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Abstract: This research aims to measure the mean lifetime for the B+ meson, a composition of
a u and a b̄ quark, by using experimental data obtained from LHCb. Making use of Monte Carlo
(MC) generated data and simulated data, which includes the effects of a detector, we can study the
effects over the data in order to obtain the physical parameters underlying the process. In order to
find the mean lifetime τ of the B+ meson we will proceed by two different ways, and we will make
use of the simulated Monte Carlo data to prove the validity of both methodologies.

I. INTRODUCTION

An unstable particle against a given interaction has
a certain probability of decaying into other less-massive
particles per unit of time. This is the case of the B+

meson, composed by an up quark (u) and a bottom anti-
quark (b̄), and as it is an unstable particle it can therefore
decay as follows:

B+ −→ J/ψ +K+

after such decay, J/ψ will also decay in two muons,
J/ψ → µ+ + µ− and the detector will be able to de-
tect both the muons and K+. From those reconstructed
muons the J/ψ vertex is found, which due to its decay
under the strong interaction, its creation and decay take
place at a same point, which is exactly the vertex of decay
of the B+ meson. Combining the measured J/ψ and the
K+ we can derive the physical quantities of the B+ such
as momentum or, combining it with the beams vertex
collision, its lifetime. By considering a great number of
events we will end up with a distribution for such quan-
tities.

A decay can also be described by the decay width Γ,
which is related to the width of the cross-section curve as
a function of the energy. It is also closely related to the
mean lifetime as Γ ∝ 1

τ , and is a measure of the proba-
bility that a specific decay process occurs in an interval
of time. From here we can also define τ as a measure of
the time that the particle takes to decay, i.e. 1ps

τ [ps] gives

us the probability that the particle has decayed in any
given picosecond. Therefore, the decay time for unstable
particles follows an exponential distribution, Eq. (1).

f(t) = A exp(−t/τ) (1)

LHCb is one of the detectors that can be found in the
LHC at CERN, and it focuses its research on the b quark.
By means of proton collisions, b− b̄ quark pairs are pro-
duced and will compose other particles, as the B+ meson
that we will study. In the detector, once the collision be-
tween two protons has taken place, the products of such
collision fly in any direction. As we want to detect as
most events as possible, the design of the LCHb is made

in order that most of the mesons fall in the covered re-
gion. In any case, there is a loss of some of the particles
created. Such effect - that the detector does not encom-
pass all the space around the collision - is represented
by the acceptance A. It does also include the efficiency
of the detector to reconstruct the identified events. An-
other relevant effect is the resolution, R, which is the
effect that tells us about the precision of the detector.
We will study both effects in depth in the corresponding
sections. Because of all these effects, the physical dis-
tribution of the studied quantities behind the process is
modified and what we can see from the results after the
detector does not correspond with an exponential decay.
Such effects modify the exponential distribution as:

P(t) = [Physics(t′)×A(t′)]⊗R(t, t′) (2)

where ”Physics” means the exponential decay, Eq. (1).
It can be seen in Eq. (2) how resolution applies both
on the physics as well as on the acceptance; through the
development of the project, we will see which is the effect
of the resolution on acceptance and if it is important to
keep this order, or if we could take the acceptance out of
the convolution.

II. VERIFICATION WITH MONTE CARLO
GENERATED DATA

First of all, we begin with generated MC data, which
has to reflect what we expect from theory and it only
contains the physical information from the p-p collision
and decay of the created B+ particles, i.e. an exponential
distribution for the mean lifetime of different B+ mesons.

This data does not contain any effect due to the detec-
tor, so it will help us derive afterwards, by comparing to
the one passing through a simulated detector, one of the
effects that may change our measurements and must be
corrected in order to get the physical values behind our
observations: the acceptance A.
Now, from the MC data shown in Fig. 1 we can fit an
exponential function as Eq. (1) and get its corresponding
value for the mean lifetime, τ .
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FIG. 1: Lifetime distribution for the Monte Carlo generated
data. It has not been shown the tail of the exponential in
order to see clearer the fit of the data.

To generate such data, the value introduced for the
mean lifetime is the experimental one [2], which should
be reobtained when fitting the data. And the result ob-
tained by means of the fit is: τ = 1.636 ± 0.007 ps.
Comparing this result with the experimental world av-
erage - the one used to generate that data - from [2],
τexp = 1.638± 0.004 ps, we can see they compare well.

III. ACCEPTANCE

The proper time acceptance A is one of the most rel-
evant effects of the detector on our measurements. It
reflects the number of events falling into the region cov-
ered by the detector, so they can be measured, and it
also considers the efficiency when reconstructing and se-
lecting the events. As the particle decays, the resulting
particles can travel in any direction, and due to mechan-
ical limitations and high cost of materials, the detector
can only cover a given solid angle of the whole space,
leading to a loss of the detection of some of the parti-
cles. In addition, the events should be reconstructed and
separated from possible background. Both effects will re-
duce the B+ signal sample, and this lost is represented
by the acceptance that can be computed as the ratio be-
tween the proper time distribution of the reconstructed
and selected events (ttrue) and the Monte Carlo genera-
tion proper time (tMC). This implies its calculation as
follows, [1]:

A =
N(ttrue)

N(tMC)
(3)

that is, it is the ratio between the generated candidates
and the reconstructed ones as a function of the lifetime.
In Figure 2 it can be seen the result of such ratio and
also the fitted function we use to describe it.
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FIG. 2: Proper time acceptance, with the best fitted function
achieved. It can be seen how it presents an increase of the
function’s value at low proper times, while it remains constant
for larger values of time.

The A seems to behave as a sigmoid function, so we
use a similar function to parametrize its dependence on
τ , Eq. (4).

A(t) = p0 exp (−p1 exp(−p2t)) (4)

with p0 > 0, so it is a positive defined function for any t.
The results for such parameters are shown in Table I.

Parameters B+ → J/ψ + K+

p0 0.294 ± 0.004

p1 14.4 ± 1.0

p2 3780 ± 140 ns−1

TABLE I: Fitted parameters for the acceptance function.

Even though being this the best fitting function we
could find, by looking at Fig. 2 it can be seen that there
is a small region between t ∈ [1.5, 4.0] ps where the fit
is not so accurate; this may lead afterwards to a bias
when using the function to extract the life-time from real
data. It can also be seen from Fig. 2 how for very large
times the acceptance has been taken as a constant value
(around 0.29).

Due to the difficulty when finding a good fitting func-
tion, we will see how the fit of the acceptance is the most
relevant source for systematic errors, and that chosing a
function or another one can lead to different values for τ ,
which will be studied in depth in following sections.

IV. RESOLUTION

The other relevant effect is the proper time resolution
R. While acceptance has to do with the geometrics and
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space covered by the detector as well as its effectiveness
to identify the events and reconstruct them, the resolu-
tion gives information about the precision of the mea-
surements, which is limitted. To get such information,
the proper time resolution can be computed as Eq. (5),
which involves comparing the real value and the one that
we measured, in order to see how our measurements differ
from the real ones, [1] and [3].

∆t = trec − ttrue (5)

and so, we expect that the difference between the gener-
ated and the reconstructed data is not so high, and that
it is close to zero.

Delta t (ns)
0.25− 0.2− 0.15− 0.1− 0.05− 0 0.05 0.1 0.15 0.2 0.25

3−10×

N
um

be
r 

of
 e

ve
nt

s

0

100

200

300

400

500

Resolution

FIG. 3: Proper time resolution, with its fitting function.

From Fig. 3 it can be seen that it behaves as a guassian
centered close to zero. However, a simple gaussian does
not fit the function very well, so the solution is to con-
sider a sum of two gaussian with the same mean value
but different widths, so our resolution function has an
expression as Eq. (6).

R(t) = p0 exp

(
− (t− p1)2

2p22

)
+p3 exp

(
− (t− p1)2

2p24

)
(6)

The results for the parameters are gathered in Table II.

Parameters B+ → J/ψ + K+

p0 64 ± 14

p1 (-3 ± 4)·10−7 ns

p2 (6.8 ± 0.4)·10−5 ns

p3 384 ± 13

p4 (3.36 ± 0.10)·10−5 ns

TABLE II: Fitted parameters for the resolution function.

A. Dependence of the parameters with τ

We can also study if the resolution has some depen-
dency on the proper time, i.e. if the parameters of the res-
olution change sharply for different intervals of the proper
time ttrue or if they present a similar value through all
the range. To do so, we study the proper time resolution
distribution for ranges of ttrue and fit a function as Eq.
(6), from here we get the mean value µ and the lowest
width σ, which describes well the central width - while
the largest value is needed to fit the lowest part of the
distribution - and we compare it with the values found
for the entire range.
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FIG. 4: Variation of the mean value µ of the resolution as a
function of the true proper time for the process. In red it can
be seen the value for the whole interval.

We can see in Fig. 4 that the mean value of the gaus-
sians for different intervals of ttrue is not so different from
the one considering the whole interval, with all values os-
cillating around zero. Due to the results shown above, we
make the decision not to consider any of this dependence,
as there is not a great change between the results in the
whole interval, and the dependence on different ones.

For what concerns the width of the resolution, we can
see in Fig. 5 that it increases with proper time. By
simplicity and given that the obeserved dependence is
restrained to a not so wide range (σ ∈ [28, 43] fs) we
will neglect such variation when making the corrections.
However, and as a larger width makes the exponentials
of Eq. (6) smaller, this may imply that the resolution
has a stronger effect at lower proper times.

V. FITTING METHODS

Once the functions of acceptance and resolution are
found, we proceed with the correction of both effects to
our data. In order to do it, the data has to be fitted with
a function as Eq. (2) where all the parameters should be
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FIG. 5: Dependence of the σ width of the resolution as a
function of ttrue. In red there is specified the value when
considering the entire interval for proper times.

fixed with the ones found, except the parameters of the
exponential decay, which are left free in order to find τ .
To find such value, we will proceed by two different ways:

A. Correction of all effects simultaneously: in this ap-
proach the real data without modifications will be
taken and fitted by means of Eq. (2).

B. Previous correction of acceptance: here, acceptance
will be substracted from real data and then the re-
sulting data will be fitted by a function of an ex-
ponential convoluted with the resolution. This ap-
proach will help us to know whether the acceptance
and resolution are related or not, and how.

A. Simultaneous correction of acceptance and
resolution on real data

Fixing the parameters of both the acceptance and the
resolution when proceeding with the convolution, we ob-
tain a function that is impossible to give a convergent fit
to our data. This may be due to the lack of correspon-
dence between the acceptance found by means of Monte
Carlo data and the simulations with the one of the real
data, so it leads us to think that the acceptance in the
real data may have a different behaviour, i.e. that the
Monte Carlo acceptance does not reproduce the data ac-
ceptance. To try to use Eq. (2) to fit our data, we decide
to set free the parameters of the acceptance and proceed
with the fit. From it we obtain the results shown in Fig.
6, where we can see how the fit converges and fits cor-
rectly the experimental points.

From the fit shown in Fig. 6 we obtain τ = 1.449 ±
0.008 ps, where this error only covers the statistical er-
ror. This great difference may be caused because of the
non-correspondence between the acceptances of different
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FIG. 6: Real data distribution for the decay time, with the fit-
ted function in green. It is shown the interval from t ∈ [0, 9.5]
ps to see how the fit coincides with the experimental points.
The rest of the interval is the flat tail of an exponential.

sets of measurements. We set the parameters of the ac-
ceptance free; thus, not only the parameters of the expo-
nential are modified in order to get the best fit, but also
the ones of the acceptance, leading to a combination of
all of them to get the best fit. Another probable reason
of such error is that the function used is not the correct
one; we will deal with this possibility in Sec. VI.

B. Correction of resolution to acceptance-corrected
data

The other method we can take to get τ is the following:
we have the real data and we make the correction of the
acceptance effect by dividing the decay-time distribution
from the data by the acceptance distribution bin per bin
and propagating the corresponding errors. From here, we
find that the lower proper time region presents very high
values, and this is due to the fact that, in that interval,
the acceptance has a close-to-zero value. As there is no
way to know information from such low values, we will
not be able to recostruct the physical information there,
and so we will not take into account this region when fit-
ting the distribution to find τ . To study such parameter
we will restrain to the interval t ∈ [1.1, 8.0] ps.

If we fit the resulting histogram of such division in the
interval we said above with an exponential distribution as
Eq. (1), we find: τ = 1.32±0.02 ps, where this error only
covers the statistical error. One must think that here we
have only corrected the acceptance, but it stills contains
the effects of the resolution. We proceed now with its
correction by taking a modified expression of Eq. (2),
and considering Eq. (7).

P ′(t) = Physics(t′)⊗R(t, t′) (7)
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FIG. 7: Real data distribution for the decay time with the
effect of the acceptance previously corrected, and the fitted
function plotted in green.

If we do now fit the histogram of the division said above
on the same interval with a function as Eq. (7) and
letting the parameters of the exponential free, we will
obtain the fit shown in green in Fig. 7. Here we obtain
τ = 1.32 ± 0.02 ps, which is the same as we obtained
without considering the effect of the resolution. From
here we can infere that the resolution has not affected
the result and that it is only effective to the results when
acting on the acceptance, i.e. we cannot take A out of
the convolution of Eq. (2), because we see here that
the acceptance and resolution are related. Thus, we can
conclude that this method is not the right one, and that
we should proceed with the one explained in Sec. V.A.

VI. SYSTEMATIC ERRORS

Given the discrepance of our result in Sec. V.A when
comparing with [2], we may think that the acceptance
fitting function might not be the proper one. We can
therefore repeat the same procedure as in Sec. V.A,
but considering another function − also a sigmoid-like
function − that fitted well the A, Eq. (8). From here
we obtain τ∗ = 1.466 ± 0.007 ps, whose error is the
statistical one. We see both results are quite similar, so
maybe there is another source of systematic error. We
can estimate such systematic error considering different

ranges for the fit appearing in Fig. 6. When proceeding
with the fit for different ranges, we get different values
in a wide range for τ , and by considering the further
values from the one found using the whole range when
fitting the function, we get that the systematic error is
of 0.15 ps, being it the main source of error.

A∗ =
1

1 + p0 exp (−p1t)
+ p2 (8)

VII. CONCLUSIONS

In this work we have defined and studied the effects
modifiying the measurements of the mean lifetime in a
detector: the acceptance and the resolution. Using data
from LHCb of events involving B+ mesons, we are able
to extract the functional forms of both A and R by us-
ing MC and simulated data. Concerning the resolution
- which has been fitted by the sum of two gaussian - we
study the dependence of its parameters with the lifetime
and conclude that the differences are neglegible, and so
we consider the parameters in the whole range. We see
also that there is no correspondence between the accep-
tance found by MC and the one for the real data, which
leads us to a non satisfying result: τ = 1.449 ± 0.008 ps
and to the need to find possible systematic errors. Con-
sidering a different function for the acceptance, we find
that it has not a strong effect on the result, so we try
to estimate such error by other means: considering dif-
ferent ranges for the fit, and we find that the systematic
error takes a value of 0.15 ps. Thus, the final result is:
τ = 1.45 ps ± 0.01 ps (stat) ± 0.15 ps (sys), which we
find to be compatible with the average value, [2].
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