,59508427 1485 0,60753749 1251 0,59604422 1519 0,56008675 1251 0,57416293
1534 0,6178057 1245 0,59470335 1480 0,61020888 1245 0,59854685 1512 0,56434589 1245 0,57375482
1525 0,61191228 1236 0,59819701 1475 0,61111699 1236 0,60752746 1505 0,56327287 1236 0,57289067
1521 0,61165306 1230 0,59938341 1470 0,60801355 1230 0,61061482 1498 0,56286156 1230 0,57077281
1510 0,61103472 1224 0,59240672 1464 0,60599433 1224 0,60636613 1491 0,56109517 1224 0,57409543
1505 0,60986714 1216 0,57538773 1460 0,60805346 1216 0,60373132 1484 0,56152935 1216 0,55703796
1500 0,60853104 1210 0,57375525 1455 0,60766788 1210 0,60274237 1476 0,56076984 1210 0,55939226
1490 0,60602677 1200 0,56050092 1450 0,60892086 1200 0,60366119 1470 0,55830302 1200 0,55838478
1475 0,6020557 1196 0,57237969 1445 0,6111907 1196 0,59971547 1463 0,5623368 1196 0,55846069
1460 0,59709394 1189 0,57261439 1440 0,61312898 1189 0,5945583 1456 0,56428801 1189 0,5600539
1450 0,59269946 1182 0,57515626 1435 0,61030069 1182 0,59327942 1449 0,5640428 1182 0,56093654
1445 0,5907548 1175 0,57226238 1430 0,61017034 1175 0,59706114 1442 0,57014594 1175 0,5643265
1430 0,59026357 1168 0,57160401 1425 0,60758888 1168 0,58632248 1435 0,56838441 1168 0,56933453
1420 0,59232683 1161 0,57420048 1420 0,60569157 1161 0,58518454 1428 0,57247897 1161 0,5690636
1414 0,59522891 1152 0,57441151 1414 0,60528723 1152 0,58643606 1421 0,57446727 1152 0,56917022
1410 0,59984701 1147 0,57320677 1410 0,60621805 1147 0,58334866 1414 0,57571117 1147 0,56925838
1406 0,59847836 1140 0,57441113 1404 0,60695862 1140 0,58511227 1407 0,57754691 1140 0,56692736
1400 0,59969888 1133 0,57990947 1400 0,61167157 1133 0,58660709 1400 0,57711318 1133 0,56623232
1398 0,59886746 1125 0,56820196 1398 0,61115087 1125 0,59134128 1398 0,57506025 1125 0,5689033
1392 0,59906574 1118 0,56360684 1392 0,60994884 1118 0,59097809 1392 0,5770715 1118 0,5665594
1384 0,60606182 1112 0,56530663 1384 0,61162538 1112 0,58948 1384 0,57915841 1112 0,56444256
1378 0,61457294 1105 0,56682762 1378 0,60901086 1105 0,59104934 1378 0,5821855 1105 0,56313049
1370 0,62163212 1098 0,56135549 1370 0,60123992 1098 0,58927041 1370 0,57817092 1098 0,56443972
1364 0,62140233 1090 0,55344816 1364 0,60244222 1090 0,5976797 1364 0,58068942 1090 0,56660853
1357 0,62182618 1083 0,55124698 1357 0,60534376 1083 0,60419733 1357 0,57370381 1083 0,57819052
1350 0,61768734 1076 0,55344486 1350 0,60445299 1076 0,59920093 1350 0,57594561 1076 0,57693985
1343 0,61651695 1070 0,55076927 1343 0,60076043 1070 0,59760905 1343 0,5764385 1070 0,57801427
1336 0,61386739 1062 0,55491602 1336 0,59498686 1062 0,5977493 1336 0,57599344 1062 0,58430896
1328 0,6118383 1056 0,55823487 1328 0,59622082 1056 0,59941249 1328 0,57875853 1056 0,58352857
1320 0,6102271 1048 0,54765537 1320 0,59700782 1048 0,59803382 1320 0,58244324 1048 0,58764429
1314 0,60772697 1040 0,54254052 1314 0,59549911 1040 0,59823292 1314 0,584845 1040 0,58808264
1308 0,60770066 1035 0,54351791 1308 0,59501815 1035 0,5991202 1308 0,58373357 1035 0,58817336
1300 0,61173308 1028 0,54062679 1300 0,59774858 1028 0,60181222 1300 0,58961646 1028 0,57902348
1292 0,60356893 1020 0,537966 1292 0,596056 1020 0,59771347 1292 0,58782031 1020 0,57647005
1287 0,59531955 1014 0,53834742 1287 0,59393656 1014 0,59686506 1287 0,58647116 1014 0,5697108
1280 0,59392954 1007 0,54100989 1280 0,59427843 1007 0,59431944 1280 0,5864931 1007 0,57283518
1273 0,59151814 1000 0,53913917 1273 0,59877421 1000 0,58799192 1273 0,58309105 1000 0,5747546
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