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Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are
theoretical teaching signals which integrate two features of an outcome: its inherent value and prior
expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we
acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary
objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine
the presence and timing profile ofMEG signals that express prediction errors.We report analyses at the sensor
level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature
of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction
between outcome valence and probability. This signal followed earlier, separate signals for outcome valence
and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the
prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN).
In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised
this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination
of the critical issue of timing embodied in computational models of prediction errors as seen in human
electrophysiological data.
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Introduction

The way humans and animals respond to the environment
depends on prior expectations about the likelihood of events, and
on whether they perceive those events to be good or bad (Dickinson
and Balleine, 1994). A prediction error signal is a theoretical teaching
signal (Sutton and Barto, 1998) which integrates the probability and
value of events, and expresses a signed discrepancy between
predictions and reality. Prediction errors are positive when outcomes
are better than expected and negative when outcomes are worse than
expected, and differ from baseline most strongly when outcomes are
least likely (Rescorla and Wagner, 1972; Sutton and Barto, 1998). The
prediction error signal can be thought of as an adaptive mechanism
since it optimizes choices and actions (Cohen and Ranganath, 2005;
Friston, 2010; Montague and King-Casas, 2007).

Data from animal experiments indicate that the firing of
dopaminergic midbrain neurons express a prediction error (Schultz
et al., 1997; Schultz and Dickinson, 2000). Phasic activations of
dopaminergic neurons reflect positive prediction errors while pauses
in firing reflect negative prediction errors (Bayer et al., 2007). These
midbrain neurons project heavily to the striatum (Haber and
Knutson, 2010), and in humans a striatal signal seen in functional
magnetic resonance imaging (fMRI) data has been interpreted in
terms of a prediction error signal as captured in computational
models (O'Doherty et al., 2003; Seymour et al., 2004). Indeed, human
positron emission tomography (PET) and pharmacological fMRI data
support involvement of midbrain dopamine in prediction error
signaling (Duzel et al., 2009; Pessiglione et al., 2006).

The temporal properties of the prediction error signal have sparked
considerable controversy given their importance for understanding the
genesis of this signal (Fiorillo et al., 2005; Redgrave et al., 1999;
Redgrave and Gurney, 2006) but also in light of possible clinical
implications. For example, in a previous study we found that prediction
errors signals associated with reward anticipation are attenuated when
participants expect the reward to be accompanied by an aversive
consequence, a result that might account for altered decisions in
depression (Talmi et al., 2009). An analysis of the associated time course
could shed light on the degree of cognitive involvement in this effect.
Unfortunately, the temporal properties cannot be studied using PET or
fMRI due to their poor temporal resolution. Neuroimaging techniques
that embody a better temporal resolution, such as electroencephalog-
raphyandmagnetoencephalography (M/EEG), aremore appropriate for
characterizing the temporal dynamics of prediction errors and can help
integrate findings in humans with data from in vivo animal models.
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Although M/EEG are limited in their ability to detect signals from deep
midline structures such as the striatum, they can readily detect local
field potential fluctuations of cortical mass activity (with MEG being
limited to tangentially oriented sources). Local field potentials are
strongly modulated by afferent input and although there is no specific
M/EEG signature of subcortical/cortical dopaminergic afferents, it is
entirely possible that afferent prediction error signals arising from the
midbrain could be detected with M/EEG.

The axiomatic model of reward prediction error (Caplin and Dean,
2008a,b) offers a formal test of whether a given neurobiological signal
expresses a prediction error. Given that the MEG signal for prediction
errors is not known, employing formal tests is crucial to avoid
misinterpretation of outcome-locked responses that do not in fact
code for prediction errors but might reflect other constructs such as
valence, attention (salience) and outcome expectancy (Roesch et al.,
2010; Rutledge et al., 2010). According to the axiomatic framework, any
neurobiological signal which expresses prediction errors must comply
with three axioms. First, signal magnitude should distinguish between
better-than-expected events and worse-than-expected events, being
either stronger or weaker for better-than-expected relative to worse-
than-expected events. Second, signalmagnitude should be proportional
to the likelihood of events — the signal could be either weaker or
stronger for likelier events relative to less likely events. Third, the
magnitude of the signal should be equivalent for all fully-anticipated
events.

Holroyd and Coles (Holroyd and Coles, 2002) have proposed that
following a negative prediction error dopaminergic projections train the
anterior cingulate cortex (ACC) to choose the best actions by
disinhibiting the apical dendrites of motor-related neurons, and that
the electrocortical difference between event-related potentials (ERPs)
evoked in the ACCby positive and negative outcomes reflects prediction
errors. Subsequent research extended this to positive prediction errors,
suggesting that they inhibit the same dendrites (Nieuwenhuis et al.,
2004). This electrocortical difference wave, termed Feedback-Related
Negativity, FRN (Hajcak et al., 2006), typically peaks 230–270 ms after
outcome onset, has a fronto-central maximum and its source has been
localized to the medial prefrontal cortex (Gehring and Willoughby,
2002; Miltner et al., 1997). The N2 has also been found to express
outcomevalence andmagnitude, and recentwork suggests that the FRN
may in factbe amodulationof theN2(Holroydet al., 2008;Kamarajanet
al., 2009).

The FRN obeys the first requirement of the axiomaticmodel because
its amplitude is determined from the difference between the ERPs
elicited by unpredicted positive and negative feedback (Holroyd and
Coles, 2002;Miltner et al., 1997). The FRN also expresses two other core
features of a computational prediction error signal. First, a number of
studies found that the FRN is sensitive to the likelihood of events
(Holroyd et al., 2002, 2004, 2009; Holroyd and Krigolson, 2007). For
instance, Holroyd and Krigolson (2007) showed that the FRNwas larger
when theseoutcomeswereunexpected. Second, FRNhas been shown to
propagate back in time as a function of learning— initially time-locked
to outcomes, but after learning solely expressed for predictive stimuli
(Baker and Holroyd, 2009; Holroyd et al., 2002; Mars et al., 2005). For
example, Baker and Holroyd (2009) showed that feedback indicating
the absence versus presence of a reward in amaze-navigation task only
elicited FRN when it was surprising. When the feedback was predicted
by an earlier cue, however, it was the cue, rather than the feedback,
which elicited FRN. The attenuation of the FRNwhen feedbackwas fully
predictable is in line with the third axiom.

Notably, the sensitivity of FRN to outcome probability does not
conclusively demonstrate that it complies fully with the second axiom.
The second axiom requires that “better lotteries [with higher win
probability] should always lead to lower dopamine release” (Caplin and
Dean, 2008a, p. 197). Therefore, if the ERP signal associated with wins
reflects dopamine release, it should be modulated by win probability,
and the same should occur for losses (see Rutledge et al., 2010, Fig. 2B
anddiscussiononp. 13,528). Demonstrating that thedifferencebetween
positive and negative outcomes (the FRN) is sensitive to probability is
therefore insufficient. One approach is to examine whether the average
win and loss signals within the FRN time window are sensitive to
probability. This approach was employed by Cohen et al. (2007), who
found that outcome probability only modulated win outcomes, not loss
outcomes. We employ the same approach here, to check whether the
insensitivity of loss signal to probability in that studywas driven by low
power. However, we note that the separate win and loss signals are
more susceptible to component overlap than the FRN difference wave
(Luck, 2005), and thus should be interpreted with caution. In summary,
research on the FRN provides strong evidence that this signal expresses
prediction errors but fundamentally, the FRN cannot be tested for
compliance with the second axiom. Furthermore, the axiomatic model
makes the admittedly strict requirement that one study satisfies all
three axioms, and despite an impressive volume of work no single
dataset conforms to all of them. It is therefore possible that all existing
datasets satisfy some of the axiomatic model's criteria, but violate
others. Our secondary objective was to submit the EEG win and loss
signals that form the FRN to the formal tests of the axiomatic model.

The magnetic equivalent of the FRN is not known, but there are
indications that MEG is sensitive to errors and to feedback. An early
study (Miltner et al., 2003) suggested that a magnetic equivalent of the
ERN, a signal that follows the execution of errors and is thought to be
closely related to FRN (Nieuwenhuis et al., 2004), can be detected and
localized to the ACC, but the authors were not able to test their findings
statistically. Three recent studies (Bayless et al., 2006;Mulas et al., 2006;
Perianez et al., 2004) employed a set-shifting task akin to theWisconsin
Card Sorting Test, and compared ‘stay’ trials where the feedback
indicated that responding on the basis of the set established in previous
trials was correct to ‘switch’ trials where the feedback indicated that the
set has shifted, so that participants' response was incorrect. These
studies contrasted feedback-locked activation in the ‘stay’ and ‘switch’
conditions and found that the source of the difference between them
localized to the ACC. Bayless et al. (2006) further established that the
signal stemmed from the ‘switch’ trials and occurred 260 ms after
feedback onset. It remains to be establishedwhether this signal behaves
like the FRN or obeys the framework of the axiomatic model.

To summarize, our primary objective here was to utilize MEG to
identify a neurophysiological signal in humans that is consistentwith all
three axioms.We focused onMEG, because this neuroimagingmodality
may be less sensitive than EEG to component overlap, is more sensitive
than EEG to detect neural activity arising from small foci (Oishi et al.,
2002; Tao et al., 2005), and is less affected by the low pass properties of
brain tissue and skull. Because theMEG signal for prediction error is not
known, we employed an exploratory analysis approach: we filtered the
data using a wide bandpass of 0.5–30 Hz and used SPM8 (Wellcome
Trust Centre forNeuroimaging),whichallowedus to extract group-level
sensor-level signals consistent with the axiomatic model without prior
assumptions about its spatial or temporal properties. EEG data was
acquired simultaneously withMEG because if we obtain a classic FRN in
the EEG modality we can be reassured that the processes our
participants engaged with were similar to error processing in previous
studies. Our secondary objective was to submit the EEG signal that
comprises the FRN to the same analysis. In consideration of a vast prior
literature and in contrast to our fully exploratory approach toMEGdata,
we employed a high-pass filter of 2 Hz to minimize the influence of the
P300 and only examined the EEG signal that formed the FRN in frontal-
central electrodes.

We scanned participantswhile they played a gambling game for real
money where on each trial they were presented with a choice between
two gambles. Target gambles were associated with a probability P (.25,
.50, .75, 1) of winning £1, and a probability of 1-P of losing that amount.
Note that thiswasnot a learning task, as theprobabilities ofwinning and
the amounts that could be won were explicitly stated (Fig. 1). After
participants selected the gamble they preferred, it was played according



Fig. 1. Timeline for a single trial in the gambling task. Participants viewed a fixation
cross for 250 ms, and then were presented with a choice between two gambles.
Gambles were presented in the form of pie charts with the probabilities of winning and
losing indicated as the colored portion of the pie (here in shades of grey). The amounts
to be won or lost were indicated on top of the relevant portion of the pie chart.
Participants had up to 2250 ms to make their choice by pressing a key, and as soon as
they had done so, the gamble they declined disappeared and the one they chose
remained on the screen for 1000 ms. The outcome screen depicted an increase in
luminance of the win or the loss portion of the pie (here in white), which indicated to
participants whether they won or lost. All M/EEG data reported here are time-locked to
the onset of the outcome screen, which remained visible for 1000 ms. The inter-trial
interval then began, varying between 1500 and 2000 ms.
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to a random process that conformed to the nominal probabilities.
Gamble outcomeswere revealed one second later and all analyses were
time-locked to outcome onset.

Fig. 2 depicts graphically the predictions of the axiomatic model
for this experimental situation (Caplin and Dean, 2008a,b), with the
additional assumptions that participants preferred winning to losing
and that their baseline was keeping the initial endowment. The
second axiom, that unexpected and expected events generate signals
that differ in magnitude, requires that the absolute signal values of
less likely events would be greater than those of more likely events, so
that for example P=.25 events should have larger absolute signal
than P=.50 events and those a large absolute signal than P=.75
events. This should be true both for wins and for losses. There are a
number of ways to plot signal strength as a function of outcome
probability according to this axiom. However, combining this axiom
with the constraint that signals for wins and losses should differ for all
uncertain (Pb1) outcomes (first axiom), and that the signals for fully-
anticipated (P=1) wins and losses should be equivalent (third
Fig. 2. Theoretical predictions. The magnitude of the prediction error is depicted as a
function of outcome probability, according to the predictions of the axiomatic model,
with the additional assumption that participants prefer winning to losing. The largest
prediction error occurs when outcomes are least likely (P=.25), with wins and losses
generating prediction errors with opposite signs. When outcomes are known in
advance (P=1) the prediction error is smallest and win and loss signals are equivalent.
axiom), implies that the slopes of these probability functions for win
and loss outcomes should be significantly different from zero,
different from each other, and have opposite signs. These are minimal
requirements for any prediction error signal. We therefore tested for
electromagnetic signals which (a) exhibited a significant interaction
between outcome valence and outcome probability (b) exhibited
significant simple effects of probability within both win and loss
conditions, and (c) which remained significant after masking out any
activation that differed between the fully-anticipated win and lose
conditions.

Materials and methods

Participants

17 right-handed, healthy adults (mean age 22.29 years, SD=3.25,
10 females), participated in the study and were compensated for their
time according to their actual winning in the gamble task (see
procedure). Participants were screened for psychiatric and neurolog-
ical history. The study was approved by the UCL ethics committee.

Materials

In each trial, participants chose between a target gamble and a lure
gamble. Each gamble was presented in the form of a pie chart with the
probability of winning being equivalent to the portion of the circle
filled with the win color and the probability of losing equivalent to the
portion of the chart filled with the lose color (De Martino et al., 2006).
The win and lose colors were blue or yellow, and color assignment
to condition was randomized across participants. The amounts
participants could win or lose were displayed as a number on top of
the relevant portion of the chart (+£1, −£1, +£2, −£2). The lure
gamble was drawn randomly in each trial with the constraint that it
would have a lower expected value than the target gamble. Target
gambles were always associated with a £1 amount, and belonged to
one of eight cells according to an outcome valence (win, loss) by
outcome probability (.25, .50, .75, 1) design. To ensure that
participants experienced approximately 45 target gambles in each
of the 8 design cells, we presented participants with 45 gambles with
0 or 1 win probabilities, 90 gambles with a 50% win probability, and
180 gambles with 25% or 75% win probabilities, a total in all of 540
experimental trials. Aweighted random sampling process ensured that
actual outcome probabilities matched the nominal win probabilities.

Procedure

Behavioral procedure
Participants were read detailed instructions of the experiment and

subsequently gave written consent to participate in the study.
Participants received 40 pounds before they began the experiment.
They were instructed to conceal this amount in their bag or jacket
pocket (which was stored securely outside the scanner room) and told
that this amount was theirs to keep and would be topped up by any
amount theywin, but equally they would have to pay the experimenter
back any amount they lose.Wins and losseswere capped to £24, sofinal
compensation ranged between £16 and £64, a rangewhich represented
a 70% confidence interval around the average compensation of £40. The
cumulative winnings or losses were displayed at the end of each block.
There were 9 experimental blocks, with 60 trials in each. Each block
included the same number of target gambles of each win/lose
probability, and trial order was random.

Participants also took part in a long practice trial to give them an
experiential ‘feel’ for these probabilities (Hertwig and Erev, 2009). A
practice block, identical to the experimental block was given first.
Here the win color was always green, the loss color always red, and
participants were told that the amounts represented pennies instead

image of Fig.�2


Fig. 3.MEGdesignmatrix. The designmatrix shows the 2nd level analysis of covariance.
Images corresponding to each cell of the 2 (outcome valence: win, loss) by 4 (outcome
probability: .25, .50, .75, 1) design were entered into the model for each subject. The
two win and loss regressors were modulated linearly by outcome probability using the
values [4, 3, 2, 1, 0 0 0 0] and [0 0 0 0 4 3 2 1]. SPM automatically subtracts the mean
from each parametric modulator to center it around zero.
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of pounds, and that their initial endowment was 20 pennies instead of
£40. To emphasize to the participants that they were playing with real
money they were given an envelope with twenty 1-penny coins
before the practice block. Following practice the experimenter visibly
added coins to the envelope, or removed them, according to the
amount participants won or lost in the practice block.

Each trial began with a fixation cross that was displayed for
250 ms. The choice screen followed and displayed target and lure
gambles. A single gamble was presented on the left and right side of
the screen. The, with positions of target and lure gambles were
assigned randomly in every trial. Participants indicated which gamble
they preferred by pressing one of two keys with their left or right
thumbs. Theywere further instructed that if they failed to respond the
computer would make a choice for them, and further, that the
computer would always pick the worst gamble. The choice screen
remained until participants made a choice, or until 2 s elapsed. The
non-preferred gamble then disappeared from the screen and the
preferred gamble was displayed for 1000 ms. The outcome screen
then announced the result of the gamble as a change in the luminance
of the relevant portion of the circle. For example, when the ‘win color’
was blue, the blue portion brightened to signify a win or the yellow
portion brightened to signify a loss. The outcome screen was
displayed for 1000 ms and replaced by a crosshair signaling the
inter-trial interval, which varied randomly in duration between 1500
and 2000 ms.

MEG procedure

MEG recordings. MEG data was recorded using a 275-channel CTF
Omega system whole-head gradiometer (VSM MedTech, Coquitlam,
BC, Canada). Neuromagnetic signal was continuously recorded at
600 Hz sampling rate and low-pass filtered online at 120 Hz. After
participants were comfortably seated in the MEG, head localizer coils
were attached to the nasion and 1 cm anterior of the left and right
tragus to monitor head movement during recording.

MEG data analysis. Event-Related Fields (ERFs) were time-locked to
the feedback stimuli with analyses implemented within SPM8 (Kiebel
and Friston, 2004a,b) and MATLAB 7 (The MathWorks, Inc., Natick,
MA, USA). Data were down-sampled to 200 Hz offline, and filtered
with a Butterworth filter between .5 and 30 Hz. This wide bandpass
filter was used to maintain an exploratory approach to the data while
avoiding drift across trials. Epoched MEG data was generated for a
period 160 ms prior to outcome onset until 700 ms after outcome
onset. The negative part of the time axis was used as baseline. Trials
with artifacts exceeding 1.5∗10−10T were removed automatically and
additional artifactual trials were removed following manual inspec-
tion (0.4% of all trials, fewer than 4% of trials for any individual
participant). Eye blink confounds were corrected by a signal space
projection (SSP) method (Nolte and Hamalainen, 2001) implemented
in MEEGTools toolbox distributed with SPM8. Artifact subspace was
defined per session by principal component analysis of session-
averaged data epoched around eye blinks, using subject-specific
thresholds for blink detection and 4 principal components (numbers
which were established empirically to optimize confound removal)
and 4 principal components.

The SPM analysis proceeded in two steps. First, for each subject and
condition, a 3D channel space by time was created by projecting, for
each sample point, the sensor locations onto a plane following by a
linear interpolation to a 64×64 pixel grid (pixel size=3×3 mm). These
images were smoothed using a Gaussian kernel Full Width Half
Maximum (FWHM) of 8 mm/ms. Second, these images were masked
temporally between 100 ms and 600 ms and entered into an ANCOVA
design. Each of the ‘Win’ and ‘Loss’ regressors were modulated
parametrically by a linear covariate corresponding to outcome
probability (.25, .50, .75, 1; see Fig. 3).
We explored the main effect of outcome valencewith an F test of the
contrast [1–1 0 0] between theWin and Loss regressors.We explored the
main effect of outcome probabilitywith an F test [0 0 1 1] over both win
and loss probability covariates. This test exposes a signal that covaries
with outcome probability in the same direction in both win and loss
conditions by extracting regions where the sum of the slopes of the
functions relating win and loss ERFs to their outcome probabilities is
significantly different from zero. Finally, we examined the interaction
between outcome valence and outcome probability with an F test of the
contrast [0 0 1–1] between the Win and the Loss probability covariates.
This test reveals regions inwhich the slopeof theMEGsignal as a function
of win probability is different from the slope of the MEG signal as a
function of Loss probability, as required from a prediction error signal
according to the axiomatic model. All F-tests were statistically thre-
sholdedwith peak-level threshold of P=0.005 (F=11.37), uncorrected,
following Bunzeck et al. (2009). Only clusters exceeding an extent of
100 mm/ms are reported tominimize false positives. Finally, we entered
images corresponding to the fully predictable outcomes in the win and
the loss conditions (P=1) as two regressors in a separate 2nd-level
design matrix. We used an F contrast to reveal ERFs that differed
significantly between fully predictable wins and losses with a lenient
statistical threshold (Pb .05), and created a corresponding map of
sensitivity. We then inverted the sensitivity map with the Imcalc tool
in SPM8, so that it only included regions where amplitude changes did
not differ significantly between fully predictable outcomes.We used this
map as an inclusivemask for the analysis of the critical interaction effect.
EEG procedure

EEG recordings. EEG data were concurrently acquired with MEG. EEG
data were recorded from the scalp using Ag/AgCl electrodes located at
11 standard positions (AF7/8, AFz, Fz, Cz,Pz, P3/4, M1/2) mounted in
an electrocap (Electro-Cap, International 10–20 system locations).
Vertical eye movements were monitored with electro-oculogram
(EOG) sensors placed 2 cm above and below the outer canthus of the
left eye. All EEG sensor activity (11 electrodes) was referenced online
to Cz, digitized at a rate of 480 Hz and filtered online with a bandpass
of 0.01–120 Hz. Electrode impedances were kept below 10 kOhm.
Offline, data were analyzed using SPM8. The electrophysiological
signals were re-referenced to the mean of the activity at the two
mastoids processes (M1/2), down-sampled to 200 Hz and filtered
with a Butterworth filter between 2 and 30 Hz; a high-pass filter of
2 Hz was chosen to minimize the influence of P300 on detecting the
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Table 1

Win probability 0.00 0.25 0.50 0.75 1.00
Choice of target gamble (%) mean 98.95 99.61 99.41 97.91 99.35

SD 1.59 0.58 0.97 2.59 1.31
Latency (ms) mean 662.53 522.66 538.29 563.85 540.03

SD 112.68 90.91 113.26 117.21 103.41
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FRN. Outcome-locked ERPs were computed for a period 160 ms prior
to outcome onset until 700 ms after outcome onset. Single-trial ERPs
were averaged separately for each of the 8 probability and valence
conditions using the ‘robust averaging’ method in SPM8. This is a
simple special case of the robust general linear model (Litvak et al.,
2010; Wager et al., 2005). For each channel and time point the
distribution of values over trials is considered and the outliers are
down-weighted when computing the average. This makes it possible
to neutralize artifacts restricted to narrow time ranges without
rejecting whole trials. Moreover, a clean average can be computed
with no clean trials, given that the artifacts do not consistently overlap
and only corrupt (different) parts of trials. Averages were then low-
pass filtered at 30 Hz to remove high frequencies introduced by the
robust averaging method.

EEG data analyses. We analyzed the EEG data in two ways. First,
following an established methodology in FRN studies (Holroyd and
Krigolson, 2007), we analyzed the differencewaveform by subtracting
win from loss trials at Cz electrode, and identified the FRN as the
maximum negativity within the window of 0–600 ms after feedback
onset. Second, in keeping with other FRN studies and with the
rationale of the axiomatic model, ERPs for all 8 conditions were
averaged from Cz across the time window of 200–300 ms, selected on
the basis of previous work (Gehring and Willoughby, 2002; Marco-
Pallares et al., 2008) to minimize potential noise fluctuations in these
waveforms.

Results

Behavioral results

Participants chose the target gamble 99% of the time. The
frequency of choosing the target gamble [F(4,64)=3.27, Pb .05] and
choice latency [F(4,64)=30.03, Pb .001] varied across the five target
gamble win probabilities (0, .25, .50, 75, 1), with participants slowest
when forced to choose a target gamble that led to certain loss (see
Table 1). These effects should not influence the results because ERFs
and ERPs were studied time-locked to the onset of the outcome
screen, a full second after a key-press indicating actual choice.

MEG results

Outcome valence
This analysis revealed two clusters, right and left lateralized, which

expressed the difference between wins and losses with maxima 190–
220 ms following outcome onset. The signal amplitude for losses was
higher than that for wins in the left-lateralized cluster (earliest
maximum 200 ms after outcome, Z=3.39, at x=−30, y=−44,
k=8051), and the signal amplitude for wins was higher than that for
losses in the right-lateralized cluster, depicted in Fig. 4A (earliest
maximum 190 after outcome, x=32, y=8, k=1236). For axial
gradiometers as used in our MEG system, bilateral dipolar scalp
topography suggests a source in the middle of the positive and
negative peaks. Fig. 4A3 shows that the time course extracted from
this peak resembled the FRN, but the parameter estimate plot reveals
that the signal was not sensitive to outcome probability. Fig. 4B
1 According to convention, the origin of the X and Y axes is at the center of the brain,
and k represents spatial extent in mm.
depicts two other right-lateralized clusters, which expressed the
difference between wins and losses at a single location but at two
different time points. The earliest maximum was 115 ms after
outcome onset (x=66, y=2, k=279) and the later maximum was
310 ms after outcome onset (x=64, y=5, k=814). Finally a fifth
cluster expressed outcome valence 410–500 ms after outcome onset
(x=26, y=40, k=1300, data not shown).

Outcome probability
This contrast revealed five clusters of activation, two of which are

depicted in Fig. 4C and D. The earliest expression of probability,
depicted in Fig. 4C, was 205 ms after outcome onset (x=−13, y=
−27, k=166). Although the parameter estimate plot shows that this
cluster was also sensitive to outcome valence, this effect was not
statistically significant. Two posterior clusters, left- and right-
lateralized, expressed outcome probability 340 ms following outcome
onset with a negative and a positive sign, respectively (left-
lateralized: x=−34, y=−76, k=1074 right-lateralized: x=47,
y=−70, k=1990), suggesting a posterior midline source. The right-
lateralized cluster is depicted in Fig. 4D. Two more anterior clusters,
left- and right-lateralized (Fig. 4E), expressed outcome probability
395–520 ms following outcome onset with a positive and a negative
sign (left-lateralized: maximum 425 ms after outcome, x=−23, y=
−22, k=1545; right-lateralized: maxima 395 ms after outcome,
x=13, y=−22, k=1344 and 520 ms after outcome, x=15, y=−6,
k=1074), suggesting a more anterior midline source.

Interaction
This key analysiswas taken to identify aMEGprediction-error signal

and was limited to maxima where amplitude changes did not
distinguish between fully-predictable wins and losses. The interaction
contrast revealed a number of clusters (Fig. 5A) but only in twomaxima
was evoked activity sensitive to both win and loss probabilities. Fig. 5
shows amidline cluster (x=−9, y=−9, k=362) where the slopes of
evoked activity for wins and losses as a function of probability 320 ms
after outcome had opposite signs, in line with the requirements of the
axiomatic model. Strikingly, the time course extracted from the peak of
this cluster resembled the FRN (Fig. 5D).

To enable a direct comparison with the EEG data, we averaged the
MEG data over the period of 295–345 ms following outcome onset
and entered these averages into a repeated-measures ANOVA with
the factors outcome probability and outcome valence. The main effect
of valence was significant, F(1,16)=5.85, Pb .05, but was qualified by
a significant interaction with probability, F(3,48)=6.74, P=.001.
The main effect of probability was not significant, Fb1. Post-hoc
polynomial tests confirmed that probability linearly modulated the
difference between the win and loss signals, F(1,16)=15.06,
P=.001. However, a series of paired t-tests comparing P=.25 to
P=. 50, P=.50 to P=.75, and P=.75 to P=1 conditions did not
yield any significant results, PN .05. A series of paired t-tests com-
paring wins and losses demonstrated that wins and losses differed in
the P=.25 [t(16)=3, Pb .01] and P=.50 [t(16)=3.39, Pb .01]
condition but not in the P=.75 and the P=1 conditions, PN .05.
Thus, this magnetic scalp signal obtained here can be thought of as
weakly satisfying the axiomatic criteria (Rutledge et al., 2010). For
the second cluster identified in this analysis (x=−57, y=−9,
k=375), 100 ms after outcome onset, no post-hoc t-tests were
significant and it was not analyzed further.

EEG results

Difference wave analysis
Here FRN magnitudes were computed per subject by subtracting

wins from losses. The minimum of the difference waveform within
the interval of 600 ms following feedback onset defines the FRN.
These minima were entered into a one-way repeated-measures
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Fig. 5. The MEG signal expressing the interaction between outcome valence and probability. (A) SPM for the interaction effect, overlaid on the glass brain. (B) An SPM for the
interaction effect 320 ms after outcome, overlaid on the average signal for win probability. Warm colors correspond to positive and cold colors to negative signal amplitude relative
to baseline. The crosshair is placed on the location where win and loss probability slopes were significantly different from each other and from zero, but the 100% certain wins and
losses did not differ from each other significantly. (C) Parameter estimates for wins (blue), losses (red), and the covariates representing their modulation by probability (hashed) for
the peak in panels B. (D) Average ERFs (in fento-Tesla units) for wins and losses, plotted separately for each outcome probability, extracted from the peak in panel B. (E) Average ERFs
across a 50 ms time window around the peak activation in panel B, plotted separately for wins and losses as a function of outcome probability. Paired-sample t-tests demonstrated
that the difference between wins and losses was significant when outcome probability was 25% or 50% but not when it was higher.
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ANOVA of outcome probability (P=0.25, 0.5, 0.75, 1). The main effect
of probability was significant [F(3,48)=10.17, Pb .001], and varied
linearly and as a function of probability [F(1,16)=17.40, P=0.0.1],
replicating previous results.

Average time window analysis

Averaged ERPs across the time window 200–300 ms were entered
into repeated-measures ANOVA with the factors outcome probability
and outcome valence. Both main effects were significant [valence: F
(1,16)=30.05, Pb0.001; probability: F(3,48)=20.67, Pb0.001], as
was their interaction [F(3,48)=5.32, Pb .05]. The difference between
the signal magnitudes for wins and losses was smaller for more likely
outcomes. These results indicate that we obtained a significant FRN,
Fig. 4.MEG signals expressing the main effects of outcome valence (A, B) and outcome proba
(C1), overlaid on the glass brain. (A2–E2). SPMs depicting the main effects are depicted in da
of valence (winsN losses) is overlaid on the mean-corrected average signal for wins, with war
to baseline. Valence was associatedwith significant amplitude change 190 ms (A2) and 310 m
overlaid on the mean-corrected average signal for win probability. Again, warm colors co
Probability was associated with significant amplitude change 205 ms (C2), 340 ms (D2) and
the crosshair locations in panels A2–E2, respectively. A4–E4. Parameter estimates for wins
(hashed) for the peaks in panels A2–E2.
which was modulated by probability, replicating previous findings.
However, examination of Fig. 6 shows that both win and loss signals
varied positively with outcome probability, in contradiction with the
requirements of the axiomatic model that the sign of the slope for
wins would be opposite to the sign of the slope for losses.

Discussion

The axiomaticmodel of reward prediction errors prescribes that any
neural signal expressing a prediction error must comply with a set of
three formal requirements. We explored the magnetic sensor-space for
a brain signal that complied with those, and specifically searched for a
signal that expressed the interactionbetweenwin and loss probabilities.
The interaction contrast isolated a fronto-central MEG signal that
bility (C, D, E). (A1, C1). SPMs depicting the main effects of valence (A1) and probability
rk red, with the crosshair placed on the significant peak within a cluster. The main effect
m colors corresponding to positive and cold colors to negative signal amplitude relative
s after outcome (B2). Themain effect of probability (win probability-loss probability) is

rrespond to positive and cold colors to negative signal amplitude relative to baseline.
425 ms (E2) after outcome. A3–E3. Average ERFs (in fento-Tesla units) extracted from
(blue), losses (red), and the covariates representing their modulation by probability

image of Fig.�5


Fig. 6. Feedback-locked EEG signal. (A) Grand average ERPs obtained by subtracting win from loss trials for each probability condition at Cz EEG electrode. (B) Grand average FRNs
calculated using average time window analysis for each probability condition at Fz, Cz, and Pz electrodes. (C) Grand average ERPs for win (black) and loss (grey) trials for each
probability condition. (D) Grand averages for the EEG signal computed in two different ways. Solid lines: results from the average time window analysis showing the average signal
for wins (black) and losses (grey), for each one of the probability conditions. Dashed line: results from the difference-wave analysis. Error bars represents standard error of themean.
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peaked 320 ms after outcome onset and complied reasonably well with
the axiomatic model. This signal varied significantly as a function of
outcomeprobability bothwhen the outcomewas awin andwhen itwas
a loss, indicating that it differentiated more and less likely events. Wins
correlated negatively with outcome probability and losses correlated
positively with outcome probability, and these correlations were
significantly different from each other. This indicates that highly
unlikely wins and losses generated the strongest absolute signal values,
and that highly likely wins and losses generated the smallest absolute
signal values. This signal also complied with the final axiom that the
P=1 wins and losses would not differ. We conclude that we have
successfully indentified, for the first time, a MEG signature of reward
prediction error expressed by the interaction MEG signal. Its peak time
resembled that of an EEG prediction error signal obtained using an
innovative single-trial modeling approach (Philiastides et al., 2010).

The final axiom corresponds to a null effect, which means it is
never possible to test it empirically. Any study can only attempt to
give assurances that power was sufficient to detect real differences.
Our data provides two such assurances. Firstly, our analysis of the
interaction effect employed a conservative statistical threshold of
Pb .005, but we employed amore lenient statistical threshold of Pb .05
to detect differences between fully-anticipated (P=1) wins and
losses. The regions identified in that contrast were subsequently
excluded from the interaction analysis. Second, the waveform for
uncertain (Pb1) outcomes differed from the waveform for certain
(P=1) outcomes in two ways, suggesting different neural computa-
tions. First, in Pb1 conditions the win signal was more positive than
the loss signal, but this difference flipped for the P=1 outcomes.
Second, while the time course from the uncertain conditions bore a
striking resemblance to the classic fronto-centrally distributed FRN,
this was no longer the case for the certain, P=1 outcomes, which
appeared to only reflect noise. If that was true, it would fully conform
to a major tenet of reinforcement learning theory, which states that
the prediction error associated with P=1 outcomes would be
expressed when participants realize what these outcomes are going
to be, rather than at the time of outcome revelation. In our paradigm
the prediction error signal associated with participants' realization
that they were about to win or lose a certain amount for sure must
have been expressed earlier in the trial, after the presentation of the
two gambles but prior to the key-press response that indicated the
end of the comparison process. Although the complex choice and
comparison process which took place prior to outcome revelation
prevented us from analyzing the signal associated with the predictive
gamble stimuli, single-cell recordings demonstrate cue-locked but not
outcome-locked dopamine firing when the cue fully predicted the
outcome (Schultz et al., 1997; Schultz and Dickinson, 2000).

image of Fig.�6
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The claim that the interaction signal we obtained expresses a
prediction error should be treated with caution because we did not
have sufficient power to test all the detailed predictions of the
axiomatic model (Caplin and Dean, 2008b). Future research should
take steps to ensure sufficient power to test these, possibly by using
multivariate integration across sensors (Friston et al., 1996), an
approach we are currently exploring. Finally, because we used a
statistical threshold which was not corrected for multiple compari-
sons, future research will be necessary to corroborate our result.

Magnetic effects of probability and valencewere observedbefore the
emergence of the prediction error signals, 200 ms after outcome. The
early valence effect is also in marked agreement with the EEG data of
Philiastides et al. (2010) who also found that this signal preceded the
prediction error signal. These authors suggested that prediction error
processing proceeds in multiple stages, with scalp measurements
expressing the components of the prediction error signal before the
fully integrated signal can be detected. Additionally, we observed a later
probability signal, 340 ms after outcome onset, which resembled the
P300, the electrophysiological signal most strongly associated with
coding uncertainty in many settings (Donchin, 1981; Sutton et al.,
1965), including surprise in gambling tasks (Hajcak et al., 2005, 2007).

The axiomatic model provided a solid framework with which to
scrutinize the MEG signal, but also offered a novel approach to the
analysis of EEG signal most closely associated with prediction errors,
the FRN. Although many datasets show that the FRN complies with
the requirements of the axiomatic model, none show that it complies
with all of them. This admittedly strict requirement merited an
analysis of the EEG dataset in light of the axiomatic model.

Weobtained a robust FRNusing simultaneously acquiredEEG,with a
peak time of 270 ms post-outcome, which is compatible with previous
literature (Holroyd and Coles, 2002; Miltner et al., 1997). This ERP was
sensitive to outcome probability and reduced almost to zero when
gamble outcomes were fully known in advance (P=1), replicating
previous studies (Baker and Holroyd, 2009; Holroyd et al., 2002, 2004,
2009; Holroyd and Krigolson, 2007; Mars et al., 2005). Examining wins
and losses separately, however, revealed that although both were
sensitive to outcome probability, in line with the axiomatic model and
extending the results of Cohen et al. (2007), they variedwithprobability
in the same direction, at odds with the requirement for bidirectional
signaling embodied in the axiomatic model (Caplin and Dean, 2008a,b).
This requirement stems from the known characteristics of the
computational prediction error signal (Sutton and Barto, 1998), which
is symmetrical for positive and negative prediction errors. The
computational signal is compatible with evidence that phasic activa-
tions of dopaminergic neurons reflect positive prediction errors while a
pause in firing is thought to reflect negative prediction errors equally
strongly (Bayer et al., 2007). When we analyzed the average EEG signal
for wins and losses within our specified timewindow our data revealed
that the ERPs that formed the FRNweremore negative for unlikelywins
– where most dopamine is released – than likely wins, suggesting that
these ERPs correlate inversely with dopamine release. Yet at the same
time, the ERPs were also more negative for unlikely losses – where
least dopamine is released – than likely losses, suggesting the very
opposite.

A vast literature supports the suggestion that the difference
waveform FRN expresses prediction errors, but the axiomatic model
requires separate analysis of the win and loss signals, and does not
lend itself directly to an analysis of the difference waveform. Taken at
face value, our data shows that the EEG signal at the time that the FRN
is detected does not comply with the interpretation of the FRN as a
direct marker of dopaminergic prediction error. One interpretation is
that the striatal training projections to the anterior cingulate cortex
are not a one-to-one reflection of the prediction error but instead
reflect an additional computational step in the service of future
behavior optimization (Holroyd and Coles, 2002). Another interpre-
tation is that the FRN correlates with another component of error
processing (Roesch et al., 2010). Finally, it is also possible that ERP
components which co-occurred at the same time as the FRN masked
the true nature of the separate win and loss signals. The fact that the
MEG signal satisfied the axiomatic test and the EEG signal did not
could be due to differential degrees of overlap with other components
in the two brain signal recording modalities. Future model-based
analyses of M/EEG data should explicitly model brain responses that
overlap with the signal of interest.

The current study obtained two MEG signals which resembled the
FRN. The MEG interaction signal resembled the FRN in its waveform,
and expressed probability in a way that conformed to the axiomatic
model's criteria for a prediction error signal. Additionally, an early
valence effect also resembled the FRN in its waveform, although it was
not sensitive to outcome probability. Interestingly, the same early
valence signal was also found in EEG by Philiastides et al. (2010), who
employed an EEG trial-by-trial modeling approach.

The variability in the sensitivity of FRN-like signals to probability
mimics the conflicting evidence for the effect of probability on FRN in
previous studies, where it is often (Holroyd et al., 2003; Yasuda et al.,
2004) but not always (Hajcak et al., 2005) obtained, and where
probability may modulate positive outcomes, negative outcomes, or
the difference between them. It has been suggested that this effect
depends on the degree to which the actions of participants actually
cause the outcome (Holroyd et al., 2009), and on the way participants
perceive the action-outcome contingencies (Hajcak et al., 2007). A
sense of involvement in the task has been shown to correlate
positively with FRN amplitude (Yeung et al., 2005). Here participants
selected the gamble they played and had complete information about
the contingencies, but their action did not meaningfully influence
whether they would win or lose. The influence of probability on FRN-
like signals in the current study suggests that participants felt
sufficiently involved in the task, perhaps because they were endowed
with a large sum of money (£40) which they knew they'd have to pay
back if they lost. The endowment effect (De Martino et al., 2009;
Knutson et al., 2008)may have led our participants to caremore about
gamble outcomes than in other studies. Yet even though the MEG
interaction signal and the FRN in the EEG data were sensitive to
probability, the early FRN-like signal was not.

M/EEG studies typically focus on how known components are
modulated by experimental manipulations. This approach is not
optimal when there are no established correlates of the phenomenon
of interest, such as the MEG correlates of prediction errors. This
approach is also less informative when multiple electrophysiological
markers may be involved. Indeed, previous work implicates a number
of different components in the representation of outcome valence,
surprise, and magnitude, such as the FRN, N2, and P300 (Hajcak et al.,
2005, 2007; Holroyd et al., 2006, 2008; Kamarajan et al., 2009; Sato et
al., 2005; Yeung et al., 2005; Yeung and Sanfey, 2004). When research
questions warrant an exploratory analysis, as is the case here, the SPM
approach provides an elegant solution.

An exploratory analysis of complex datasets, such as those
obtained by neuroimaging, is more likely to succeed when a research
question is tightly operationalized. We were able to do so here by
invoking the framework of an axiomatic model, which provides a well
specified series of tests that any neurobiological signal expressing
prediction errors must comply with. By contrast, fitting the pre-
dictions of temporal difference errormodels to imaging data is fraught
with issues stemming from the use of highly parameterized
assumptions in combination with a regression approach (Caplin and
Dean, 2008a,b; Roesch et al., 2010; Rutledge et al., 2010). This is even
more challenging in the case of M/EEG data, where model-based
approaches require a trial-by-trial analysis technique (Mars et al.,
2008), a challenge at the forefront of M/EEG research (Philiastides et
al., 2010). By using SPM to test the axiomatic model's predictions we
benefited from its formality but suffered none of the usual
disadvantages of a model-based approach.
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Conclusions

Many ERP studies have set out to explore a prediction error signal,
but its exact nature is still controversial. By using the stringent criteria of
an axiomatic model we have identified, for the first time, a correspond-
ing MEG signature of a human prediction error signal emerging
approximately 320 ms after an outcome. The ERFs associated with
wins and losses varied with outcome probability in a bidirectional
manner, in line with the axiomatic model. The striking resemblance
between this signal and the FRNprovides converging evidence to claims
that FRN expresses a prediction error (Holroyd and Coles, 2002).
Althoughwe queried interpretations of the FRN in our EEG data in light
of the axiomatic model, the fact that the same waveform expressed
prediction errors in our MEG dataset, suggests that further research is
needed to understand fully the exact nature of this signal. Our approach
opens the possibility to further characterize computational models of
prediction errors in humans non-invasively and to examine explicitly
the critical issue of timing embodied in such signals.
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