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Abstract
This paper proposes a test statistic for the null hypothesis of panel stationarity that allows for the

presence of multiple structural breaks. Two different specications are considered depending on

the structural breaks affecting the individual effects and/or the time trend. The model is exible

enough to allow the number of breaks and their position to differ across individuals. The test is

shown to have an exact limit distribution with a good nite sample performance. Its application

to a typical panel data set of real per capita GDP gives support to the trend stationarity of these

series.

Keywords: multiple structural changes, panel data, stationarity test, GDP per capita

JEL codes: C12, C22

Resum
Aquest article proposa un estadístic de prova per contrastar la hipòtesi nul¢la d’estacionarietat
en panell permetent la presència de múltiples canvis estructurals. Es consideren dues especi-

cacions diferents en funció de si els canvis estructurals afecten els efectes individuals i/o la

tendència temporal. El model és el sucientment exible com per permetre que tant el nom-

bre de canvis com la seva posició puguin diferir entre els individus. El treball mostra que la

distribució asimptòtica de l’estadístic és exacta. Experiments de simulació indiquen que el

comportament del contrast en mides mostrals nites és bo. La seva aplicació a un panell típic

de PIB per capita real proporciona evidència a favor de l’estacionarietat de les sèries.

Paraules clau: Múltiples canvis estructurals, dades de panell, contrast d’estacionarietat, PIB

per capita

Classicació JEL: C12, C22



1. Introduction

The econometric literature on nonstationary time series has seen the emergence

of a wide set of new developments centred on panel data models. The

attractiveness of the panel approach lies in the assumption that each time series is a

realization of a common underlying data generating process so that better power is

expected by exploiting the cross-section dimension of the panel when performing

unit root tests. Thus, the combination of the time and cross-section information

mitigates the lack of power that the time series based unit root and cointegration

tests show when they are applied to the current available samples. The seminal

proposals in the panel data framework are those by Levin, Lin and Chu (2002),

Breitung and Meyer (1994), Quah (1994) and Phillips and Moon (1999). Banerjee

(1999), Baltagi and Kao (2000) and Baltagi (2001) provide comprehensive

surveys of the subject. While several tests have already been proposed in this

area, less attention has been paid to the presence of structural changes in each of

the time series in the panel. Now it is well known that the erroneous omission of

structural breaks in the series can lead to deceptive conclusions when performing

the univariate integration order analysis - see Perron (1989). Two exceptions that

address this concern in the panel data eld are the papers by Im and Lee (2001) and

Carrion, Del Barrio and López-Bazo (2001b). The rst of these papers extends

the univariate LM unit root tests proposed by Schmidt and Phillips (1992) and

Amsler and Lee (1995) to the panel data framework. Their specications, which

consider individual effects and a time trend, allow for one structural break that

shifts the mean of the individual time series. The authors show that the limiting

distribution of the new test does not depend on any nuisance parameter. More

precisely, the asymptotic distribution does not depend on the location of the break

point provided that the limiting distribution of the individual tests is invariant to

this nuisance parameter. However, they note that this result of invariance does not
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hold in nite samples. For their part, Carrion et al. (2001b) generalize the model

that species individual effects in Harris and Tzavalis (1999) to take into account

a structural change that shifts the mean of each of the individual time series at the

same date. This panel data unit root test considers the time dimension T as xed;

this is particularly attractive for practitioners, as a variety of macroeconomic panel

data sets are characterized by a limited number of temporal observations. The

application of the inmum functional makes the limiting distribution of the test

free of the break fraction parameter.

In the spirit of the contributions cited above, in this paper we design a test

for the null hypothesis of stationarity that takes multiple structural breaks into

account. The procedure is based on the panel data version of the KPSS univariate

test developed in Hadri (2000) and generalizes existing proposals in this eld. The

null hypothesis of stationarity can be considered to be more natural than the null

hypothesis of a unit root for many economic problems - see Bai and Ng (2001).

This implies that there has to be strong evidence against trend stationarity to

conclude in favor of the nonstationarity of the panel. Some authors have proposed

using both types of test statistics, that is to say, unit root and stationarity tests,

to carry out a sort of conrmatory analysis - see Maddala and Kim (1998) for a

summary.

Besides, our approach is general enough to allow for the structural changes

to shift the mean and/or the trend of the individual time series. Additionally,

each individual in the panel can have a different number of breaks located at

different dates. The limit distribution of the test statistic is obtained, as the

rst stage, using the sequential limits. However, following Phillips and Moon

(1999), it is shown that the same limiting distribution result is reached if we

apply joint limit asymptotics with the additional assumption N=T ! 0. These

ndings are conrmed in the Monte Carlo analysis since, in general, the test

shows good nite sample performance when T is large compared to N . The
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increasing availability of macroeconomic panel data sets, spanning longer time

periods and larger numbers of economies, gives rise to many situations in which

our proposal can be applied. This is supported by the fact that the probability of

a break occurrence increases as the time dimension expands. As an illustration,

we test the null hypothesis of panel stationarity in real GDP per capita of fteen

developed countries from 1870 to 1994. These time series have been extensively

analysed in applied economics - see Ben-David and Papell (1995) and Ben-David,

Lumsdaine and Papell (1996), among others.

The plan of the paper is as follows. In Section 2 we describe the models and

the test, and present its limiting distribution. Section 3 deals with the estimation

of the number of structural breaks and the determination of the break points.

Section 4 analyses the nite sample performance of the test through a Monte Carlo

experiment. Our proposal is used to assess the stochastic properties of one typical

macroeconomic panel data set in Section 5. Section 6 concludes. All the proofs

are compiled in the Appendix.

2. The model and test statistic

In this Section we describe the models dened to test the null hypothesis of

stationarity allowing for two different types of multiple structural break effect.

Let fyi;tg be the set of stochastic processes given by:
yi;t = ®i;t + ¯i t+ "i;t; (1)

®i;t =

miX
k=1

µi;kD
¡
T ib;k
¢
t
+

miX
k=1

°i;kDUi;k;t + ®i;t¡1 + Ài;t; (2)

where Ài;t » iid
¡
0; ¾2À;i

¢
and®i;0 = ®i, a constant, with i = 1; : : : ; N individuals

and t = 1; : : : ; T time periods. The dummy variables D
¡
T ib;k
¢
t
and DUi;k;t are

dened as D
¡
T ib;k
¢
t
= 1 for t = T ib;k + 1 and 0 elsewhere, and DUi;k;t = 1

for t > T ib;k and 0 elsewhere, with T ib;k denoting the k-th date of the break for

the i-th individual, k = 1; : : : ; mi, mi ¸ 1. The data generating process (DGP)
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given by (1) and (2) decomposes fyi;tg as the sum of a random walk, f®i;tg, and a
stochastic process, f"i;tg, which is assumed to be a sequence of mixingales - this
includes stochastic processes satisfying the strong mixing regularity conditions

dened in Phillips and Perron (1988). Moreover, we assume that f"i;tg and
fÀi;tg are mutually independent across the two dimensions of the panel data set.
Hence, the null hypothesis of a stationary panel is equivalent to set ¾2À;i = 0,

8i = 1; : : : ; N , under which the model given by (1) and (2) becomes:

yi;t = ®i +

miX
k=1

µi;kDUi;k;t + ¯i t+

miX
k=1

°i;kDT
¤
i;k;t + "i;t; (3)

with the dummy variable DT ¤i;k;t = t ¡ T ib;k for t > T ib;k and 0 elsewhere,

k = 1; : : : ; mi,mi ¸ 1. The model in (3) includes individuals effects, individual
structural break effects - that is, shifts in the mean caused by the structural breaks

-, temporal effects - if ¯i 6= 0 - and temporal structural break effects - if °i;k 6= 0,
that is, when there are shifts in the individual time trend. This specication

is the panel data counterpart of models with breaks proposed in the univariate

framework. Thus, when ¯i = °i;k = 0 the model in (3) is the counterpart of the

one analysed by Perron and Vogelsang (1992) - hereafter denoted as model 1 -

whereas when ¯i 6= °i;k 6= 0 we have the specication given by Perron (1989)’s
model C, to which we will refer as model 2. Although other specications might

be adopted - e.g. the panel data counterparts of models A and B in Perron (1989)

- the asymptotic distribution of the test proposed below for those cases cannot

be distinguished from the one in model 2. So, these models can be rewritten in

a way that their representation becomes equivalent, and they thus share the limit

distribution. This feature is deduced from the derivations in the Appendix.

The specication given by (3) is general enough to allow the following

characteristics: (i) the structural breaks may have different effects on each

individual time series - the effects are measured by µi;k and °i;k; (ii) they may

be located at different dates since we do not restrict the dates of the breaks to
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satisfy T ib;k = Tb;k, 8i = 1; : : : ; N and, (iii) individuals may have different

numbers of structural breaks mi 6= mj, 8i 6= j, i; j = 1; : : : ; N . The test of the
null hypothesis of a stationary panel follows the proposal of Hadri (2000), who

designed a test statistic that is simply the average of the univariate stationarity test

in Kwiatkowski, Phillips, Schmidt and Shin (1992). The general expression for

the test statistic is:

LM (¸) = N¡1
NX
i=1

Ã
!̂¡2i T

¡2
TX
t=1

S2i;t

!
; (4)

where Si;t =
Pt
j=1 "̂i;j denotes the partial sum process that is obtained using

the estimated OLS residuals of (3), with !̂2i being a consistent estimate of the

long-run variance of "i;t, !2i = limT!1 T¡1S2i;T , i = 1; : : : ; N . This allows

the disturbances to be heteroscedastic across the cross sectional dimension, that

is to say, there is some sort of heterogeneity across individuals - see McCoskey

and Kao (1998) and Hadri (2000). The non-parametric method described by

Newey and West (1994) and the parametric method in Shin and Snell (2000) can

be applied to obtain consistent estimates of !2i . However, care should be taken

when applying the non-parametric methods jointly with the use of optimal lag

selection for the bandwidth. As Lee (1996b) and Kurozumi (2002) have shown,

the procedure of lag selection in Andrews and Monahan (1992) should not be

applied to compute the long-run variance for the KPSS test as it makes the test

inconsistent. Note that the test in (4) can be also computed assuming homogeneity

of the long-run variance across individuals. Instead of computing the test as

in (4) we can formulate it as LM (¸) = N¡1PN
i=1

³
!̂¡2T¡2

PT
t=1 S

2
i;t

´
with

!̂2 = N¡1PN
i=1 !̂

2
i . Finally, ¸ is used in (4) to denote the dependence of the

test on the dates of the break. For each individual i it is dened as the vector

¸i = (¸i;1; :::; ¸i;mi
)0 =

¡
T ib;1=T; : : : ; T

i
b;mi
=T
¢0 which indicates the relative

positions of the dates of the breaks on the entire time period, T .
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The derivation of the asymptotic distribution of (4) only requires knowing

the expectation and the variance of the limiting distribution of ´i (¸i) =

!̂¡2i T
¡2PT

t=1 S
2
i;t in order to apply the Central Limit Theorem (CLT). It can

be shown that under the null hypothesis of stationarity the univariate KPSS test

with multiple shifts, ´i (¸i), has the following limit distribution - the proof of this

statement is sketched in the Appendix for completeness:

´i (¸i))
mi+1X
k=1

·
(¸i;k ¡ ¸i;k¡1)2

Z 1

0

Vi (bk)
2 dbk

¸
= Hi (¸i) ; (5)

with ¸i;0 = 0 and ¸i;mi+1 = 1, where ) denotes weak convergence of the

associated measure of probability. This limiting distribution encompasses the

one in Lee (1996a), Lee and Strazicich (2001), Busetti and Havey (2001) and

Kurozumi (2002) for the model that considers one structural break that shifts the

level of non-trending variables and the model that takes account for one break that

shifts the level and slope of trending variables. Moreover, it also encompasses the

limiting distributiond in Carrion (1999) for the KPSS with two structural breaks.

For notational convenience, we have followed Lee (1996a) and Lee and Strazicich

(2001) when expressing the limiting distributions, although it is straightforward

to show that the results of the papers mentioned above are equivalent.1 Carrion,

Sansó and Artís (2001a) and Bartley, Lee and Strazicich (2001) obtain similar

limiting distributions when testing the null hypothesis of cointegration with one

structural break using the KPSS.

For the two specications considered in the paper the rst two moments of (5)

are given in the following Proposition.

1 Notice that departing from Busetti and Havey (2001) we just need to rescale the Brownian
motions of each subsample to obtain the limiting distributions in Lee (1996a) and Lee and
Strazicich (2001). Kurozumi (2002) prefers to express the limiting distributions in terms of
standard Brownian motions instead of detrended Brownian motions.
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Proposition 1 Let fyi;tg be the stochastic process given by (3) with f"i;tg a
sequence of mixingales, i = 1; : : : ; N , t = 1; : : : ; T . Thus, the expectation (»i)
and variance

¡
&2i
¢
ofHi (¸i) are given by:

»i = A

mi+1X
k=1

(¸i;k ¡ ¸i;k¡1)2 ; &2i = B

mi+1X
k=1

(¸i;k ¡ ¸i;k¡1)4 ;

¸i;0 = 0 and ¸i;mi+1 = 1, being A =
1
6 and B =

1
45 for model 1

¡
¯i = °i;k = 0

¢
,

and A = 1
15 and B =

11
6300 for model 2

¡
¯i 6= °i;k 6= 0

¢
.

The proof of Proposition 1 is outlined in the Appendix. Some remarks are in

order. First, when either ¸i = (0; 0; :::; 0)0 or ¸i = (1; 1; :::; 1)0; 8i = 1; : : : ; N ,
- that is, when there are no structural breaks affecting the time series - the mean

and the variance of Hi (¸i) in Proposition 1 equal the values of the moments

in Hadri (2000), »i = 1=6 (1=15) and &2i = 1=45 (11=6300) for model 1 (2).

Second, under the presence of structural breaks, the asymptotic distribution of

´i (¸i) depends on ¸i. In the rest of this section we are assuming ¸i known for all

i. The case in which these break fraction parameters should be estimated will be

addressed in Section 3.

As the test in (4) is in essence the average of the N individual statistics, its

limiting distribution can be obtained as the average of Hi (¸i). Therefore, by

dening ¹» = N¡1PN
i=1 »i and ¹&

2 = N¡1PN
i=1 &

2
i , the test statistic for the null

hypothesis of a stationary panel with multiple shifts is:

Z (¸) =

p
N
¡
LM (¸)¡ ¹»¢
¹&

: (6)

The following Theorem establishes the sequential limit distribution of Z (¸).

Theorem 1 Let fyi;tg be the stochastic process given by (3) with f"i;tg a
sequence of mixingales, i = 1; : : : ; N , t = 1; : : : ; T . Thus, as T ! 1 followed
byN !1:

Z (¸) =

p
N
¡
LM (¸)¡ ¹»¢
¹&

d! N (0; 1) ;

where d! denotes weak convergence in distribution.
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The proof of Theorem 1 relies on the application of the Lindberg-Lévy Central

Limit Theorem (CLT) to the average of independent random variables. As in

the case of the univariate KPSS test statistic, the null hypothesis of stationarity

in the panel is rejected for large values of Z (¸). It should be stressed that the

limit distribution of the Z (¸) test is standard normal and, hence, no new set

of critical values needs to be computed. Note that the limiting distribution of

the test has been obtained through the application of sequential limits. However,

Phillips and Moon (1999) recommend the application of joint asymptotic limits in

order to obtain the limit distribution of panel data based unit root and stationarity

tests. This suggestion is addressed in Shin and Snell (2000) for the KPSS panel

data-based stationarity test; they show that the joint asymptotic distribution of

the test proposed by Hadri (2000) equals the sequential limiting distribution if the

additional condition ofN=T ! 0 is imposed. This result can be straightforwardly

extended for the test that has been presented in this paper. Hence, following the

developments in Shin and Snell (2000), under the null hypothesis, as T ! 1,
T ib;k ! 1 8k = 1; : : : ; mi - in such a way that ¸i;k remains constant - and

N ! 1 with N=T ! 0, the Z
³
^̧
´
test statistic (jointly) converges to the

standard normal distribution. This result indicates that the test statistic derived

here is suitable for panels with larger T compared to N , so that N=T ! 0. The

Monte Carlo results in Section 4 support this statement.

3. Estimating and testing the breaks

The break fraction vector is usually unknown and must therefore be estimated.

Hence, in order to compute the test statistic we need to detect the breaks in each

one of the individual time series as a rst step. As mentioned above, the test

statistics here proposed aim at allowing each time series to have different numbers

of breaks located at different dates. We suggest applying the proposal in Bai and

Perron (1998). In brief, it consists in, specifying a maximum number of break
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points (mmax), estimating their position for each mi · mmax, i = 1; : : : ; N ,

testing for the signicance of the breaks and, then, obtaining their optimum

number and position for each series.

Different methods based on the application of the inmum functional have been

used in the literature to estimate the dates of the breaks. On this matter, Carrion

et al. (2001a) showed that, for a cointegration test based on the multivariate

KPSS test that allows for one structural break, the best nite sample results were

achieved when using the procedure of Bai and Perron (1998) that computes the

global minimization of the sum of squared residuals (SSR). Here we use this

procedure and choose as the estimate of the dates of the breaks the argument that

minimizes the sequence of individual SSR
¡
T ib;1; : : : ; T

i
b;mi

¢
computed from (3):³

T̂ ib;1; : : : ; T̂
i
b;mi

´
= argmin T ib;1;:::;T ib;mi

SSR
¡
T ib;1; : : : ; T

i
b;mi

¢
:

Notice that it is necessary to do some trimming when computing estimates of

the break points. Though the amount of trimming is somewhat arbitrary some

practitioners have specied T ib 2 [0:15T; 0:85T ] - see among others Zivot and

Andrews (1992). Bai (1994, 1997), for mi = 1, shows that if either µi is

assumed to be xed or µi ! 0 as T ! 1 - shrinking structural break -

T̂ ib = T
i
b + Op

³
kµik¡2

´
and, hence, the estimate of the break date is consistent.

This result is extended for mi > 1 by Bai and Perron (1998) for the case of

trending and non trending regressors. They also show the consistency of the vector

of break fractions ^̧i for each individual.

Once the dates for all possiblemi · mmax, i = 1; : : : ; N , have been estimated,

the point is to select the suitable number of structural breaks, if any, for each i,

that is, to obtain the optimalmi. Bai and Perron (1998) address this concern using

two different procedures. Briey speaking, the rst procedure relie on the use of

information criteria - the Bayesian information criterion (BIC) and the modied

Schwarz information criterion (LWZ) of Liu, Wu and Zidek (1997). The second
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procedure is based on the sequential computation - and detection - of structural

breaks with the application of pseudo F-type test statistics, though the asymptotic

distribution of these test statistics is only derived for the case of non trending

regressors. Bai and Perron (2001) compare the procedures and conclude that

the second one presents better performance. Following their recommendations,

when the model under the null hypothesis of panel stationarity does not include

trending regressors our suggestion is to estimate the number of structural breaks

using the sequential procedure. For trending regressors the number of structural

breaks should be estimated using the information criteria; they conclude that the

LWZ criterion performs better than the BIC.

As a result ^̧i, i = 1; : : : ; N , is obtained and, hence, the test statistic is dened

as:

Z
³
^̧
´
=

p
N
³
LM

³
^̧
´
¡ ¹»
´

¹&
;

where ¹» = N¡1PN
i=1 »i and ¹&

2 = N¡1PN
i=1 &

2
i with »i and &2i dened as in

Proposition 1 using ^̧i. The consistency of the estimation of ¸ and the statement

given in Theorem 1 shows that Z
³
^̧
´
has a standard normal distribution.

4. Finite sample performance

The behaviour of the test statistics derived above in nite samples is assessed

by computing their empirical size, considering up to two structural breaks. For

simplicity, we assume the date of breaks to be known. The DGP is given by

(3) with ®i » U [0; 1], µi;k » U [¡5; 5], ¯i » U [0:3; 0:8], °i;k » U [¡1; 1],
mi = f1; 2g 8i, where U denotes the uniform distribution. The disturbance term
has been specied as "i;t » iid N (0; 1). Note that this specication assumes

homogeneous long-run variance across i. In fact, note also that there might be

some individuals for which there are no structural breaks as 0 belongs to the

range of values for µi;k and °i;k. When mi = 1 the break fraction is randomly
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generated as ¸i » U [0:15; 0:85] whereas, for computational convenience, ¸i =

(0:25; 0:75)0 when mi = 2. We have also conducted the Monte Carlo with

xed ¸i 2 f0:25; 0:5; 0:75g for mi = 1, obtaining similar results to the ones

reported in Table 1. The Monte Carlo is carried out for T 2 f50; 100; 200g and
N 2 f10; 25; 50; 100g using n = 5; 000 replications. The test is performed on

the upper tail of the asymptotic distribution.

Table 1 reports the empirical size for the test statistic that assumes heterogeneity

in the computation of the long-run variance, although similar results were obtained

when homogeneity was imposed. This indicates that the estimation of the long-

run variance is not affected when it is assumed to be heterogeneous when in fact

homogeneity across i should be considered. In general, the empirical size of the

tests is quite close to the 5% nominal size for those situations in whichN=T ! 0,

that is to say, situations in which the time dimension is much larger than the cross

section dimension. Thus, the Monte Carlo analysis supports the (joint) asymptotic

derivations in the sense that for the test to have good performance it is required

that N=T ! 0. Finally, it is also observed that the empirical size decreases in the

case ofmi = 2, particularly for model 2. In this case a large T is required for the

empirical size to equal the nominal size.

The analysis of the empirical power for different values of the ratio ¼i =

¾2À;i=¾
2
";i is presented in Table 2 for model 1 with mi = 1. Similar results were

obtained for the specication given by model 2 so that they are not reported for

reasons of space. As expected, the power increases with T and N . Interestingly,

power improves with N for xed T . That is, the best inference on the stochastic

properties of the time series can be achieved when exploiting the cross-section

information in the panel. Besides, notice that the power increases as the ratio ¼i
grows for small T and N .
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Table 1: Empirical size of the test for models 1 and 2

Panel A:mi = 1;8i
Model 1 Model 2

NnT 50 100 200 50 100 200
10 0.046 0.054 0.067 0.052 0.063 0.061
25 0.052 0.058 0.056 0.042 0.045 0.054
50 0.048 0.057 0.062 0.037 0.047 0.052
100 0.043 0.050 0.053 0.031 0.050 0.049

Panel B:mi = 2;8i
Model 1 Model 2

NnT 50 100 200 50 100 200
10 0.052 0.062 0.062 0.037 0.050 0.054
25 0.049 0.046 0.057 0.025 0.048 0.053
50 0.041 0.051 0.050 0.019 0.043 0.050
100 0.036 0.050 0.057 0.017 0.037 0.050

DGP: yi;t = ®i +
Pmi

k=1 µi;kDUi;k;t + ¯i t +
Pmi

k=1 °i;kDT
¤
i;k;t + "i;t,

with ®i » U [0; 1], µi;k » U [¡5; 5], ¯i » U [0:3; 0:8], °i;k » U [¡1; 1],
mi = f1; 2g, and "i;t » iid N (0; 1). The critical value was 1.645 and
n = 5; 000 replications were carried out.

Table 2: Empirical power of the test for model 1

¼i = ¾
2
À;i=¾

2
";i

N T 0.001 0.01 0.1
10 50 0.108 0.668 1

100 0.328 0.994 1
200 0.879 1 1

25 50 0.124 0.908 1
100 0.505 1 1
200 0.990 1 1

50 50 0.154 0.993 1
100 0.732 1 1
200 1.000 1 1

100 50 0.202 1 1
100 0.905 1 1
200 1 1 1

DGP: yi;t = ®i +
Pmi

k=1 µi;kDUi;k;t +
Pt

j=1 Ài;j + "i;t, with ®i » U [0; 1],
µi;k » U [¡5; 5], mi = 1, "i;t » iid N (0; 1) and Ài;t » iid N (0; 1). The
critical value was 1.645 and n = 5; 000 replications were carried out.
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5. Empirical application

To illustrate the ease of application of the test proposed here we will consider

the panel data set made up of annual (logarithms of) real per capita GDP for fteen

OECD countries from 1870 to 1994 (125 observations). These are the developed

countries in Maddison (1997) for which data is available for the full period:

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy,

Netherlands, New Zealand, Norway, Sweden, United Kingdom and United States

of America. This panel is particularly attractive as a urry of papers have

discussed trend versus difference stationarity of output series (aggregate and per

capita). The puzzle concerning the determination of the stochastic properties of

the GDP has lead to considerable debate in the econometric literature. Indeed,

the distinction between neoclassical and endogenous economic growth models

can be settled in terms of the stochastic properties of the output - see Ben-David

and Papell (1995) for a discussion. There are many empirical applications in

which evidence supporting the unit root hypothesis in aggregate as well as in

per capita real GDP is found - see Kormendi and Meguire (1990) and Ben-

David and Papell (1995). Nowadays, it is well known that integration analysis

critically relies on the specication assumed for the deterministic trend. Thus,

the evidence in favour of non stationarity is weakened when the occurrence of

structural breaks is allowed - see Perron (1989, 1994), Banerjee, Lumsdaine and

Stock (1992), Zivot and Andrews (1992), Ben-David and Papell (1995), Ben-

David et al. (1996) and Ben-David and Papell (1998), among others. The analysis

in McCoskey and Selden (1998), McCoskey and Kao (1999) and Gerdtham and

Löthgren (2000) focus on testing the unit root hypothesis on the GDP (either the

aggregate, or measured per capita or per worker) for different panels of countries

and conclude in favour of nonstationarity. In this regard, Phillips andMoon (2000)

indicate that per capita GDP growth from the Penn World Tables, extensively
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used in applied cross-country analysis, exhibits strong nonstationarity. Unlike

the case of the univariate analysis mentioned above, little attention has been

paid to the effect of structural breaks on panel data-based unit root tests. Thus,

given the inconsistency that might be caused by a misspecication error in the

deterministic component of the panel data-based tests and the evidence drawn

from the univariate analysis, it seems desirable to carry out the study of the panel

stationarity properties allowing for the presence of structural changes. As real

per capita GDP is a trending variable, throughout this section the deterministic

component is assumed to include a trend.

As a rst exploratory analysis, results from the individual KPSS, not shown

here to save space, indicate that the null hypothesis of stationarity is rejected at

the 5% level of signicance for all time series. These results agree with those

concluding in favor of the strong nonstationarity of the per capita GDP and are

conrmed when the analysis is performed using the panel data test of Hadri

(2000). The value of the test statistic is 28.386 with the corresponding p-value

of 0.000, which indicates that the null hypothesis of panel stationarity is strongly

rejected - see Panel B in Table 3.

The long time period covered by the variables, on the one hand, and the

information shown in the graphs, on the other, indicate that there might be some

structural breaks affecting the time series. Let us now allow for the presence of

structural breaks through the specication given by model 2 with up to mmax =

5 structural breaks and using the LWZ information criteria to determine the

number of structural breaks. The long-run variance estimate is obtained using the

quadratic spectral window with the optimal bandwidth determined as described

in Kurozumi (2002). The allowance of structural breaks changes the previous

results since now the null hypothesis of panel stationarity cannot be rejected at

the 5% level of signicance. Therefore, this result extends the support for trend

stationarity in GDP per capita series in Ben-David and Papell (1995) and Ben-
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David et al. (1996). Applying the univariate ADF unit root test to the data set

considered here with one and two structural breaks respectively, they were unable

to reject the unit root hypothesis for some of the countries. Not surprisingly, our

specication is more exible than the one considered by these authors - more

structural breaks are allowed - and the inference uses two sources of information

-the time and cross-section dimensions.

In general, the use of the general panel data stationarity test proposed in this

paper may challenge previous conclusions on the non-stationarity of some typical

panels.

Table 3: GDP per capita panel data set

Panel A: Estimation of the number of structural breaks
Indiv. test Break dates

Australia 0.033 1891;1928
Austria 0.019 1913;44;62
Belgium 0.016 1903;21;41;71
Canada 0.027 1904;39
Denmark 0.016 1889;1914;39;73
Finland 0.032 1916;39;71
France 0.023 1940;69
Germany 0.017 1914;45;63
Italy 0.018 1896;1918;43;67
Netherlands 0.024 1925;45;74
New Zealand 0.018 1893;1911;35;76
Norway 0.025 1903;41;76
Sweden 0.024 1894;1916;69
U. Kingdom 0.028 1919;45
U. States 0.021 1930;48

Panel B: Stationarity panel data tests
Test p-value

No breaks 29.386 0.000
Breaks 1.372 0.085

The second and third columns in panel A offer the individual KPSS test value and the estimated
break dates respectively. The number of break points has been estimated using the LWZ
information criteria allowing for up to mmax = 5 structural breaks. Panel B presents
the corresponding panel data stationarity test. The long-run variance is estimated using the
quadratic kernel with automatic spectral window bandwidth selection.

15



6. Conclusions

In this paper we have extended the panel data stationarity test proposed in Hadri

(2000) to allow for multiple breaks under the null hypothesis of stationarity. The

specication is exible enough to account for a large amount of heterogeneity. It

considers (i) multiple structural breaks, (ii) multiple structural breaks positioned at

different unknown dates, and (iii) a different number of breaks for each individual.

In addition, the test is derived for panels including individual xed effects and/or

an individual-specic time trend.

The limit distribution is proved to be standard normal. This result is obtained

using sequential as well as joint limits. Monte Carlo results conrm the good

performance of the test in nite samples, particularly when N=T ! 0. This

makes our proposal particularly attractive considering the increasing availability

of panels with number of cross-sections and time periods that meet this criteria.

Besides, the use of longer periods increases the probability that structural breaks

will affect the series.

The application of the test proposed here may provide further evidence on the

stochastic time series properties of widely used economic panel data sets. As an

example, we have obtained evidence that points to the trend stationarity of GDP

per capita in a set of developed countries, once breaks in the series are considered.
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Appendix

The following Lemma presents some useful statements that involve the proof

of the limit results of the paper.

Lemma 1 Let f"i;tgTt=1 be a sequence of mixingales and Si;t =
Pt
j=1 "i;j the

partial sum process, i = 1; : : : ; N . Thus, as T ! 1, !¡1i T¡1=2Si;t ) Wi (r),
t=T · r < (t+ 1)/T , t = 1; :::; T , where ) denotes weak convergence of
the associated probability measures and Wi (r) is a standard Wiener processes
dened on C [0; 1] with !2i = limT!1 T¡1E

¡
S2i;T

¢
.

Proof: see Herrndorf (1984).

Proof of Proposition 1

The regression equation given by (3) can be rewritten in terms of a block

diagonal regression model as:

yi = [zi1 zi2 : : : zimi+1] ±i + "i = zi±i + "i; (7)

with zi;k;t = 1 for T bi;k¡1 < t · T bi;k and 0 elsewhere, k = f1; : : : ;mi + 1g,
T bi;0 = 0, T bi;mi+1

= T . The estimated OLS residuals from (7), "̂i;t =

"i;t¡zi;t (z0izi)¡1 z0i"i, dene the (rescaled) partial sum processes !¡1i T¡1=2Si;t =
!¡1i T

¡1=2Pt
j=1 "̂i;j - hereafter we assume heterogeneity of the long-run variance

across i. Note that for T bi;k¡1 < t · T bi;k the partial sum processes are

!¡1i T
¡1=2Si;t = !¡1i T

¡1=2Pt
j=1

³
"i;j ¡ zi;k;jP

¡
Pz0i;kzi;kP

¢¡1
Pz0i;k"i

´
which

for k = 1 converges to !¡1i T¡1=2Si;t ) Wi (r) ¡ r=¸i;1Wi (¸i;1), with P =

T¡1=2 a rescaling matrix and Wi (r) being a standard Brownian motion process

- see Lemma 1. Let us dene b1 = r=¸i;1 so that 0 < b1 < 1. Thus,

using the properties of the Brownian motions the limiting distribution can be

expressed in terms of b1 as !¡1i T¡1=2Si;t )
p
¸i;1Wi (b1) ¡ b1

p
¸i;1Wi (1) =p

¸i;1 (Wi (b1)¡ b1Wi (1)).

In general, for k = 1; : : : ; mi+1 we have T bi;k¡1 < t · T bi;k and the partial sum
processes converge to !¡1i T¡1=2Si;t ) Wi (r) ¡ (r ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1)
(Wi (¸i;k)¡Wi (¸i;k¡1)), with ¸i;0 = 0 and ¸i;mi+1 = 1. Let us now dene

17



bk = (r ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1) so that 0 < bk < 1. As before, the

limiting distribution of the partial sum processes is given by !¡1i T¡1=2Si;t )p
¸i;k ¡ ¸i;k¡1 (Wi (bk)¡ bkWi (1)).

The KPSS test statistic with one structural break affecting the mean can be

computed as ´i (¸i) = T¡2!̂¡2i
PT
t=1 S

2
i;t = T¡2!̂¡2i

·PT ib;1
t=1

³Pt
j=1 "̂j

´2
+

¢ ¢ ¢ +PT ib;k
t=T ib;k¡1+1

³Pt
j=1 "̂j

´2
+ ¢ ¢ ¢ + PT

t=T ib;mi
+1

³Pt
j=1 "̂j

´2¸
with limiting

distribution given by:

´i (¸i) ) ¸2i;1

Z 1

0

Vi (b1)
2 db1 + ¢ ¢ ¢+ (¸i;k ¡ ¸i;k¡1)2

Z 1

0

Vi (bk)
2 dbk

+ ¢ ¢ ¢+ (1¡ ¸i;mi
)2
Z 1

0

Vi (bmi+1)
2 dbmi+1; (8)

where Vi (¢) is the residual projection onto the space spanned by zi;k. The limiting
distribution of ´i (¸i) is the weighted sum of (mi + 1) independent Cramér-

von Mises distributions -see Harvey (2001). The expectations of these Cramér-

von Mises distributions are E
hR 1
0 Vi (bk)

2 dbk
i
= 1=6 where the variance are

V
hR 1
0 Vi (bk)

2 db1

i
= 1=45, 8k = 1; : : : ; mi + 1. Therefore, E [´i (¸i)] =

(1=6)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2 and V [´i (¸i)] = (1=45)

Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4.

For instance, for the case of only one structural break E [´i (¸i)] = ¸
2
i;1 (1=6) +

(1¡ ¸i;1)2 (1=6) = (1=6)
³
¸2i;1 + (1¡ ¸i;1)2

´
and V [´i (¸i)] = ¸4i;1 (1=45) +

(1¡ ¸i;1)4 (1=45) = (1=45)
³
¸4i;1 + (1¡ ¸i;1)4

´
.

Derivations for the model that includes the time trend follow the steps

described above but now with zi;k in (7) dened by the row vector zi;k;t =

[1 t] for T bi;k¡1 < t · T bi;k and 0 elsewhere. The limiting distribution

of the partial sum processes is established using the rescaling matrix P =

diag
¡
T¡1=2; T¡1

¢
. Similar developments as the ones carried out above show

that the limiting distribution of ´i (¸i) is given by (8) with Vi (¢) being the
residual projections onto the space spanned by the new set of regressors. The

expectation and variance of this second set of Cramér-von Mises distributions are
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E
hR 1
0 Vi (bk)

2 dbk

i
= 1=15 and V

hR 1
0 Vi (bk)

2 dbk

i
= 11=6300, respectively.

Therefore, E [´i (¸i)] = (1=15)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2 and V [´i (¸i)] =

(11=6300)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4.
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