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Abstract: We simulate the Langevin equation in 2D for forces coming from two different type
of potentials: flashing and traveling. These potentials produce the so-called ratchet effect, a phe-
nomenon of directed transport in a spatially periodic system. We compare our results with a real
experiment in the traveling case and we analyze how the average velocities and diffusions in the
canonical directions depend on the potential parameters: a period time τ in the flashing ratchet and
a velocity v in the traveling ratchet.

I. INTRODUCTION

The botanist R. Brown observed in 1827 that pollen
grains suspended in a fluid execute random and irregu-
lar movements. In 1905, Einstein explained this erratic
movement as the consequence of the random collisions of
the fluid molecules with the Brownian particle. He also
developed the first mathematical treatment of the prob-
lem. Einstein considered that the motion of the molecules
of liquid was so complex that its effects on the pollen
grain could only be studied probabilistically in terms of
their very frequents (and statistically independent) colli-
sions. Therefore, instead of studying the trajectory of an
individual particle, Einstein focused on a probabilistic de-
scription valid for an ensemble of Brownian particles: he
deduced an equation for the probability density function
P (~x, t) of finding a particle in ~x at time t:

∂P (~x, t)

∂t
= D∇2P (~x, t), (1)

which is the same diffusion equation than in physics of
continuous matter for the density ρ of soluble substance
in a fluid. From the previous equation we can obtain

〈~x2(t)〉 → 6Dt, (2)

which becomes 〈x2(t)〉 → 2Dt in one dimension.

In 1908, Langevin considered a different approach to
the problem. He focused on the trajectory of a single
Brownian particle and used Newton’s second law, adding

a sort of fluctuating force ~ξ(t) to describe the highly ir-
regular movement:

m
d~v

dt
= −γ~v + ~ξ, (3)

where γ is the friction coefficient (Stokes friction).

Langevin made two assumptions about ~ξ(t): it has zero
mean (because collisions occur with the same probability
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in any direction) and it is uncorrelated to the actual po-
sition of the Brownian particle (the molecules of fluid act
on the Brownian particles regardless of location), that is:

〈~ξ(t)〉 = 0, 〈~x · ~ξ〉 = 〈~x〉 · 〈~ξ〉 = 0 (4)

Langevin also assumed that thermal equilibrium between
the Brownian particle and the surrounding fluid has
been reached, and then the equipartition theorem im-
plies that 〈m~v2/2〉 = 3kBT/2, where T is the fluid tem-
perature. Multiplying both sides of (3) by ~x, taking av-
erages and using the previous considerations, we can get
〈~x2〉 → 6kBT

γ
t. Comparing with (2), we get then the Ein-

stein relation:

D =
kBT

γ
. (5)

If we include a constant force ~F , then the mean velocity
is

〈~v〉 =
~F

γ
. (6)

Remember that a stochastic process is a collection of
random variables {x(t), t ≥ 0} indexed by time. The most
famous one is the Wiener process, W , which can be car-
acterized by giving its mean value and the two-times cor-
relation function:

〈W (t)〉 = 0, 〈W (t1)W (t2)〉 = σ2 min(t1, t2). (7)

The derivative of the Wiener process (in a sense explained
in [1]) is precisely ξ(t), which is a Gaussian process with

〈ξ(t)〉 = 0, 〈ξ(t1)ξ(t2)〉 = 2δ(t1 − t2). (8)

known as white noise. In 2D, it is ~ξ(t) = (ξx(t), ξy(t)),
where ξx and ξy are independent white noises.
The purpose of this document is to study the Langevin

equation in 2D when there is a force ~F = −~∇V derived
from a time-dependent potential in the so-called over-
damped regime. If collisions occur at a characteristic time
τcoll, the Langevin equation description applies at times
t ≫ τcoll. It takes the form:

m~̈r = −~∇V − γ~̇r + ~η, (9)
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where ~η(t) =
√
γkBT ~ξ(t) is the random force which gives

the fluctuations. The constant γkBT is determined by
using the fact that, at times t ≫ 1/γ, the system gets re-
laxed to equilibrium and the equipartition theorem holds.

For micron-sized colloid, the Reynolds number is very
small and the inertial effects (captured by mv̇) can be
disregarded. That is what we call the overdamped regime.
From the equation (9), we get

~̇r(t) = − 1

γ
~∇V (~r(t), t) +

√

kBT

γ
~ξ(t). (10)

This equation of motion can be integrated numerically,
up to order h (the integration time step), with the
stochastic Milshtein algorithm [1]:

~r(ti+1) = ~r(ti)−
1

γ
h~∇V (~r(ti), ti) +

√

2
kBT

γ
h~ui, (11)

where, for every i, ~ui = (ux
i , u

y
i ) is a vector of two in-

dependent Gaussian random variables with mean 0 and
variance 1 and the vectors in the set {~ui} are indepen-
dent.

We will study this equation numerically in 2D for forces
F coming from ratchet potentials. The ratchet effect is
a phenomenon of directed transport in a spatially peri-
odic system. As explained in [2], in general, the directed
transport may be achieved by breaking the spatial inver-
sion symmetry and the time symmetry. It is possible with
periodic and asymmetric potentials, the so-called ratchet
potentials.

We will work with two kinds of ratchet potentials.
Firstly, we will study how the particles behave under a
flashing potential. Secondly, we will use a traveling po-
tential taking [3] as a reference, where the authors modu-
late by an oscillating magnetic field the parallel magnetic
stripes of a ferrite garnet film (FGF), resulting in a di-
rected transport perpendicularly to the stripes. In their
experiments, they use polystyrene paramagnetic parti-
cles diluted in deionized water and moving on top on the
FGF. In that case, according to [4], the particles motion
is basically confined to the x− y plane and there is a net
force along the x-axis coming from a traveling potential
V (x, t). In the y-axis, the forces are negligible. Although
that our simulation will be simpler, we expect similar re-
sults. In particular, we should obtain a net velocity in the
x-axis and no relevant velocity in the y direction. We will
compare the trajectory of a single particle in our simu-
lation with the real results of the experiments in [3]. In
both cases, we will study how the average velocities 〈vx〉,
〈vy〉 and diffusions 〈Dxx〉, 〈Dyy〉 of the particles depend
on a parameter of the potential (the time period in the
flashing ratchet and the traveling velocity in the traveling
ratchet).

II. FLASHING AND TRAVELING RATCHETS

Firstly, we study a simple case of a flashing poten-
tial. We consider a periodic and ratchet potential V that
is periodically flashing on and off. When V is applied,
particles are trapped in the minima of the potential. We
suppose that our particles are initially near to the central
minimum, as shown in Fig. 1. Then we have a distribu-
tion centered at the minimum due to the random fluc-
tuations. When the potential is off, the particles diffuse
freely and the variance of the concentration increases be-
cause of the diffusion. Once the potential is switched on
again, the particles that are located at the right of αL
move forwards to the minimum at L. It happens with a
probability Pright that is proportional to the orange area.
Equally, there is a probability Pleft, proportional to the
blue area, that some particles are to the left of −(1−α)L
and then move backward to the minimum at −L. Since
the orange area is larger than the blue area, Pright > Pleft

and it is more likely to be trapped in the well at L than at
−L. Therefore, the asymmetry of the potential creates a
net displacement of the particles to the right. Obviously,
the symmetric case (α = 1/2) does not yield a preferen-
tial direction.

FIG. 1: A flashing potential, with α = 1/3.

Next we consider a traveling potential ratchet in x-axis:

V1(x, t) = V1(x− vt, t) (12)

where v is the traveling velocity. In this case, as the min-
ima of the potential are moving in the traveling velocity
direction, the particles are dragged in the same direc-
tion. We suppose that our particles are initially trapped
near to a single minimum (see Fig. 2). As time goes on,
the minimum is moving forward and then our distribu-
tion around this minimum is forced to move to the right.
Nevertheless, we will see that the real behaviour is not
always so simple.
We will add to both potentials a periodic 2D fixed

potential, which consists in periodic minima and maxima
in a square configuration:

V2(x, y) = V 0
2

(

1 + sin

(

2πx

λ

)

sin

(

2πy

λ

))

. (13)
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FIG. 2: A traveling potential, moving to the right.

III. RESULTS

We have simulated the Langevin equation in 2D for
forces coming from two potentials:

V (x′, y′, t′) = V ′

10 V̂1 (x
′, t′) + V ′

20 V̂2

(

x′

λ′
,
y′

λ′

)

(14)

where the first term will be a flashing or traveling poten-
tial. To simplify the simulation, we have used a standard
nondimensionalization method for the equation (10) with
the previous potential. For example, if

V1 (x
′, t′) = V1

(

x′

λ′
, ω′t′

)

, (15)

as will be the case in our flashing potential, we can define
the following dimensionless variables:

x =
x′

λ′
, y =

y′

λ
, t =

t′

t0
, (16)

where t0 is an auxiliar constant such that t0V
′

10/γλ
′2 = 1.

If we define the following dimensionless parameters,

ω =
γλ′2

V ′

10

ω′, T̂ =
kB
V ′

10

T, (17)

the two-dimensional equation (10) becomes

ẋ =− ∂V̂1

∂x
(x, ωt)− V ′

20

V ′

10

∂V̂2

∂x
(x, y) +

√

T̂ ξx

ẏ =− ∂V̂2

∂y
(x, y) +

√

T̂ ξy,

(18)

where all variables and parameters are dimensionless.
The traveling potential can be treated in a very similar

way. In this case, the potencial has the form

V1 (x
′, t′) = V ′

10 V̂1

(

x′ − v′t′

λ′

)

, (19)

where v′ is the traveling velocity. Following an analogous

process and defining v = γλ′

V ′

10

v′, one can arrive to the
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FIG. 3: V̂ (x).

corresponding dimensionless Langevin equations, like in
(18).
As we have just seen, we can take our potentials as

V (x, y, t) = V1(x, t) + V2(x, y), where x, y, t are di-
mensionless variables. The potential V2 has already been
stated at (13). In the next section, we will specify the
potentials that we have used.
We have supposed an initial condition (x0, y0) = (0, 0)

and we have taken T̂ = 0.2. The simulations have been
applied to ensembles of N = 400 particles; the results
shown below are always the average quantities of these
collections at large enough times (t = 1000). In fact, the
definitions of velocity and diffusion are

〈vx〉 = lim
t→∞

〈x(t)〉
t

, 〈Dxx〉 = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
t

;

〈vy〉 = lim
t→∞

〈y(t)〉
2t

, 〈Dyy〉 = lim
t→∞

〈y2(t)〉 − 〈y(t)〉2
2t

.

It is important to ensure that the time we take is much
longer than any other characteristic time of the system,
as explained in [5].

A. Flashing potential

We set V 0
2 = 0.1 and λ = 0.5 in (13) and let V1(x, t)

be the following flashing potential:

V1(x, t) = f(t)V̂ (x), (20)

with V̂ (x) = [sin(2πx) + 0.25 sin(4πx) + 0.05 sin(6πx)]
and f(t) = (1+ cos(ωt))/2, where ω = 2π/τ and τ is the

time period. We graph V̂ (x) in Fig. 3.
According to the previous section, there should be a fi-

nite and positive average velocity in the x-axis, 〈vx〉 > 0.
That is, the particles are transported forward by the
flashing potential. In contrast, we do not expect a net
velocity in the y-axis, because the potential V2(x, y) does
not give any preferential direction. These physical intu-
itions are verified in Fig. (4), where we represent the
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statistical averages velocities in directions x and y de-
pending on the parameter τ . We clearly observe a peak
around τ = 0.4 in 〈vx〉 from which velocity starts to de-
crease to 0. For very small τ , that is, in the case that the
potential is flashing very quickly, a particle trapped in a
minimum of the potential does not have time to diffuse
enough when the potential is off (or has a small ampli-
tude) to escape this potential well. Since the particles are
confined, 〈Dxx〉 is close to 0. For the same reason, as τ
increases, we expect that 〈vx〉 > 0 and 〈Dxx〉 increases.
However, for large τ , the potential amplitude changes
slowly and then the directed transport takes place at low
velocity. Therefore, there must be a optimal time period
τ . We also observe that 〈Dyy〉 ≈ 0.2, which is the value of

T̂ . It is coherent with [5]. We also see that 〈Dxx〉 < 〈Dyy〉;
it may happen because, while the particles are dragged
forward in the x-axis by the flashing potential, they dif-
fuse freely in the y-axis, so it seems reasonable a larger
diffusion in the y direction.
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FIG. 4: Average velocities in x-axis and y-axis, 〈vx〉,
〈vy〉, versus the period time τ , after a time t = 1000.
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FIG. 5: Average diffusions in x-axis and y-axis, 〈Dxx〉,
〈Dyy〉, versus the period time τ , after a time t = 1000.

B. Traveling potential

Now we take the potential V̂ (x), but we replace x by
x̄ = x− vt, where the velocity v is a parameter. Then we
get a traveling potential:

V1(x, t) = sin(2πx̄)+0.25 sin(4πx̄)+0.05 sin(6πx̄), (21)

where x̄ = x− vt. We set V 0
2 = 0.5 and λ = 1 in (13).

Now we compare the trajectory of a single particle un-
der the potential V (x, y, t) with the following figure ex-
tracted from [3]:

FIG. 6: Particle trajectory x(t) and its corresponding
path in the x− y plane, extracted from [3].

Our equivalent graphic is Fig. 7, with slightly different
axis. As expected, our simulation gives similar results to
Fig. 6. We have a net velocity in the x-axis and fluctua-
tions around 0 in the y direction.
We graph in Figs. 8, 9 velocities and diffusions in x

and y depending on the traveling velocity v. As expected,
there is a net velocity in x. Nevertheless, like in flashing
ratchet, there is a peak in this case around v = 3.4 in 〈vx〉.
This fact agrees with the experiments in [6], where the au-
thor detect that above a critical velocity the overdamped
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FIG. 7: A single particle trajectory x(t) and y(t), for a
velocity parameter v = 0.1.
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particles are unable to follow ratchet modulations. Dif-
fusion in y-axis, 〈Dyy〉 fluctuates around T̂ = 0.2, as
expected, and we observe that there is a maximum for
〈Dxx〉 near to the critical velocity.
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FIG. 8: Average velocities in x-axis and y-axis, 〈vx〉,
〈vy〉, versus the velocity v, after a time t = 1000.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9 10

D
iff
u
si
o
n

v

X
Y

FIG. 9: Average diffusions in x-axis and y-axis, 〈Dxx〉,
〈Dyy〉, versus the velocity v, after a time t = 1000.

IV. CONCLUSIONS

In this essay, we have shown that a Brownian parti-
cle under a so-called ratchet potential experiences the
ratchet effect, a directed transport due to the break of
spatial and time symmetry. We have seen it by simulating
the Langevin equation -previously nondimensionalized-
in 2D with the stochastic Milshtein algorithm.

In the flashing potential case, we have shown that 〈vx〉
has a peak around τ = 0.4. In contrast, 〈vy〉 ≈ 0, because
the potential does not give any preferential direction in
the y-axis. In the traveling potential case, the results for a
single particle trajectory are consistent with [3], the arti-
cle which has inspired this part of our work. As expected,
we have observed a net velocity in the traveling direction,
x-axis, and fluctuations in the y-axis, where the potential
does not give any preferential direction. Furthermore, we
have seen a peak around v = 3.4, a critical velocity from
which the overdamped particle can not follow the poten-
tial. This peak appears in a similar form in the article
[6]. The diffusion 〈Dxx〉 has a maximum near to the crit-

ical velocity and 〈Dyy〉 has a value close to T̂ in both
potentials, as predicted in [5].

To take further this work, we should be more careful
about the parameters. We should fix them according to
the real conditions of the problem that we pretended to
study. Despite this, this work has been useful as a first
approach to the Langevin equations and the ratchet po-
tentials.
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