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In this work, we introduce a modified version of the voter model that takes into account heteroge-
neous distributions of activity and influence present in real social networks, where highly connected
agents tend to be both more active and influential. The aim is to study the conditions that lead to
the emergence of spontaneous collective leadership in scale-free networks.

I. INTRODUCTION

Networks have proven useful in the description of many
real-world systems in a wide variety of fields such as bi-
ology, economy, sociology or physics [1–3]. In this work,
we explore one of the topics that is best described under
this framework, the emergence of collective leadership
in real-world social environments in which connectivity,
activity and influence play a relevant role [4–6].

With this purpose in mind, we will make use of one of
the most widely studied models of opinion dynamics, the
standard voter model, which consists of a set of interact-
ing agents endowed with a binary state of opinion, being
activated at some predefined frequencies and acting
by pure imitation, copying the opinion of a randomly
selected neighbor when they get activated. By precisely
defining the frequencies at which our agents will interact
and how neighbor selection will be performed, we will be
able to bring the mechanisms of activity and influence
to light.

In addition, we will embed our agent into a scale-free
network that will provide them with heterogeneous
connectivity, dividing the population into two groups of
high and low degree agents that will exhibit remarkable
differences in their separate paths to consensus, the final
fate of the system in which all agents share the same
opinion.

Finally, under the assumption that highly connected
agents tend to be both more active and persuasive, we
will show how these two mechanisms compete to crown
one of the two groups as the effective leaders of opinion.

II. OPINION DYNAMICS

A. Herding Voter Model

To address connectivity, we embed our agents in a a
scale-free network so that every agent i is assigned
a degree ki sampled from a distribution of the form
P (k) ∼ k−γ , with γ typically in the range 2 ≤ γ ≤ 3.
This provides them with a set of acquaintances and
divides the population into a vast majority of similarly
connected agents with low degree and a tiny minority
of highly connected agents, usually called hubs. The

complete description of this structure is encoded in the
adjacency matrix A with coefficients aij being 1 if i and
j are connected and 0 otherwise.

To address activity, we introduce a new parameter α
and assign every agent an activity rate in consonance
with its degree so that agent i revises its opinion
at rate λi ∼ kαi . The parameter α modulates the
effect that connectivity has over the activity of our
agents and allows us to capture the fact that the best
connected agents tend to be the also the most active ones.

Finally, influence is addressed introducing a new param-

eter β and the probability Prob(j|i) ∼ aijk
β
j that agent

i copies the opinion of agent j. The particular form of
Prob(j|i) makes the influence of j over i a function of kj
and its relevance is controlled by means of β that allows
us to capture the fact that best connected agents are
also the most influential.

This modified version of the voter model can be consid-
ered as a major generalization that retains some valuable
features present in real systems and that can be reduced
to the standard version by simply setting α = β = 0. The
dynamics of the state of the system can be completely
described using a set of N stochastic processes, {ni(t)}
that takes value 0 or 1 according to the opinions of each
agent at time t. Assuming that all temporal processes
follow Poisson statistics, the evolution of ni(t) after an
increment of time dt satisfies the stochastic equation

ni(t+ dt) = ni(t) [1− ξi(t)] + ηi(t)ξi(t) (1)

where ξi(t) is a random variable that controls whether
node i is activated during the interval (t, t + dt) and
takes value

ξi(t) =





1 with probability λi dt

0 with probability 1− λi dt.
(2)

When ξi = 0, node i is not activated and thus, preserves
its opinion state.
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(a) Conservation of Φ for α = 0 and consequently, all rates
fixed at λi = 1.
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(b) Conservation of Φ for λi uniformly distributed in the
range 1 ≤ λi ≤ 103

FIG. 1: Conservation of Φ(t) computed over 104 realizations on a network with γ = 2.5, N = 103 and β = 0
assigning initial opinion ”1” with probability 0.7, 0.5, and 0.3 from top to bottom, respectively. Colored traces

correspond to evolutions of Φ in particular realizations while black traces correspond to the average Φ̄.

When ξi = 1, instead, i gets activated and copies the
opinion of one of its neighbors j according to Prob(j|i)
so that

ηi(t) =





1 with probability
N∑
j=1

Prob(j|i)ηj(t)

0 with probability 1−
N∑
j=1

Prob(j|i)ηj(t).

(3)

This set of equations represent the exact stochastic evo-
lution of the system and allows us to derive the instanta-
neous average opinion of agent i, ρi ::= 〈ni(t)〉 by aver-
aging Eq.(1) over ξi(t), ηi(t) and then, over the ensemble
leading to

dρi
dt

= λi



N∑

j=1

Prob(j|i)ρj − ρi


 . (4)

Given its particular form, one can define a weighted
average opinion Φ ::=

∑
i φiρi where the weights φi are

characteristic of every agent and can be computed to
keep Φ preserved.

The computation of those weights imply solving

N∑

i=1

λiφiProb(j|i) = λjφj (5)

which follows from computing the weighted sum of Eq.(4)
and imposing conservation, the solutions are

φi =
kβi
λi

N∑

j=1

aijk
β
j . (6)

Φ is therefore conserved, its value depends entirely on
the initial conditions and reads

Φ =

N∑

i=1

N∑

j=1

aijk
β
i k

β
j

λi
ρi(t) =

N∑

i=1

N∑

j=1

aijk
β
i k

β
j

λi
ρi(t0). (7)

Although the particular evolution of Φ can be completely
different in every single realization, its average over a
large number of realizations is preserved over time. Un-
der this framework, the final fate of a finite system is
always a frozen consensus state in which all agents share
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the same opinion. This implies that ρi(t→∞) should be
the same for every agent and equal to the probability of
ending up absorbed in the ”1” consensus state. The con-
servation of Φ becomes useful here allowing us to express
it as Φ/

∑
i φi which equals ρi(t0) when we let the last be

the same for every agent. A graphical representation of
this fact is given in figure 1 for two different distributions
of λi.

B. Emergence of Leadership

In order to gain insight about how α and β shape the
evolution towards consensus, we can build a representa-
tion of the system encoding all the relevant information
that consists of a set of N stacked rows fulfilling a square
of area 1. Each row is assigned an agent i and divided
into ki cells representing every one of its neighbors.
The height of a row will measure the activity of the
corresponding agent, will be given by hi = kαi /

∑
j k

α
j

and its area will represent the probability of activation
of agent i in the time interval (t, t + dt). The width
of each cell will measures the relative influence that a
particular neighbor j has over the opinion of a given

agent i, its width will be given by wij = kβj /
∑
j aijk

β
j

and its area will represents the probability of agent i
copying the opinion of its neighbor j.

As an example, we show a picture of a small system with
N = 10, and α = β = 0 in figure 2. For readability, rows
are ordered from bottom to top according to connectivity
so that hubs, represented as blue, are placed top and
low degree agents, represented as yellow, bottom. The
same applies for cells, with highly connected neighbors
placed right and low degree neighbors left.

Under this representation, the evolution of the system
can be visualized as sampling a uniform random variable
over the square such that when the sample falls within
the area of the cell cij , agent i, copies the opinion
of its neighbor j and the state of the system changes
accordingly. In figure 2.a we provide a representation
of a system shaped according to standard voter model
dynamics, with α = β = 0. In this representation, every
agent interacts with his neighborhood with the same
frequency, reflected as a uniform distribution of heights
in the rows, and every neighbor of a particular agent
has the same influence over his opinion, reflected as a
uniform distribution of areas over the cells of each row.

The parameter α determines how connectivity maps into
activity. Its increase introduces a distribution of heights
in the rows of the system so that when α is high enough,
rows representing highly connected nodes tend to expand
over the square intensifying their activity. The rest of
the rows tend to collapse to the bottom making the low-
degree agents, to whom they represent, difficult to target
by the random variable and, consequently, less active.

(a) When α = β = 0, row heights and cell
widths are evenly distributed.

(b) When α increases, hub rows tend to
cover greater area while low degree agents

tend to collapse to the bottom.

(c) When β increases, hub cells tend to cover
greater areas while low degree cells tend to

collapse to the left.

FIG. 2: Schematic representation of a system with
N = 10 and different values of α and β. In this

representation, hubs are colored blue and low-degree
agents, yellow.
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This situation corresponds to a system in which hubs are
completely open-minded, willing to copy the opinion of
their neighbors with higher frequency, and quasi-frozen
low degree agents, reticent to change their opinion and,
therefore, making it prevail in the system for longer
periods of time. Its schematic representation is shown in
figure 2.b.

The parameter β, instead, controls how connectivity
maps into influence. Its increase introduces a distribu-
tion of widths in the cells of each row so that when β is
high enough, cells representing highly connected agents
tend to expand over the row enhancing their influence.
The rest of the cells tend to collapse to the left, making
the agents, whom they represent, difficult to target by
the random variable and, consequently, less influential.
This situation translates into a system in which hubs
govern the opinion of the system while low-degree agents
become widely ignored. Its schematic representation is
shown in figure 2.c.

Under this framework, the relevance of the opinion of a
given agent in the final fate of the system is completely
determined by three mechanisms that are also reflected
in the weights of equation (6): Connectivity, that em-
powers higher connected agents to spread their opinion
over a wider part of the population; influence, that
enables the opinion of a given agent to be copied with
higher frequency; and activity, that allows the opinion
of the less active nodes to prevail for longer periods of
time.

Following this reasoning, if both mechanisms, activity
and influence, are turned off (α and β close to zero), both
groups diffuse together to one of the consensus states
as in the standard voter model. In this situation only
connectivity plays a role and, since highly connected
nodes are individually more relevant for the final fate
but also significantly less numerous, there is no clear
dominance of one group over the other in terms of
opinion (figure 3.a).

When our agents interact at widely separate frequencies
but influence is distributed evenly over the neighbors
(high α but small β), the final fate of the system is
entirely governed by low-degree agents, who remain
quasi-frozen in their states pulling the highly adaptable
group of active hubs towards their opinion, constituting
a relevant part of their neighborhoods and exerting re-
markable influence. In this situation, consensus becomes
virtually impossible since it requires that a numerous
group of low-frequency interacting agents agree (figure
3.b).

In contrast, when highly connected agents are much more
influential than low-degree ones (high β but small α), de-
spite being considerably less numerous, their individual
opinions are so heavily weighted in the final fate of the
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(a) Simulation with α = 0 and β = 0
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(b) Simulation with α = 2.5, β = 0
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(c) Simulation with α = 0, β = 2.5
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(d) Simulation with α = 2.5, β = 2.4

FIG. 3: Different behaviors exhibited by a system with
γ = 2.1, N = 104 and dissasortative structure according

to α and β. Green traces correspond to high-degree
agents and black, to low-degree agents.
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system that they become the effective leaders of opinion.
Since they exert remarkable influence over the group of
low-degree agents and their opinion is almost completely
determined by the rest of the highly connected agents,
they are able to reach consensus on their own ignoring
the rest of the population who will deterministically
adopt their opinion (figure 3.c).

When activity and influence shape together the dynam-
ics of the system, a competition between both groups is
established. β provides increasing amounts of persuasive
power to the highly connected group but α provides
prevalent opinions to low-degree agents, making them
ignore what their peers have to say about the particular
topic and, therefore, nullifying their persuasive power.
There exists a regime in which the group of highly
connected agents behaves effectively as a two-state
system remaining in one of the consensus states during
relatively long periods of time and being eventually
pulled out abruptly towards the opposite one.

In this situation, the highly connected group is able to
reach consensus almost freely thanks to the influence pro-
vided by β but there is still a chance that, once in consen-
sus, a highly connected agent adopts the opposite opinion
from a low-degree agent, introducing some noise in the
system that can eventually pull the whole group towards
the opposite consensus state. In order to give rise to this
event, the value of α should allow the group of highly con-
nected agents to perceive low-degree agents as frozen in
their states during long periods of time. Now, if the value
of α is extremely high, the group of hubs will keep jump-

ing abruptly between consensus states while the group of
low-degree agents remains completely frozen in their ini-
tial state but, in contrast, if the value α is not extremely
high, the final fate of the system will be governed by
the group of highly connected agents that will be able to
pull the whole group of low-degree agents towards their
opinion (figure 3.d).

III. CONCLUSIONS

The introduction of a modified version of the voter
model has allowed the incorporation of heterogeneous
distributions of activity and influence that has led to
the emergence of collective leadership and herding. The
division of the system into two separate groups of highly
connected and low-degree agents and the study of their
separate evolution towards consensus, has revealed how
these two social mechanisms of interaction compete to
rise one of the two groups as effective leaders of opinion.
The results presented in this work are, nonetheless,
derived from computational simulations and further
analysis is required in order to clarify with precision the
exact conditions that lead to this phenomenon.
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