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Abstract: We study different solutions and their stability for a two component one-dimensional
Bose-Einstein condensate. First of all, we present the spectrum of the ground state in the miscible
phase and we identify two families of excitations. Using this spectrum we characterize the transition
between the miscible and immiscible phase, and we analyze different solutions which appear in this
new phase. With this background, now we study an excited state in the miscible phase, the dark-
dark soliton. We present its spectrum and we find two different anomalous modes, one of them,
the out-of-phase mode, collides with other modes of the ground state and creates unstable regions.
In these regions we find an interesting decay process to two new solutions, dark-antidark solitons.
Besides, we study the dynamics of the dark-dark soliton in a harmonic trap, and we find that the
oscillation frequency is the same as for a dark soliton in one component one-dimensional Bose-
Einstein condensate.

I. INTRODUCTION

Since the realization of the first Bose-Einstein conden-
sate (BEC) a large amount of theoretical and experimen-
tal work has been realized (see [1] for a summary). An
interesting scenario is the connection between the non-
linear waves and atomic systems, that leads to the so-
called matter-wave solitons. Specifically, mean field de-
scriptions of BECs (Gross-Pitaevskii equations, GP) in-
corporate a non-linear term that is proportional to the
s-wave scattering length. Depending on the sign and
magnitude of the interatomic interaction and the dimen-
sionality of the system, a large number of structures [2]
can be found: dark and bright solitons, vortices, vortex
rings, etc.

Another interesting aspect of BECs is the study of mul-
ticomponent systems, which can be described by a set of
coupled GP equations. In recent years a large number of
experiments realized mixtures of two condensates using
two hyperfine states [3] or two atomic species [4]. These
systems are interesting because they present a quantum
phase transition from miscible to immiscible. Besides,
the study of matter-wave solitons in these systems be-
comes complex, a new family of structures appear: dark-
dark (DD), dark-bright, dark-antidark (DA), etc.

The aim of this work is to study the two compo-
nent BECs using the Bogoliubov-de Gennes formalism.
We characterize the miscible and the immiscible phase
and the transition from one to another, we also study a
matter-wave soliton in the miscible phase: the DD soli-
ton; proposed by [5] and experimentally observed in [6].

The present work is structured as follows: First of all,
in section II we introduce the theoretical model. In sec-
tion III we present our first results, including the spec-
trum of the ground state in the miscible phase and the
transition between the miscible and immiscible phase. In
section IV we study a particular excited state in the mis-
cible phase: the DD soliton. To sum up we present our
conclusions in section V.

II. THEORETICAL BACKGROUND

A. Mean Field Description

The dynamics of BECs with two different components
at zero temperature can be described, in the mean field
regime, by two wave functions φ1(r, t) and φ2(r, t) that
are governed by two coupled GP equations:

i~
∂

∂t
φi =

(
− ~2

2mi
∇2 + Vi(r) + gii|φi|2 + gij |φj |2

)
φi.

(1)

In our case the two components are trapped by an ax-
isymmetric harmonic potential: Vi(r) = 1

2mi(wzz
2 +

w⊥(x2 + y2)). mi is the atomic mass of the i-component

and gij =
2π~2aij
mij

is the interaction (between compo-

nent i and j) coupling constant with mij =
mimj

mi+mj
.

The normalization condition for the wave functions is∫
|φ(r, t)|2d3r = Ni where Ni is the number of particles

of component i = 1, 2.
Sometimes these systems can be done using two dif-

ferent hyperfine states of the same alkaline metal, such
as (F = 2,MF = 2) and (F = 1,MF = 1) of 87Rb
[3]; in that case we can set that m1 = m2 = m.
Also, in our work we are going to impose the condi-
tion V1(r) = V2(r) = V (r) meaning that the trap is
the same for both components. We will assume that we
have a highly anysotropic trap, and so the longitudinal
frequency will be much smaller than the transversal fre-
quency (wz � w⊥). A geometry which would reproduce
very well this consideration is the elongated cigar-shaped
trap [7]. On this basis the transversal degrees of motion
are frozen and one can obtain an effective 1D equation for
the longitudinal wave function φi(z, t). In this effective
equation the external potential is V (z) = 1

2mΩ2z2 and

the coupling constant is reduced to g1Dij =
gij

2πa2⊥
where

a⊥ =
√
~/mw⊥ is the characteristic length scale of the

transversal motion. Ω = wz/w⊥ � 1 is the aspect ratio.
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Besides, one can set ~w⊥, a⊥ and w−1⊥ as energy, length
and time units and thus, recover dimensionless equations
replacing the wave function as φi → φi

√
Ni/a⊥:

i
∂

∂t
φi =

(
−1

2

∂2

∂z2
+

1

2
Ω2z2 + ḡ

(1D)
ii |φi|2 + ḡ

(1D)
ij |φj |2

)
φi.

(2)

Where ḡ
(1D)
ij = g

(1D)
ij Ni/~w⊥a⊥ = 2Niai/a⊥ and now

the normalization condition for the wave functions is∫
|φi(z)|2dz = 1. Just for convenience we will set

ḡ
(1D)
ij ≡ gij but remember that this is a reduced and

dimensionless coupling constant.

B. Excitation Spectrum

The main objective of our work is to study the sta-
bility of some solutions to Eqs. (2). To do that we
have obtained the Bogoliubov-de Gennes (BdG) spec-
trum. These can be obtained considering excitations of
a given solution: e−iµt

(
φi + uie

iwt + v∗i e
−iw∗t) where w

is a general complex eigenfrequency and (ui, vi) are the
eigenmodes associated to the component i. Introducing
this ansatz into Eqs. (2) and collecting linear terms in
(ui, vi), one obtains the following BdG equations:

M

 u1
v1
u2
v2

 = w

 u1
v1
u2
v2

 (3)

where:

M =

 h1 g11φ
2
1 g12φ1φ

∗
2 g12φ1φ2

−g11φ∗21 −h1 −g12φ∗1φ∗2 −g12φ∗1φ2
g12φ

∗
1φ2 g12φ1φ2 h2 g22φ

2
2

−g12φ∗1φ∗2 −g12φ1φ∗2 −g22φ∗22 −h2

 .

(4)

Here hi = − 1
2
∂2

∂z2 + 1
2Ω2z2 + 2gii|φi|2 + g12|φj 6=i|2 − µi.

This is an eigenvalue problem and has a non-trivial solu-
tion for the condition |M − wI| = 0.

III. MISCIBLE AND IMMISCIBLE PHASE

In this section we characterize the ground state of
Eqs. (2) in the miscible phase and compute their BdG ex-
citation spectrum. Besides, we study the transition from
the miscible to immiscible phase. The ground state is
found using a numerical method (split operator method
with relaxation in imaginary time) and later the BdG
Eqs. (3) are numerically solved in momentum space. The
excited spectrum for the case g12 > 0 (repulsive inter-
component interaction) is presented in Fig. 1. Here we
show the spectrum to the point where the first imagi-
nary eigenfrequency appears (meaning that our state is

FIG. 1: Numerical results for the BdG spectrum Eqs. (3).
Here we present the different modes that appear for the mis-
cible phase. All these modes only have a real part (are stable
under excitations). Modes are normalized to the aspect ratio
Ω = 0.1 and are represented versus the intercomponent inter-
action g12/g. When g12 = 0 the two components have enough
intracomponent interaction to be in the Thomas-Fermi limit;
this is a condition imposed by us.

unstable). It is known that in the homogeneous case the
binary system presents a phase transition at the point
(g12 =

√
g11g22) where the system passes from the mis-

cible to the immiscible phase. Here at g
(c)
12 ≈ 1.018g we

found the critical point, which is larger. This has a phys-
ical interpretation: the trap tends to squeeze the two
components and this causes the system to require more
repulsive interaction to reach the immiscible phase.

Now we are going to interpret the different branches
that appear in the spectrum. We can distinguish two
different types: the ones that remain constant when the
intercomponent interaction increases, and the ones that
decrease in a linear way (at low g12) as g12 increases. It is
important to remember that the spectrum of one compo-
nent in the Thomas-Fermi limit is analytic for the differ-

ent modes wn =
√

n(n+1)
2 Ω (n=1 dipolar, n=2 quadrupo-

lar, etc) [8]. It is interesting to see that the branches
which remain constant obey this relation. Hence, the
interpretation is that these are in-phase oscillations un-
der the trap, meaning that the two components move
together with a common center of mass.

The other branches are associated to a relative motion
between components (out-of-phase oscillations) and they
reduce their value as g12 increases, because the repulsive
interaction between them slows down the movement. In
Fig. 2 is represented a time evolution of the two compo-
nents where initially are separated in different directions
so here appears a relative motion. Now we are able to
understand why the phase transition is associated with
the point where the dipolar mode out-of-phase goes to
zero [9].

In the immiscible phase the components are separated
in different space regions and there is no relative motion
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FIG. 2: The dipolar mode out-of-phase is excited separating
the two condensates (∆x/aho ≈ 1) in opposite directions, for
g12 = 0.5g. Here we represent the mean value < x > for
each condensate (dashed lines). Also is plotted (continuous
lines) a cosinusoidal function with the frequency given by the
spectrum in Fig. 1 (w/Ω ≈ 0.6198).

FIG. 3: Extension of the spectrum for the miscible state in the
immiscible region. On the left we have represented the real
part and on the right the imaginary one. The different modes
(dipolar, quadrupolar...) go to zero as g12 increases and at the
point which are zero a new imaginary branch appears. These
different branches are associated to new immiscible states (1-1
hump, 2-1 hump, etc).

between them. So the first stationary state that we can
find in the immiscible region is one with the components
occupying different regions and with no relative motion
(there will be only one interphase).

Our next objective is to study different states that arise
in the immiscible phase. In order to do that we cal-
culate a metastable solution where the two components
are mixed using the relaxation imaginary time method.
With this method we can make the continuation of the
spectrum in the miscible phase to the immiscible phase,
Fig. 3. For each real mode that goes to zero appears a
new non-zero imaginary one, associated to a new possi-
ble decay of the miscible state. The different states that
appear in the immiscible phase now can be understood
as different real modes which are frozen. For instance,
when the quadrupole mode is frozen (at g12 ≈ 1.05g)
a new state appears with a component with one hump
and the other one with two humps (2-1 hump state), as
shown in Fig. 4. It is interesting to notice that the mean
life time of the miscible phase is related with the inverse
of imaginary part maximum. In fact, the only state that
is totally stable in the immiscible phase is the 1-1 hump

FIG. 4: Real time evolution of the densities (on the top we
plot the first component and on the bottom the second one)
after applying a very small perturbation to the solution ψ0,
ψ = ψ0 +δψ where δψ is Gaussian noise with an amplitude of
10−2. On the left we show the decay process for g12 = 1.1g;
and the miscible state decays to the 2-1 hump state. On the
right for g12 = 1.2g and it decays to the 3-2 hump state.
These evolutions go along with the imaginary part in Fig. 3.

state; with a long-time evolution all the immiscible states
decay to the 1-1 hump state. The miscible state is the
most unstable one and the others with humps will be-
come more stable as g12 increases; see [10] for a more
extensive discussion.

IV. DARK-DARK SOLITONS

Until now we have studied the ground state in the mis-
cible phase and the different states that appear in the
immiscible phase. Now we concentrate on an excited so-
lution in the miscible one, the DD soliton. This solution
is characterized by having a dark soliton in each compo-
nent at the same position. In the one-component system
the dark soliton’s spectrum is just the same as the ground
state solution (without dark soliton) but with an extra
mode. This mode is called ’anomalous mode’ and is asso-
ciated with the oscillation frequency of the dark soliton
under the trap; in the large chemical potential limit is
predicted to be Ω/

√
2 [2, 11]. Furthermore all the modes

are real, so the dark soliton is a stable state.
First of all, we present an example of DD soliton in the

Fig 5. Just as the one-component case, the point where
the density goes to zero presents a phase-jump of π in
the phase of the condensate. Now we are going to solve
Eqs.(3) using this solution. In Fig. 7 we present the spec-
trum for increasing values of g12. It starts from g12 = 0
where we have the modes associated to one component

wn =
√

n(n+1)
2 Ω plus the anomalous mode w = Ω/

√
2.

As g12 increases, the in-phase and out-of-phase modes ap-
pear like in the case without DD soliton Fig. 1. But now
the anomalous mode is also divided in two modes: one
remains constant with g12 just like the in-phase modes of
the ground state, that is why we named it the in-phase
anomalous mode; the other one increases with g12 and
we named it the out-of-phase anomalous mode.

The interpretation of the in-phase anomalous mode is a
combination of the anomalous mode for the dark soliton
in one component (the oscillation frequency under the
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FIG. 5: Example of a DD soliton with parameters Ω = 0.1,
g = 0.2 and g12 = 0.5g. The densities and phases of the two
components are identical. The solution is found by solving
Eqs. (2) with a split operator method and with imaginary
time. One has to search excited states starting from a proper
ansatz; we used a gaussian profile multiplied by a hyperbolic
tangent.

FIG. 6: Real time evolution of the densities (on the top we
plot the first component and on the bottom the second one)
with parameters Ω = 0.1, g = 0.2 and g12 = 0.5g. The DD
soliton is printed outside the center of the trap and the solu-
tion is found using the imaginary time method. Also is plotted
a cosinusoidal function (blue line) with frequency Ω/

√
2.

trap) and the in-phase oscillations (the movement of the
two components with a common center of mass). Hence
the in-phase anomalous mode will give us the oscillation
frequency of the DD soliton under the trap, and just like
the in-phase oscillations of the ground state, it does not
depend on g12. The oscillatory movement of the DD soli-
ton is presented in Fig. 6. The out-of-phase anomalous
mode also starts from the value Ω/

√
2 but rapidly in-

creases as g12 increases, as opposed to the out-of-phase
modes of the ground state. It is important to remember
that the decrease of the out-of-phase modes was associ-
ated to the repulsive nature of the intercomponent inter-
action. Now the dip of the dark soliton in one compo-
nent creates an effective attractive potential at the same
point in the other component, hence the interaction be-
tween the two dark solitons at different components will
be attractive (because of the repulsive intercomponent
interaction). Due to this effect the DD soliton solution
exists for g12 > 0 but for negative values the effective
interaction would be repulsive (if g > 0) and the solution
does not exist.

FIG. 7: Numerical results for the BdG spectrum Eqs. (3) us-
ing as a solution the DD soliton. On the top is represented the
real part and on the bottom the imaginary one. Modes are
normalized to the aspect ratio Ω = 0.1 and are represented
versus the intercomponent interaction (g12/g where g = 0.2).
When g12 = 0 the two components have enough intracompo-
nent interaction to be in the Thomas-Fermi limit. We remark
(red lines) the unstable regions.

Until now we have not discussed the stability of the
solution in this region; this can be explored looking for
modes with imaginary part. In Fig. 7 we present the
imaginary part of the spectrum and we observe different
unstable regions; where the DD soliton is unstable, as
seen in Fig. 8. In the decay process the DD soliton starts
emitting some radiation that decouples it and this creates
a relative motion of two dark solitons in each component.
As we commented before, the dip of the dark soliton cre-
ates an effective attractive potential in the other compo-
nent. Now this interaction attracts some atoms of the
other component in the position where the dark soliton
is, and this process creates a new kind of structure: the
dark-antidark (DA) soliton, recently studied in [12].

Now we concentrate on the origin of these instabili-
ties. If one checks the real part of the spectrum in Fig. 7
one can observe that the out-of-phase anomalous mode
collides with the out-of-phase modes of the ground state
and this leads to a resonant frequency; this is called a
Hopf bifurcation and was studied in the context of one
component systems in [2]. The Hopf bifurcation is char-
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FIG. 8: Real time evolution of the densities (on the top we
plot the first component and on the bottom the second one)
with parameters Ω = 0.1, g = 0.2 and g12 = 0.4g. The DD
soliton is printed in the center of the trap and the solution ψ0

is found using the imaginary time method. It is applied a very
small perturbation δψ to the solution, where δψ is Gaussian
noise with an amplitude of 10−2. Due to the instabilities the
DD soliton decays into two DA solitons emitting radiation.

acterized by the collision of two real eigenvalues which
creates a complex eigenvalue and its complex conjugate,
leading to a region of instability. Increasing g12 the com-
plex eigenvalues become to two pure real eigenvalues and
the instability disappears. In our case of two components
we can observe that the out-of-phase anomalous mode
only collides with the out-of-phase modes of the ground
state, not with the in-phase modes. Looking closely to
the spectrum one can check that there is no collision with
all the out-of-phase modes, only with the odd ones. This
nature of the Hopf bifurcations in the context of two com-
ponents BEC is not very well understood but this leads
to the characteristic instability regions of Fig. 7.

V. CONCLUSIONS

We have studied the stability and dynamics of BECs
with two different components under an asymmetric har-
monic trap. We have used the BdG formalism to study
the stability of different solutions. First of all we have
presented the ground state in the miscible phase and
its BdG spectrum, and we have characterized its differ-
ent modes associated with two movements: in-phase and

out-of-phase oscillations. We have observed that when
the first out-of-phase mode approaches zero an instabil-
ity appears and the miscible state becomes unstable; this
is associated with the miscible-immiscible transition. Be-
sides, we have constructed a continuation of the spectrum
in the immiscible region and, with this, we have charac-
terized different states with humps studying the decay of
the miscible state. We have have related the tendency of
the out-of-phase modes to go to zero (this creates new
imaginary modes) and the emergence of new states with
immiscible properties (1-1 hump state, 2-1 hump state...).

On the other hand, we have presented an excited state
in the miscible phase, the DD Soliton. We have calcu-
lated its BdG spectrum and have identified two different
anomalous modes: in-phase and out-of-phase. The in-
phase mode remains constant with g12, and is associated
with the oscillation of the solitons at different compo-
nents with a common center of mass; its value is the
same as for a dark soliton in one component. The out-of-
phase mode increases as g12 increases and is associated
with the relative motion of the dark solitons. The colli-
sion between the out-of-phase anomalous mode and the
odd out-of-phase modes of the ground state, creates com-
plex frequencies that lead to unstable regions. Hence, we
have presented different regions of stability where the DD
solution could be observed and will be stable; it would
also be possible to observe its dynamics under the trap.
Finally, the decay process of the DD soliton is presented,
and we have observed that it decays to two DA solitons,
in each component, and they effectuate a relative motion
between them. This could be a technique to explore the
dynamics of two DA solitons. Besides, it would be inter-
esting to characterize the spectrum of two stationary DA
solitons and to compare the frequency associated to the
relative motion with the decay presented in this work.
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Phys. Rev. A 80, 023613 (2009).

[11] Th. Busch and J. R. Anglin, Phys. Rev. Lett. 84, 2298
(2000).

[12] I. Danaila, M.A. Khamehchi, V. Gokhroo, P. Engels and
P.G. Kevrekidis, Phys. Rev. A 94, 053617 (2016).

Treball de Fi de Grau 5 Barcelona, June 2017


