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Abstract 

 

The assembly of neural circuits relies on the accurate establishment of connections 

between synaptic partners. Precise wiring results from responses that neurons elicit to 

environmental cues and cell–cell contact events during development. A common design 

principle in both invertebrate and vertebrate adult nervous systems is the orderly array 

of columnar and layered synaptic units of certain neuropils. This similarity is 

particularly striking in the visual system, both at the structural and cell-type levels. 

Given the powerful genetic approaches and tools available in Drosophila, the fly visual 

system has been extensively used to probe how specific wiring patterns are achieved 

during development. In this review, we cover the developmental principles and 

molecular strategies that govern the assembly of columnar units (lamina cartridges and 

medulla columns), the formation of layers, afferent specific layer selection, and 

synaptogenesis in Drosophila. The mechanisms include: sequential developmental steps 

that ensure coordinated assembly of synaptic partners; anterograde and autocrine 

signaling; interactions between cell-surface molecules, or secreted molecules and their 

receptors, that take place among neurons; and glia signaling to neurons.  	

 

Key words: 

neural circuits, wiring specificity, synaptic partners, columns and layers, cell surface 

and secreted molecules 

  



	 4	

Introduction  

 

The neuroanatomist Santiago Ramón y Cajal was the first to notice the striking 

similarities between vertebrate retinas (Cajal, 1893). In his quest to understand the flow 

of information between neurons, he turned to the visual system of large flies expecting 

it to be simpler (Cajal, 1937). To his surprise, he discovered that the cellular diversity 

and complexity of the insect visual system parallels that of vertebrates. More 

importantly, he recognized the similarities between the neural circuits that underlie 

vision in vertebrates and flies (Cajal & Sanchez, 1915). Over the past few decades, 

structural, developmental and functional studies in these organisms have backed up 

Cajal’s view (Kolodkin & Hiesinger, 2017; Sanes & Zipursky, 2010). This wealth of 

work suggests that conserved features are probably fundamental, and that knowledge 

obtained from one organism can provide insight into others.  

 

Seminal work by Fischback and Dittrich (Fischbach & Dittrich, 1989) revealed that the 

smaller visual system of Drosophila melanogaster had the same complexity as that of 

larger flies. More importantly, it opened the door to the use of the visual system of this 

genetically amenable Drosophila species as a model of neural circuit assembly. While 

the functionality of circuits relies on accurate connectivity between neurons, this 

synaptic specificity is dependent on several previous steps, including: axons finding a 

path to the general target region (ganglion specificity); termination in a defined area in 

the target region (layer specificity); recognition of the specific synaptic partners among 

other neurons in the defined area; and finally, the formation of synapses 

(synaptogenesis). In fact, it is currently unclear whether recognition and synaptogenesis 

are two separable or intimately related events (see later in the text). Indeed, the 
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technical complexity of unequivocally assessing if presynaptic sites are apposed to 

corresponding postsynaptic partners in densely populated neuropils has so far limited 

the advance of our knowledge of this last step. In contrast, much insight has been gained 

into the other steps and in the past decade, particularly on how distinct neurons 

terminate and arborize in defined areas of the general target region, and the molecules 

that are involved in these processes. This is a developmental step that already limits the 

number of postsynaptic candidates that will be encountered. Given that the assembly of 

neural circuits results from cellular responses to environmental cues and cell–cell 

contact, cell-surface and secreted molecules have received much attention as mediators 

of these events.  

 

In this review we summarize the developmental principles and molecular strategies 

known to date to govern the assembly steps of visual circuits in Drosophila.  

 

 

Visual system structural organization 

 

Adult structure 

The retina of Drosophila is composed of approximately 750 units or ommatidia neatly 

organized in a lattice. Each ommatidium contains 8 photoreceptor neurons (R cells: R1-

R8). These can be classified into three types: R1-R6 photoreceptors express the broad-

spectrum opsin Rh1 and mediate motion detection; R7s express UV-sensitive opsins 

(Rh3 and Rh4) and R8s blue (Rh5) or green (Rh6) opsins. Three types of ommatidia are 

found depending on opsin expression in the R7 and R8 photoreceptors (Morante, 

Desplan & Celik, 2007). Ommatidia are classified into: yellow (70%), which contain 
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R7s and R8s expressing Rh4 and Rh6, respectively; and pale (30%), where R7s express 

Rh3 and R8s, Rh5. In the third type, Dorsal Rim Area (DRA) ommatidia, which are 

located in two rows in the dorsal edge of the retina and sense polarized light, both the 

R7 and R8 express Rh3. R cells relay the visual information into the optic lobe, the fly 

visual processing center, which consists of four ganglia (Fig. 1A): the lamina is the first 

relay station, just beneath it lies the medulla, which is followed by the lobula and the 

lobula plate. These last two ganglia form the lobula complex, from where processed 

visual inputs will be relayed to higher-order brain centers through different pathways 

(Mu, Ito, Bacon & Strausfeld, 2012; Otsuna & Kei, 2006; Otsuna, Shinomiya & Ito, 

2014; Panser et al., 2016; Wu et al., 2016).  

 

The spatial representation of the visual information in the visual system is 

morphologically supported by the presence of parallel columnar synaptic modules that 

process the information from discrete adjacent points of the visual field. These 

columnar modules are best studied in the lamina and the medulla (Fig. 1A). R cells 

collecting the information from a single point in space converge in one of these 

columnar modules. R1-R6 axons extend into the lamina where they form a discrete 

synaptic unit called a lamina cartridge with lamina neurons L1-L5, amacrine cells and 

centrifugal interneurons (Fig. 1B) (Meinertzhagen & Hansen, 1993; Meinertzhagen & 

O’Neil, 1991; Meinertzhagen & Sorra, 2001; Rivera-Alba et al., 2011). R7 and R8 

axons extend past the lamina and project into the corresponding medulla column (Fig. 

1C). In addition to R7 and R8 axons, medulla columns contain the axons of lamina 

neurons L1-L5, a diverse set of medulla neurons, and ascending higher order neurons 

amounting to a total of more than 80 neuronal types (Morante & Desplan, 2008; 

Takemura et al., 2008, 2013, 2015). Thus, the information from a point in space is 
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processed in its corresponding lamina cartridge and the associated medulla column. 

Hence, the repetitive columnar organization of the 750 registered lamina cartridges and 

medulla column sets covers the whole visual field in a retinotopic fashion thereby 

providing visual acuity.   

 

Orthogonal to this columnar organization is the division of the medulla, lobula and 

lobula plate into parallel layers (Fig. 1A, C). This division arises from the unique 

arborization of neuronal processes of the distinct neurons in a column, where each 

neuron branches in one or more layers in specific patterns. This layered organization 

provides anatomically restricted regions that facilitate synaptic partner identification. 

Indeed, in many cases, presynaptic sites are enriched in terminals within specific layers, 

although synapses distributed along processes spanning different layers are observed in 

some cell types. This layered organization is the main structural basis for parallel 

processing, which allows the processing of distinct salient features at the same time. 

The best-studied example is the processing of color and motion, which are largely 

processed in separate streams and layers. Motion is first processed in the lamina by 

input from R1-R6 photoreceptors to lamina neurons, which in turn convey the 

information to the medulla according to their arborizations in specific medulla layers. 

Color detection arises from comparison of signals from R7 and R8 photoreceptors with 

different excitation spectra; these photoreceptors directly innervate specific layers of the 

medulla distinct from those receiving motion input. Electron Microscopy (EM) studies 

have structurally determined connectivity relationships among neurons within lamina 

cartridges and medulla columns. The work has revealed mini-circuits within these 

columnar modules, which in principle would allow for the processing of visual 
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information in different ways to extract salient features such as motion and color 

(Shinomiya et al., 2015; Takemura et al., 2011, 2013, 2017). 

 

Visual information is thought to be integrated in space and time thanks to sets of 

neurons connecting adjacent columnar modules and layers. The fly visual system 

contains different neuronal types based on their morphology (Fig. 1A). These can be 

categorized into two main classes: the arborization of uni-columnar neurons is mostly 

limited to one column and thus they present a 1:1 ratio with columnar modules; in 

contrast, multi-columnar neurons possess processes in several columnar modules and 

thus are fewer in number than the columns (Fig. 1C). Inter-columnar connectivity can 

be supported by: 1) uni-columnar neurons whose processes extend laterally connecting 

neighboring columnar modules (e.g. L4 in the lamina, see below); and 2) multi-

columnar neurons (e.g. Dm8, see below). Interlayer connectivity can arise from the 

arborizations of neurons projecting into various distinct layers (e.g. Tm20) or by 

neurons spanning several layers with synaptic inputs and/or outputs all along their main 

process (e.g. R8). These types of interactions between parallel relays, either between 

columns or between layers and mediated by interneurons, optimize the signal-to-noise 

ratio and mean that cells only a few synapses from the sensory input are already highly 

sensitive and selective to complex visual features.   

 

All in all, the interconnected columnar and layer structure of the adult fly visual system 

covers the visual field and supports feature detection, respectively.     

 

Developmental establishment of the retinotopic map  
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Two features of early eye development facilitate the innervation of the optic lobe in a 

spatially and temporally defined pattern (Fig. 2A) (Kulkarni, Ertekin, Lee & Hummel, 

2016; Petrovic & Hummel, 2008; Roignant & Treisman, 2009). First, individual rows of 

ommatidia are recruited sequentially following a wave of cell division and 

differentiation beginning at the posterior end of the eye disc and sweeping anteriorly. 

The morphogenetic furrow, which results from the cytoskeletal changes cells undergo 

as they differentiate, is a moving boundary that separates the undifferentiated from 

differentiating tissue. Second, R cells in the same ommatidium extend axons into a 

single fascicle sequentially, following their differentiation order. R8 is the first 

photoreceptor to differentiate, followed in a pairwise fashion by R2/R5, R3/R4 and 

R1/6, and then finally by R7. The axonal fascicles of different ommatidia exiting the 

eye disc project into the optic lobe through the optic stalk. As axons exit this tightly 

packed axonal bundle, they must retain their positional information in the eye; that is, 

distribute evenly and recognize their targets along the anteroposterior and dorsoventral 

axes. Anterioposterior retinotopy is based on their time of differentiation in the eye disc, 

while dorsoventral innervation is regulated by asymmetrically expressed DWnt4 in the 

developing lamina and iroquois gene complex in the retina (Sato, Umetsu, Murakami, 

Yasugi & Tabata, 2006). R8 plays an important role in retinotopy as it is the first 

photoreceptor to innervate the optic lobe and acts as a guide to the rest of the R cells in 

the ommatidium. The non-classical cadherin Flamingo (Fmi) (Lee et al., 2003; Senti et 

al., 2003) and the Thrombospondin 1 domain and CUB domain transmembrane protein 

Golden goal (Gogo) (Tomasi, Hakeda-Suzuki, Ohler, Schleiffer & Suzuki, 2008) 

mediate axon–axon interactions between R8 processes as they exit the optic stalk in a 

bundle. These proteins facilitate the defasciculation of R8 cells from the bundle so that 

they enter the lamina evenly spaced, and continue into the medulla maintaining their 
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retinotopy. This ordered projection pattern is influenced by glial cells, which act as 

boundaries between developing ganglia and ensure the proper guidance of 

photoreceptors and other neurons into the medulla (Fan et al., 2005; Pappu et al., 2011; 

Tayler, Robixaux & Garrity, 2004). 

 

R cells determine retinotopy between the retina and the lamina (Fig. 5A). This is 

achieved through R cell-dependent secretion of Hedgehog (Hh) and EGF (Spitz). Hh 

secretion from photoreceptors triggers terminal divisions in the lamina precursor cells 

field and their columnar assembly associated with each photoreceptor bundle according 

to their sequential innervation (Huang et al., 1998; Huang & Kunes, 1996; Sugie, 

Umetsu, Yasugi, Fischbach & Tabata, 2010; Umetsu, Murakami, Sato & Tabata, 2006). 

Meanwhile, EGF secretion from photoreceptors drives precursor differentiation into the 

five lamina neuron types in a precise spatio-temporal pattern (Huang, Shilo & Kunes, 

1998). However, although Hh and EGF are concomitantly expressed, columnar 

assembly precedes differentiation. This delay is mediated by photoreceptors signaling 

through wrapping glia. This glial population ensheaths R cell axons in the optic stalk in 

response to photoreceptor Fibroblast Growth Factor (FGF) and they arrive in the optic 

lobe after the axons. EGF from photoreceptors activates EGF signaling in glia, which 

respond by secreting Insulin-like peptides, resulting in MAPK and InR signaling in 

lamina precursors (Fernandes, Chen, Rossi, Zipfel & Desplan, 2017). These signals, 

together with the autonomous requirement for a transcriptional network that regulates 

lamina neuron specification (Pineiro, Lopes & Casares, 2014), result in lamina neuron 

differentiation. In addition, during this time, R1-R6 photoreceptors terminate in the 

lamina plexus between two rows of glia, which provide an unidentified stop signal 

(Chotard, Leung & Salecker, 2005; Poeck, Fischer, Gunning, Zipursky & Salecker, 
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2001; Suh et al., 2002). Thus, different glial populations ensure that: 1) precursor 

columnar assembly and lamina neuron differentiation take place one after the other, so a 

reproducible number of precursors is present and lamina cartridges contain the complete 

set of lamina neurons; and 2) R1-R6 axons terminate in the medulla plexus and hence 

can associate with lamina neurons in the cartridges.   

 

Our understanding of neurogenesis and neuronal differentiation in the optic lobe has 

advanced greatly in recent years (Fig. 2A) (Apitz & Salecker, 2015; Erclik et al., 2017; 

Neriec & Desplan, 2016; Suzuki & Sato, 2014); in particular, with regard to the medulla 

which develops from a crescent-shaped neuroepithelium called the outer proliferation 

center (OPC). A proneural wave transforms the OPC into neuroblasts. Neuroblasts 

undergo several rounds of asymmetric division to regenerate themselves and produce 

ganglion mother cells (GMC), which divide once more to generate postmitotic medulla 

neurons. Neuronal diversity in the medulla is generated though three mechanisms. First, 

the spatial patterning of the OPC generates three distinct dorsal regions determined by 

the specific expression of transcription factors and their ventral counterparts, thus 

giving a total of 6 spatially defined regions. Secondly, as neuroblasts are formed and 

age, they express a defined series of transcription factors (Li et al., 2013). The temporal 

progression of these factors is not affected by the dorsoventral patterning of the OPC. 

Finally, Notch-dependent binary cell fate gives distinct identity to the two daughter 

cells resulting from the division of a GMC (Li et al., 2013). Recent work provides data 

indicating that the temporal axis generates specific sets of neurons over time. It also 

shows that regional differences in the OPC confer spatial identities to neuroblasts with 

the same temporal identity. It appears that this positional information is erased from 

uni-columnar neuronal types, which are generated all along the dorsoventral axis; while 
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multi-columnar neurons are generated in specific regions and require spatial input 

(Erclik et al., 2017). Global and regional neuronal specification produces the proper 

cellular diversity and stoichiometry that supports the formation of medulla columns.  

 

In contrast to the lamina, where photoreceptors induce the assembly and differentiation 

of lamina neurons, the establishment of retinotopy in the other neuropils requires further 

investigation. While photoreceptors do not seem to influence the generation of medulla 

neurons, mechanisms that match them to photoreceptors or lamina neurons and ensure 

the inclusion of the right set of medulla neurons in columns must exist. One such 

mechanism could be Eph/ephrin signaling, which regulates retinotopic mapping in 

vertebrates through graded expression of Eph receptors and ephrin ligands. The sole fly 

Eph receptor is expressed in a graded fashion in photoreceptors and the developing 

medulla (Dearborn, He, Kunes & Dai, 2002). In addition, disruption of this graded 

expression through various genetic means results in defects in both photoreceptor and 

medulla neuron axon guidance (Dearborn et al., 2002). Thus, this could be a pathway 

involved in mediating topographic recruitment of medulla neurons to their respective 

columns.  

 

In summary, a matched set of ommatida, lamina cartridges and columns formed in a 

concerted way during development ensures the maintenance of the topographic 

representation of visual information in the optic lobe.  

  

 

Circuit assembly in the lamina  
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Neural superposition and cartridge formation  

Due to the curvature and structure of the compound eye, sensory input results in a 

complex wiring pattern in the lamina. While R7 and R8 cells are one on top of the other 

and collect information from the same point in space, the optical axes of R1-R6 

photoreceptors in the same ommatidia point in different directions. One cell of each R1-

R6 subtype located in 6 surrounding ommatidia sample the same visual point as the R7 

and R8 cells in the central ommatidium. Thus, during a short time window in pupal 

development, R1-R6 axons from different ommatidia but “seeing” the same point in 

space converge onto the same lamina cartridge to make connections mostly with lamina 

neurons (Fig. 1B). However, since R1-R6 axons in one ommatidium project as one 

bundle onto the lamina, they must defasciculate to each reach a different cartridge (Fig. 

2B). To this end, each R subtype properly orients its growth cone and extends different 

distances to its target cartridge, in some cases migrating over potential targets. Given 

that there are approximately 750 ommatidia in the fly eye, the sorting of some 4500 

axons creates an intricate wiring scenario termed neural superposition (Kirschfeld, 

1967). The biological significance of this wiring patter lies in the fact that 

superimposing multiple inputs from the same point in space into a single synaptic unit 

results in an enhancement of sensitivity without incurring an acuity penalty (Laughlin, 

Howard & Blakeslee, 1987).  

 

Some aspects related to the sorting of axons have been characterized in detail 

(Meinertzhagen & Hansen, 1993). Among these are: the formation of an initial grid by 

lamina neurons that lie in the center of the cartridge and are synaptic partners of R1-R6 

cells (see above); and molecular insight into how differential adhesion plays a key role 

in growth cone sorting (Chen & Clandinin, 2008; Schwabe, Neuert & Clandinin, 2013) 
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and target selection (Prakash et al., 2009; Prakash, Caldwell, Eberl & Clandinin, 2005). 

However, while previous studies suggested the possibility of simple developmental 

rules underlying this sorting process (Clandinin & Zipursky, 2000; Meinertzhagen, 

1972; Meinertzhagen & Hansen, 1993), no rule set or algorithm sufficient to generate 

precise neural superposition has been formulated.  

 

A recent study using high-resolution intra-vital time-lapse imaging of R1-R6 neurons 

and mathematical modeling defined 3 simple rules that specify target selection (Langen 

et al., 2015). A key aspect of that work was the observation of bipolar growth cones 

forming an anchor (“heel”) at the arrival point and an extending “front”, a feature that 

had never been observed in fixed tissue, and precise quantification of filopodia 

dynamics. Briefly, these rules are as follows: (1) Scaffolding rule: prospective target 

areas are defined by a grid of growth cone heels, which form a scaffold within the 

lamina, (2) Extension rule: growth cone fronts travel with remarkable constancy (with 

angle, speed and developmental time window being specific to the photoreceptor 

subtype) to arrive at the same time at the target area and (3) Stop rule: robustness of 

growth cones stopping at the correct target, despite overlapping with multiple wrong 

targets during their extension, is increased by the overlap of growth cone fronts in the 

target area. Importantly, the mathematical model based on these rules accurately 

predicts the targeting error rates that are naturally observed at the equator of the retina 

where the orientation of the ommatidia from the dorsal and ventral sides is a mirror 

image. 

 

The proposed developmental algorithm serves as a framework to match the described 

molecular mechanisms described to the rules they execute. Indeed, some of the 
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molecular mechanisms identified so far are in accordance with the algorithm. For 

example, the scaffold may control polarization and hence the extension angle of R1-R6 

cells within a bundle through R-cell interactions mediated by a redundant network of 

cadherins (Chen & Clandinin, 2008; Schwabe, Borycz, Meinertzhagen & Clandinin, 

2014; Schwabe et al., 2013). Cell-type-specific levels of Fmi together with its 

subcellular localization, probably in heels, would generate specific adhesive 

interactions, most probably between different neighboring axons from the same 

bundles. The classical cadherin, N-cadherin (CadN), broadly localized in the growth 

cones might primarily mediate interactions between growth cones across bundles in 

addition to also functioning in intra-bundle interactions. The spatial constriction of 

axons and stereotyped intra- and inter-bundle neighbors generates stereotyped adhesive 

forces that shape and orient growth cones in a cell-type-specific manner. Live imaging 

together with selective perturbation of Fmi and CadN expression would be a way to 

validate the role of these molecules in the scaffold rule. With regard to axon extension, 

Fmi and CadN also seem to act in concert (Schwabe et al., 2013). However, it is unclear 

from the intravital imaging that extension is a separate step from orientation, or whether 

these adhesive interactions instruct extension itself (Langen et al., 2015). The 

mathematical modeling of the stop rule does not per se require interactions with lamina 

neurons in the target area, but appropriate target selection is more robust when 

combining coincidence detection of overlap of the R cell front and interactions of fronts 

with lamina neurons. Indeed, studies on CadN, together with tyrosine phosphatase 

receptor Lar and Liprin-alpha, suggest a role for this molecule in interactions between R 

cells and lamina neurons in the target region (Choe, Prakash, Bright & Clandinin, 2006; 

Prakash et al., 2009). Assessing the requirement of target cells would definitively reveal 

the relevance of lamina neurons for the stop rule.   
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Thus, the developmental algorithm that has been described, executed through afferent–

afferent interactions and mediated by the redundant use of a small number of adhesion 

molecules with different expression and subcellular localization, could direct the 

formation of a complex wiring pattern.  

 

Cartridge interconnection  

Signal integration and modular connection is already observed in the lamina neuropil. 

R1-R6 photoreceptors primarily make connections with L1, L2 and L3. Meanwhile, L4 

and L5 do not receive direct input from R cells, instead L2 establishes synaptic contacts 

with L4. Among the lamina output neurons, L4 neurons are unique in that they connect 

cartridges tiling the entire retina. Each L4 produces three primary dendrites: one that 

innervates its own cartridge; and two that project to the immediate dorso- and ventro-

posterior cartridges (Meinertzhagen & O’Neil, 1991; Rivera-Alba et al., 2011; 

Strausfeld & Campos-Ortega, 1973; Takemura et al., 2011). Live imaging and genetic 

mosaics indicate that dendritic targeting of L4 is controlled by homophilic interactions 

mediated by Dscam proteins between L4 and at least some lamina neurons in the target 

cartridge (Tadros et al., 2016). In contrast to previous studies where Dscam1 and 

Dscam2 were considered to pattern circuits through homophilic contact-dependent 

repulsive interactions (Hattori, Millard, Wojtowicz & Zipursky, 2008; Lah, Li & 

Millard, 2014; Millard, Lu, Zipursky & Meinertzhagen, 2010), Tadros and colleagues 

describe an adhesive function for Dscam2 and Dscam4 in L4 dendrite patterning. A lack 

of either gene results in the formation of extra dendritic branches innervating additional 

cartridges. This phenotype is attributed to early defects in L4 dendrites, which fail to 

stabilize in the target cartridge and thus continue extending, most probably through 
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interactions with R cells. The fact that adult Dscam2/4 mutant L4s develop dendrites 

both in their target cartridges and in extra ones, suggests that Dscam2/4 could restrict 

filopodial exploration of target cartridges.  

 

 

Circuit assembly in the medulla  

 

Formation of columnar circuits in the medulla 

The establishment of medulla columns and layers, which takes place in parallel to 

cartridge formation, are processes that have mostly been addressed through the study of 

R7, R8 and lamina neurons. A relevant aspect of column formation is the restriction of 

neuronal processes to a single column; a process akin to tiling. In addition to serving the 

function of forming a complete, yet not overlapping receptive field, columnar restriction 

also involves the regulation of dendritic morphology and field size to match synaptic 

partners in a 3D space (Luo, McQueen, Shi, Lee & Ting, 2016). The mechanisms 

regulating columnar restriction described to date are: intrinsic autocrine signaling, 

anterograde signaling, homotypic interactions between neurons of the same type in 

neighboring columns, and heterotypic interactions between different types of neurons in 

the same column.  

 

For example, R7 axons rely on two redundant intrinsic and extrinsic mechanisms to 

remain in their column (Ting et al., 2007). On the one hand, TGF-β signaling, mediated 

by autocrine dActivin (dAct) activation of Babo receptors, and Smad2 retrograde 

transport to the nucleus, prevents R7 axons from invading neighboring columns. It has 

been suggested that this signaling pathway blocks growth cone motility through 
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unknown downstream effectors (Fig. 3A). In parallel, repulsive interactions with 

neighboring R7 cells, which could be mediated by the homophilic interacting IgSF 

protein Turtle (Ferguson, Long, Cameron, Chang & Rao, 2009), contribute to the 

maintenance of R7 axons in their column.  

 

Similarly to R7, L1 lamina neurons restrict their arborizations to a single column 

through interactions with L1 neurons in neighboring columns. The homophilic binding 

IgSF member Dscam2 mediates columnar restriction through lateral contact-dependent 

repulsive interactions (Fig. 3C) (Millard, Flanagan, Pappu, Wu & Zipursky, 2007). 

Consistent with the properties of a homophilic binding mechanism between neurons of 

the same type, wild-type L1 arbors display a non-autonomous phenotype of their 

processes invading only neighboring columns containing a Dscam2-mutant L1 neuron.   

 

Adhesive interactions between neurons in the same column can act to locally limit 

arbors to a single column (Fig. 3D). Such a mechanism has been described for L5 

arborizations at M2 and M5, where CadN-mutant L5 arbors invade adjacent columns 

(Nern, Zhu & Zipursky, 2008). CadN homophilic adhesive interactions between L5 and 

L2 neurons in the same column mediate L5 interstitial arbor extension into M2 and 

restriction to the column. In addition, similar to the phenotype observed in CadN-

mutant L5 arbors, the absence of CadN in L2 results in branches of wild-type L5 of the 

same column contacting wild-type CadN-expressing L2 neurons in the neighboring 

columns. It is unclear how CadN regulates axonal tiling of L5 axonal processes in M5. 

It could be through a similar mechanism of loss of adhesion with other neuronal 

processes in that layer, where a likely candidate would be L1. Thus, even though L2 and 

L5 are not synaptic partners, this example highlights how afferent interactions can play 
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a key role in columnar restriction, and thus the local patterning of terminals within the 

target region.  

 

Anterograde signaling has been proposed as an effective mechanism through which 

afferents could coordinate development of the target region. Photoreceptor induction of 

lamina development though Hh and EGF is one such example (Fig. 5A). In addition, the 

ligand Jelly belly (Jeb) primarily generated by photoreceptor axons modulates, through 

its receptor Anaplastic lymphoma kinase (Alk), the target region (Bazigou et al., 2007; 

M. Pecot et al., 2014; see later in the text and Fig. 5B). A recent study suggests that 

anterograde signaling is also an effective mechanism to shape the receptive field of 

synaptic partners (Fig. 3B) (Ting et al., 2014). In addition to the autocrine role of TGF-

β signaling in R7 columnar restriction, dAct is also secreted from the R8 cell. In this 

case, dAct/TFG-β signaling regulates dendritic field patterning of the R8 postsynaptic 

partner Tm20 neuron, restricting its dendrites to a single column. However, the 

paracrine effect of this pathway is not specific to columnar restriction, but rather to the 

postsynaptic receptive field. dAct originating in the R7 process and acting in a paracrine 

fashion also shapes the dendritic field of postsynaptic Dm8 amacrine neurons, which 

receive inputs from some 16 R7 cells. In both cases, disruption of the dAct/TFG-β 

signaling results in the expansion of dendrites into additional adjacent columns. 

 

Layer formation in the medulla 

The development of layers is a temporal process with new layers emerging as new 

processes innervate the neuropil (Fig. 4). The stepwise nature of the medulla 

development suggests that early interactions between neurons actually happen in a 

much simpler environment than the final adult connectivity might indicate. In addition, 
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a staged development also allows for afferent target interactions that can facilitate the 

development of or encounter with synaptic partners in a local region.  

 

Given that the complex connectivity in the medulla must arise from cellular interactions 

mediated by molecular handles, the transcriptional regulation of the cell type specific 

set of molecules involved in wiring is important (Tan et al., 2015). Indeed, 

transcriptional programs play a role in R7 and R8 layer selection. The sequential 

photoreceptor differentiation in the eye translates into the sequential innervation of the 

optic lobe (Fig. 2A), resulting in a two-step targeting process (Ting et al., 2005). 

Initially, R8 axons pause in a temporary layer, while R7 axons extend deeper in the 

medulla. In mid-pupal development, once the whole retinal complement of 

photoreceptors is positioned, the second step involves the synchronized active 

movement of all R8 axons from their temporary to their final target layer (Timofeev, 

Joly, Hadjieconomou, & Salecker, 2012; Ting et al., 2005) displaying discrete growth 

cone behaviors (Fig. 4) (Akin & Zipursky, 2016). These include: a phase of extension 

followed by stabilization to their targets and an elongation phase in which R8 axons 

increase in length in concert with the growing neuropil. Starting after the stabilization 

phase and overlapping with elongation, the growth cone transforms into a synaptic 

terminal (Akin & Zipursky, 2016). R7 growth cones already position themselves in the 

vicinity of and might make early contacts with their major postsynaptic partner upon 

entering the medulla (Ting et al., 2014). Their initial relatively deeper position in the 

medulla is maintained during the R8 second step by the intercalation of processes from 

lamina neurons and other neurons (Özel, Langen, Hassan & Hiesinger, 2015). This 

passive dislocation requires their continuous recognition of their targets and 

stabilization. This is achieved through specific filopodial types and their dynamic 
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patterns at different developmental steps of column restriction, layer separation and 

synaptogenesis (Özel et al., 2015), and the regulated intrinsic axonal growth of the R7 

cell (Fig. 4) (Feoktistov & Herman, 2016; Kniss, Holbrook & Herman, 2013).  

 

The Zn-finger transcription factor Sequoia (Seq) has been shown to regulate the 

segregation of R7 and R8 growth cones in the first targeting step during initial 

innervation of the medulla through relative temporal differences in seq expression 

(Petrovic & Hummel, 2008). A recent study goes on to propose that defects in this 

initial step condition selection of their target layers due to incorrect consolidation of 

growth cone positioning in the initial targeting, thus proposing a simple developmental 

algorithm that controls layer selection (Kulkarni et al., 2016).  

 

Transcriptional control also plays a role in the second step of layer selection. Mutations 

in the NF-YC transcription factor revealed the role of the R8-specific Zn-finger 

transcription factor Senseless (Sens) in R8 layer selection, and indicated that a major 

factor in R7 layer selection is the NF-YC-dependent repression of Sens, and hence the 

R8 layer selection program in the R7 cell (Morey et al., 2008). Orthodenticle and 

Prospero transcription factors likely work in parallel to Sens and NF-YC in R8 and R7, 

respectively (Mencarelli & Pichaud, 2015; Morey et al., 2008). Direct evidence of how 

these genetic programs regulate the expression of which molecules is still lacking.  

 

Nevertheless, genetic screens have identified several cell-surface molecules that can 

promote layer recognition or stabilization of contacts between R7 and R8, and target 

neurons. In the R8 photoreceptor, Gogo and Fmi play a role in layer selection that is 

independent of their earlier function in afferent–afferent interactions during the 
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formation of the retinotopic map. Given the broad expression of Fmi in all 

photoreceptor axons and in multiple layers, the current model proposes that Gogo is a 

functional associate of Fmi that adds specificity for R8 layer targeting (Hakeda-Suzuki 

et al., 2011). Gogo is required in the first step for R8 to adhere to the temporary layer. 

Later on, Fmi antagonizes Gogo function to release the R8 growth cone from the 

temporary layer and forms complexes with Gogo to promote M3 layer targeting. 

Meanwhile, it has been proposed that the Leucine Rich Repeat cell surface molecule 

Capricious (Caps) mediates consolidation of R8 growth cones in the temporary layer 

upon entering the medulla (Kulkarni et al., 2016). In addition to specific expression in 

R8 axons, Caps is present in neuronal processes populating several medulla layers, 

including the R8 target layer (Shinza-Kameda, Takasu, Sakurai, Hayashi & Nose, 

2006). Loss-of-function phenotypes and misexpression experiments showing an 

instructive role for Caps, together with in vitro data supporting homophilic binding, 

suggested that Caps could mediate R8 layer recognition through homophilic adhesive 

afferent–target interactions (Shinza-Kameda et al., 2006). Recent additional genetic 

experiments suggest instead that the mechanism by which Caps plays a role in M3 

targeting is through adhesive interactions with a yet unidentified heterophilic ligand 

(Berger-Muller et al., 2013). In addition, the receptor Frazzled (Fra) is expressed and 

cell-autonomously required in R8 photoreceptors to target the M3 layer (Timofeev et 

al., 2012); while its ligand Netrin (Net) is localized in the prospective R8 target layer 

(see below; Akin & Zipursky, 2016; Pecot et al., 2014; Timofeev et al., 2012). A recent 

study based on live imaging and detailed quantitative analysis of hundreds of wild-type 

and mutant R8 growth cones redefined the molecular function of Fra/Net, which was 

traditionally viewed as chemoattraction signaling. R8 growth cones mutant for Fra or in 

a Net-mutant background reach and recognize the target layer essentially as wild-type 



	 23	

R8 cells. Thus showing that in this context Fra and Net are required for the attachment 

of a single process extended from the R8 growth cones to the target layer. These 

findings favor the notion that rather than promoting directed outgrowth or target 

recognition, Fra mediates adhesion to neuronal processes or the extracellular matrix in 

the target layer (Akin & Zipursky, 2016). A recent study in vertebrates shows how 

netrin-1 also acts locally promoting growth cone adhesion (Dominici et al., 2017).  

 

R7 layer selection depends on the widely expressed cell adhesion molecule CadN, 

which regulates R7 targeting to what had been described as its temporary and final layer 

(Nern et al., 2005; Ting et al., 2005). CadN-mutant R7 cells mistarget the R8 layer, and 

the penetrance of the defect increases with the developmental time of the analysis, 

thereby suggesting retraction of terminals from an initial correct targeting (Ting et al., 

2005). Similarly, removal of CadN from the target region also impairs R7 layer 

selection (Nern et al., 2005; Ting et al., 2005). Thus, it has been proposed that CadN 

mediates a permissive afferent–target interaction for layer-specific R7 targeting. This 

interaction appears to be solely adhesive in nature, because the cytoplasmic region of 

CadN, hence its signaling activity, is not required in R7 cells (Yonekura et al., 2006). 

Given that CadN is expressed in many neurons in the medulla, it has been difficult to 

understand how it contributes to R7 layer selection. A recent study using live imaging 

to analyze the filopodial dynamics of CadN-mutant R7 axons showed no initial 

targeting defects, indicating that CadN would not function as a targeting cue. Instead, a 

general slowdown of the filopodial dynamics was observed, which resulted in R7 cells 

not simply retracting but jumping back and forth between layers, including their correct 

target layer. Interestingly, CadN-mutant R7 cells still recognize their target layer but are 

unable to stabilize (Özel et al., 2015). These observations are consistent with reduced 
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adhesion, increased likelihood of destabilization of contacts even after targeting has 

concluded normally, and hence an increase in targeting defects in CadN-mutant axons 

over time. In addition, R7 axons also depend on tyrosine phosphatase receptor proteins 

PTP69D (Newsome, Asling & Dickson, 2000) and Lar (Clandinin et al., 2001; Maurel-

Zaffran, Suzuki, Gahmon, Treisman & Dickson, 2001; Ting et al., 2005). Similar to 

CadN mutants, loss of function of these genes results in R7 mistargeting the R8 layer, 

but their mode of action is not fully understood. Lar phosphatase activity seems to be 

largely dispensable, while the wedge domain facilitates the recruitment of other 

components such as CadN and various liprins (Astigarraga, Hofmeyer, Farajian & 

Treisman, 2010; Hofmeyer, Maurel-Zaffran, Sink & Treisman, 2006; Hofmeyer & 

Treisman, 2009)  

 

Molecules that regulate layer-specific targeting of the R7 and R8 axons tend to be 

widely expressed, yet they are required for targeting of these cells. Their dynamic 

expression through neuronal intrinsic transcriptional programs, together with distinct 

cellular interactions taking place during medulla development, could facilitate the 

formation of stable contacts only at particular developmental times. Indeed, this 

phenomenon can be observed for the requirement of CadN in lamina neurons (Nern et 

al., 2008). Similar to R7 and R8, their targeting of distinct medulla layers takes place in 

discrete targeting steps at specific developmental time points for each neuron. All 

lamina neurons, with the exception of L2, cell-autonomously require CadN for layer-

specific targeting. CadN functions in each of them at different time points, and the 

requirements for layer choice differ between cell types but are not layer specific. For 

example, L3 requires CadN for M3 targeting, while R8 does not; L5 for interstitial 

branching into M2, while L2 does not; L1 for targeting to M5, while L5 does not (Nern 
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et al., 2008). Different mechanisms could mediate this strikingly widespread yet cell-

type-specific CadN patterning function. Sorting by differential adhesion (Steinberg & 

Takeichi, 1994) could explain how high levels of CadN in L2 dendrites mediate L5 

interstitial branch extension into M2. The mechanisms for other cell types could be the 

specific regulation of CadN activity through other cell-surface or cytoplasmic 

molecules. Alternatively, CadN cell-type-specific phenotypes could be explained by a 

temporally distinct requirement in each neuron of its adhesive function.  

 

In addition, as our knowledge expands on how lamina neurons develop their projections 

into the medulla (Nern et al., 2008; Pecot et al., 2013), we are gaining a better 

understanding of the layer assembly process. For example, in L3 layer selection (Pecot 

et al., 2013) a first step involves L1, L3 and L5 growth cones initially targeting a 

common domain, even though they are destined for different layers (Fig. 5B). Then, L3 

in particular goes through a sculpting process that results in its segregation into the M3 

layer. Initial targeting relies on the cell-autonomous redundant functions of Sema1a 

repulsive interactions mediated by PlexA, with complementary expression in the target 

layer, and the adhesive function of CadN, in addition to other factors. The L3 sculpting 

phase depends on Sema1a through PlexA expressed in adjacent neurons. Thus, the 

current model suggests that the discrete final layer arrangement in the adult will emerge 

progressively through intercellular interactions between processes within the same or 

nearby domains. 

 

The elegance and importance of these intercellular interactions is best exemplified in 

the coordinated assembly of the independent neural connections of the motion and color 

circuits, which is based on a cascade of axon-derived signals (Fig. 5B-C). Anterograde 
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signals from R1-R6, which relay input to L3, have been shown to regulate the survival 

of the L3 neuron (Pecot et al., 2014). This effect is mediated by the R1-R6 secretion of 

the Jeb ligand (Bazigou et al., 2007; Pecot et al., 2014) and its interaction with the Alk 

receptor (Bazigou et al., 2007) expressed in L3 dendrites (Fig. 5B) (Pecot et al., 2014). 

The L3 axon is initially positioned in between the R8 and R7 terminals (Nern et al., 

2008), however, in the adult medulla, both neurons are located in the M3 layer. L3 

neurons express the ligand Netrin, which is necessary and sufficient for R8 cells, which 

respond to this signal through the expression of the receptor Frazzled, to adhere to the 

M3 layer (Timofeev et al., 2012). Thus, while L3 and R8 are not synaptic partners, L3 

survival is required for the correct targeting of R8 (Pecot et al., 2014). Interestingly, 

these two cells share several postsynaptic partners (Gao et al., 2008; Takemura et al., 

2013) and thus their interdependence ensures a link between the motion and color 

pathways.  

  

 

Connectivity in the fly visual system 

 

Approaches to visualize synapses  

Detailed maps of synaptic connectivity in the lamina and medulla neuropils have been 

generated by several Serial Section Electron Microscopy (SSEM) studies 

(Meinertzhagen & O’Neil, 1991; Rivera-Alba et al., 2011; S. Takemura et al., 2008, 

2013, 2015). That work has provided information on the synaptic partners for a given 

neuron, and the number of synapses and their spatial location (i.e., synaptic profile and 

number of synapses per layer) as well as their directionality. However, in addition to the 

technical requirements to perform SSEM, which is being substituted by Focus Ion 
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Beam Scanning Electron Microscopy (FIB-SEM), analysis of datasets is extremely time 

consuming, even in the case of the latest semi-automated reconstruction pipelines. For 

example, the manual refinement of the SSEM dataset to reconstruct 379 neurons in the 

fly visual system (Takemura et al., 2013) required approximately 14,400 person-hours. 

Thus, at the moment, assessing variations of synaptic connections among cells of the 

same type and between different animals, or at different developmental time points, or 

in different mutant backgrounds or activity-dependent scenarios with electron 

microscopy is not feasible in most instances.  

 

The limitations in the use of SSEM as an approach to detecting variations and defects in 

the connectivity map has driven researchers to develop alternative approaches to 

visualizing synapses using light microscopy. Given the elevated number of cell types 

and density of processes in neuropils, those approaches aim to effectively visualize 

synapses in sets of desired neurons. Two main types of strategies have been used. One 

is based on the targeted expression of tagged synaptic proteins to label presynaptic or 

postsynaptic structures. The most commonly used synaptic protein is Bruchpilot (Brp) a 

component of the T-bar presynaptic structure, typical of synapses in the visual system 

and the element used in transmission electron microscopy to identify an active 

presynaptic zone. Using confocal microscopy, Brp is detected as fluorescent puncta 

when stained with Brp antibody, and each puctum correlates with one active presynaptic 

zone (Fouquet et al., 2009; Hamanaka & Meinertzhagen, 2010). The expression of 

tagged Brp, either through a heterologous promoter (the Gal4/UAS system: UAS-Brp 

short fluorescent constructs) (Fouquet et al., 2009; Górska-Andrzejak et al., 2013) or 

through its endogenous regulatory sequence (BAC recombineering: Synaptic Tagging 

with Recombination (STaR)) (Chen et al., 2014), identifies the same number of 
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synapses as those identified in EM studies, as well as the spatial distribution of the 

presynaptic sites, which provides a synaptic profile (Chen et al., 2014; Sugie et al., 

2015). Thus, this type of approach can provide insight into the dynamics of synapse 

formation and the molecular mechanisms that regulate the assembly or stability of 

synapses in the visual system (Chen et al., 2014; Sugie et al., 2015).  

 

A clearer validation of presynaptic puncta could in principle come from simultaneous 

detection of postsynaptic densities. Following this line of thought, an alternative 

approach to identifying synapses is the visualization of protein interactions across the 

synaptic cleft. In GFP Reconstitution Across Synaptic Partners (GRASP), these 

interactions are observed through the reconstitution of GFP fluorescence (Feinberg et 

al., 2008; Gordon & Scott, 2009). Synaptic GRASP relies on the expression of at least 

one of the split GFP domains under a synaptic protein in one of the cell types under 

study, and the other split GFP domain, synaptically localized or not, in the other cell 

type. A recent modification allows for single-cell GRASP, and also includes a Brp-

mCherry construct in one of the cell types, confirming the synaptic nature of the 

GRASP signal and the directionality of the connection (Karuppudurai et al., 2014). In 

addition, a vesicle-tethered split GFP version (syb-spGFP1:10) can be used as an 

activity-dependent signal (Frank, Jouandet, Kearney, Macpherson & Gallio, 2015; 

Karuppudurai et al., 2014; Macpherson et al., 2015). Hence, GRASP has the potential to 

identify connectivity changes between synaptic partners. In addition, GRASP can allow 

us to identify postsynaptic partners through the expression of one of the split GFP 

components with drivers for candidate neuronal populations of the region (Lin et al., 

2016).  
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Given that overexpression of tagged synaptic proteins and GRASP components could 

alter the number of synapses between particular combinations of neurons, EM 

confirmation stands as the definitive proof of connectivity.  

 

Conversion of growth cones to synaptic terminals 

Morphological changes in growth cones have been described in detail in both 

photoreceptors and lamina neurons as they transition to synaptic terminals (Akin & 

Zipursky, 2016; Chen et al., 2014; Clandinin & Zipursky, 2002; Nern et al., 2008; Özel 

et al., 2015; Ting et al., 2005). The use of Brp has allowed to follow the formation of 

presynaptic structures in photoreceptors during development, both in fixed and live 

samples (Akin & Zipursky, 2016; Chen et al., 2014), and has provided a correlation 

between the observed morphological changes and synapse formation. The time course 

of presynaptic development is highly similar for all three classes of photoreceptor 

neurons. The formation of presynaptic sites initiates, for all these neurons, in the same 

time window, which coincides with the extension of axons marking the transition from 

growth cones to synaptic terminals. The addition of presynaptic sites continues to 

adulthood, after layer selection is completed (Chen et al., 2014). Interestingly, a recent 

study reported that different types of astrocyte-like glia populate the medulla neuropil 

and branch within particular layers and columns at the time of synaptogenesis (Richier, 

Vijandi, Mackensen, & Salecker, 2017). This observation raises the possibility that 

neuron–glia interactions influence the assembly of synapses.   

 

Gene expression changes during presynaptic differentiation in photoreceptors have 

revealed prominent and dynamic changes in associated cell-surface molecules 

consistent with the morphological transformation of growth cones to synaptic terminals 



	 30	

(Zhang, Tan, Pellegrini, Zipursky & McEwen, 2016). Expression changes in genes 

encoding presynaptic proteins are modest. Most of these genes are already expressed at 

moderate levels at early stages, well before synapse formation. However, the length of 

their 3’UTRs increased along time while enzymes regulating 3’UTR cleavage and 

polyadenylation site selection were downregulated. Together with the presence of 

enriched RNA binding protein motifs for proteins known to regulate mRNA 

localization and translation in the extended 3’UTRs, these findings reinforce the idea 

that posttranscriptional mechanisms play an important role in presynaptic 

differentiation.  

 

Molecular determinants of synaptic arrangements  

While synapses are typically depicted as a presynaptic terminal associated with a single 

postsynaptic site, other arrangements have been described. A presynaptic side abutting 

multiple postsynaptic structures is a common finding, both in the vertebrate retina and 

insect visual systems and brains (Strausfeld & Meinertzhagen, 1998). A synapse with 

two postsynaptic partners is called a dyad; while one with three is a triad; and with four 

it is a tetrad. While it is unclear what the function of these divergent synaptic 

arrangements is, some ideas have been put forward (Meinertzhagen & Sorra, 2001). 

One possible explanation for this organization is metabolic economy, whereby one 

presynaptic site influences several postsynaptic partners.	In addition, in systems with a 

relative low number of cell types, multiple-contact synapses could contribute to 

increasing synaptic complexity (i.e., progressing from an ancestral dyadic condition to 

tetrads through evolution) without the need to create new cell types. Another predictable 

function of multiple-contact synaptic structures is the strict temporal synchronization of 

the inputs to all the postsynaptic partners. Recently, a novel synaptic arrangement was 
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described for the first time in insects (Martin-Peña et al., 2014). It has been termed a 

coincident synapse and it consists of two independent cells with active zones at the 

same level on the same postsynaptic element. This results in active zones that are one in 

front of the other, maximizing the possibility of mutual influence. It has been 

hypothesized that this arrangement, although found in low percentages, could be the 

ultrastructural basis for coincidence detection and may mediate signal integration. 

Coincident synapses have been observed in the olfactory system and it would be 

interesting to assess their presence in the visual system.  

 

The lamina is one of the most completely defined networks of synaptic circuits in any 

visual system (Meinertzhagen & O’Neil, 1991; Rivera-Alba et al., 2011). The small 

dimension of the cartridges and limited number of synaptic members has allowed 

researchers to use EM approaches to study the composition of synaptic arrangements 

and molecules shaping them. Despite the reduced number of cell types in the lamina, 

the repertoire of synapses that these cells form are richly diverse: the lamina contains 

many dyads of different classes and many tetrads of the same class. R1-R6 cell tetrad 

synapses with lamina neuron dendrites contain an invariable set of postsynaptic 

elements: always one L1 and one L2 element and two additional cells, typically 

amacrine cells or epithelial glia (Meinertzhagen & O’Neil, 1991). In this developmental 

context, Dscam1 and Dscam2 homophilic repulsive proteins act redundantly to ensure 

that L1-L1 or L2-L2 complexes do not form in the tetrad (Millard et al., 2010). Given 

that dendrites of L1 and L2 randomly associate at nascent tetrads, it has been suggested 

that Dscam1/2 regulate synaptic specificity by excluding inappropriate conformations in 

multiple contact synapses.  
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Similarly, the L4 synaptic network includes reciprocal synapses between L4 dendrites 

from neighboring cartridges and dendrites of L2. These synapses are almost eliminated 

in the absence of the cell adhesion molecules Kirre, a member of the irre cell 

recognition module (IRM) (Fischbach et al., 2009). In particular, all tetrad and triad 

synapses containing more than one L4 are absent. A model in which Kirre is required to 

stabilize synapses containing a pair of L4 neurons fits with this finding (Lüthy et al., 

2014).  

 

Synaptic partner selection and synaptogenesis dependence 

Standing questions in the field include whether synapse formation is cell-autonomously 

regulated, and whether it depends on the recognition of synaptic partners.  

 

Studies carried out in the lamina suggest that formation of the correct average number 

of synapses in R1-R6 (approximately 50 synapses) is independent of their correct 

sorting into cartridges and the specific mutations causing cartridge missorting 

(Hiesinger et al., 2006). Thus, R cells in a cartridge always present the same number of 

synapses, independently of the number of R cells in that cartridge. Given that the area of 

the main postsynaptic partners (L1, L2) does not increase proportionally to the presence 

of extra R1-R6 cells in missorted cartridges, Hiesinger and colleagues interpret the 

presence of the average number of synapses in photoreceptors as a result of an 

autonomous photoreceptor cell program. Still, given that the complementary experiment 

(excess of postsynaptic partners in unaltered cartridge composition) could not be 

assessed, it has not been possible to fully rule out a postsynaptic influence (Hiesinger et 

al., 2006).  
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In addition, R1-R6 photoreceptors that aberrantly extend into the medulla through 

overexpression of the transcription factor Runt make synaptic connections in this 

neuropil (Edwards & Meinertzhagen, 2009) in addition to their wild-type connections in 

the lamina. The most striking observation of this study was the synaptic composition of 

synapses in the medulla, which, as in the lamina, were tetrads. This is in contrast to R7 

and R8 synapses that mostly form triads and occasional tetrads (Takemura et al., 2008). 

While it remains possible that misguided R1-R6 make connections with axons of their 

natural synaptic partners (L1/L2/L3) when they project as deep as to M5 (L1 

arborizations are at M1 and M5; L2 in M2; and L3 in M3), synapses formed at M6 must 

be formed with novel partners. In addition, even though the glia that invaginates 

capitate projections (sites of vesicle endocytosis) in the medulla is different from the 

glia at synaptic sites in the lamina, capitate projection size and shape in the medulla was 

characteristic of R1-R6 synapses, and different from capitate projections in R7 and R8. 

Thus, all together, this supports cell-autonomous determination of synaptic architecture 

by presynaptic terminals.  

 

The relationship between axon targeting and synaptogenesis has also been addressed in 

the R7 photoreceptor by misdirecting its axons to incorrect layers using the 

overexpression of cell-surface molecules (Berger-Muller et al., 2013). When R7 axons 

mistargeted the R8-recipient layer by means of Caps misexpression, the R7 cells 

maintained an R7-like synaptic profile. Interestingly, R7 axon misguidance through 

overexpression of Fmi and Gogo, resulted in a profile similar to that of R8 cells, 

indicating that these molecules could instruct R7 cells to make connections with R8 

postsynaptic partners. It also suggests that these molecules might control synapse 

formation at the subcellular level in R8. When R7 axons were redirected to a more 
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superficial medulla layer using Unc5, the number of presynaptic puncta was reduced. 

While the nature of postsynaptic partners in these retargeting experiments would have 

to be confirmed by EM, these results indicate that cell-surface molecules are able to 

dictate synapse loci by changing the axon terminal identity in a partially cell-

autonomous manner, but that presynapse formation at specific sites also requires 

complex interactions between presynaptic and postsynaptic elements.  

 

In the case of R8, growth cones that were mispositioned at the temporary R7 layer 

through a pulse of seq misexpression, terminate, as wild R7 cells do, in the adult M6 

layer (Kulkarni et al., 2016). Similar to R7 cells, R8 growth cones misdirected to the R7 

temporary layer are in close proximity to R7 Dm8 synaptic partners. Interestingly, a 

GRASP signal can be detected in the adult between M6 mispositioned R8 cells and 

Dm8 cells, indicating that R8 cells can also recognize Dm8 processes and form synaptic 

contacts (Kulkarni et al., 2016). It also suggests that the selection of synaptic partners is 

dependent on the initial positioning of growth cones. Although this observation was 

made with an activity-dependent modified GFP reconstitution method (syb-GRASP; 

Frank, Jouandet, Kearney, Macpherson & Gallio, 2015; Karuppudurai et al., 2014) and 

seq misexpression does not seem to affect R8 differentiation, this technique does not 

reveal the synaptic profile of the mistargeted R8 cells.  

 

The connectivity map is an invaluable starting point to study the molecular mechanisms 

and relationship behind synaptic partner selection and synaptogenesis. For instance, the 

medulla connectome has contributed to our understanding of synaptic connectivity 

through the identification of Ig superfamily ligand and receptor pairs expressed in 

synaptic partners (Tan et al., 2015). Using RNAseq and protein tagging Tan and 
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colleagues demonstrated that 21 paralogs of the Dpr family are expressed in unique 

combinations in R7, R8 and lamina neurons with different layer-specific synaptic 

connections. Expression analysis of their cognate binding partners, the 9 members of 

the Dpr interacting protein (DIP) family (Özkan et al., 2013), revealed complementary 

layer-specific expression in the medulla, which suggests that there are interactions 

between neurons expressing Dprs and those expressing DIPs in the same layer. Through 

coexpression analysis and correlation to the connectivity map, this work identified 10 

examples of neurons expressing DIPs as a subset of the synaptic partners of lamina 

neurons expressing Dprs. In addition, an accompanying study (Carrillo et al., 2015) 

focusing on the Dpr 11-DIP γ interacting pair identified paired expression in yellow R7-

Dm8 and T4/T5 medulla neurons-lobula plate tangential cell synaptic pairs. The report 

of 12 examples, between the two studies, suggests that Dpr-DIP interactions might 

regulate connectivity between the neurons expressing them. While some abnormalities 

in yellow R7 terminals have been reported in mutants for both Dpr 11 and DIP γ 

(Carrillo et al., 2015), the function of this particular Dpr-DIP pair is still unclear. 

Additional studies of this and other Dpr-DIP pairs are required to clarify their roles in 

wiring. 

 

 

Conclusions and future directions  

 

Besides the striking similarities between the fly and vertebrate visual systems, the 

power of current genetic methods has made Drosophila a successful model in the study 

of wiring specificity. Genetic screens for visual behavior have identified key 

determinants in photoreceptor axon targeting  (Clandinin et al., 2001; Lee, Herman, 
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Clandinin, Lee & Zipursky, 2001) and sophisticated genetic techniques have enabled 

studies at the single-cell level both in wild-type and mutant conditions. Nevertheless, 

the commitment of the community working with the fly to develop new tools and 

approaches to unravel the mechanisms underlying wiring specificity has been decisive 

in this past decade to expand studies beyond photoreceptors. Among these contributions 

are the efforts of several groups at the Janelia Research Campus. Their work includes 

the generation of collections of fly lines and optimized tools that are aimed at labeling 

specific neuronal cell types in the optic lobe (Jenett et al., 2012; Nern, Pfeiffer & Rubin, 

2015; Pfeiffer et al., 2008, 2010; Pfeiffer, Truman & Rubin, 2012), the EM 

reconstruction of 7 medulla columns and the generation of the medulla connectome 

(Takemura et al., 2008, 2013, 2015). These reagents and other tools have facilitated the 

study of other cell types in the visual system and expanded studies to postsynaptic pairs 

(Gao et al., 2008; Millard et al., 2007; Tan et al., 2015)  

 

Through the study of specific genes and phenotypes of distinct neuronal types, the work 

presented here has outlined general principles and developmental strategies underlying 

the wiring of the fly visual system. For one, evidences of coordinated assembly is 

present in different parts of the visual system. Starting from spatio-temporal 

differentiation of photoreceptors, which results in lamina neuron induction to ensure 

proper formation of cartridges, to an as-yet-unknown coordination in the medulla to 

ensure that a whole set of medulla neurons associates with photoreceptors and lamina 

neurons in each column. In this way retinotopy is maintained throughout the visual 

system. Stepwise assembly is a feature that is also present in different regions. It is an 

essential aspect in the assembly of cartridges with the segregation of columnar 

organization of lamina precursors and their posterior differentiation into lamina 
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neurons. Similarly, the formation of layers is a developmental process where the adult 

structure emerges through a series of intercellular interactions. The coordinated 

stepwise development is mediated by sequential axon-derived signals. This signaling, 

mostly anterograde, regulates aspects such as the postsynaptic partner number matching 

in the lamina cartridges, trophic support of neurons and modulation of postsynaptic 

neuron dendritic fields in the medulla. These strategies suggest that the developmental 

environment in which circuits assemble in a sequential fashion is much simpler than it 

is in the adult structure. This stepwise assembly facilitates interactions with limited 

numbers of neurons and results in early recruitment or dismissal of synaptic partners.  

 

From the molecular standpoint, most of the molecules identified in genetic screens tend 

to be broadly expressed (like CadN) and act in a permissive fashion, while they mediate 

the targeting of different afferents at different stages. This is in contrast to the classical 

view suggested by the chemoaffinity hypothesis (Sperry, 1963), in which neurons are 

molecularly specified to connect to their synaptic partners in a lock-and-key 

mechanism. The birth order and location of neurons together with the stepwise 

assembly of circuits limits the range of interaction options that a neuron encounters, and 

thus synaptic specificity might be mediated by the repeated use of a small set of 

molecules that could provide a spatio-temporal code for wiring specificity. Recent 

studies are challenging the idea that these molecules act as a code, and put forward the 

view that developmental algorithms based on pattern formation rules could explain 

wiring of neural circuits without the need for a code (Hassan & Hiesinger, 2015). This 

idea is based on the identification of “non-code” cell-intrinsic functions of some cell-

surface molecules. That is, if the axon-targeting or branching choice they mediate does 

not involve a target cell, they do not function as a code. Interestingly, a fair number of 
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target-independent wiring mechanisms have emerged (Petrovic & Schmucker, 2015). 

Notable examples in the fly visual system are: homotypic repulsive interactions, 

heterotypic adhesive interactions, growth factor-dependent autocrine signaling to ensure 

proper spacing, and columnar assembly in the medulla; also differential adhesion 

between afferents to drive growth-cone polarization and target specificity in the lamina.  

 

The study of mutants aims to perturb parts of the system with the hope of revealing 

gene function and uncovering rules. However, given the relevance of wiring, 

redundancy or compensatory responses to minimize the absence of one of the parts can 

confound the interpretation of the phenotypes observed, making it difficult to identify 

these rules. The recent development of live imaging protocols for photoreceptors is 

making important contributions in this direction. The observation of live growth cones 

during development is revealing cytoskeletal behavior both in wild-type and mutant 

conditions that was previously missed in fixed preparations. This approach is also 

revealing pattern formation rules, and helping to reinterpret previous findings and 

reformulate the conclusions drawn from previous studies (Akin & Zipursky, 2016; 

Langen et al., 2015; Özel et al., 2015). In addition, in vivo imaging clears the path to 

careful and detailed studies that could address remaining questions such as: whether 

genes with seemingly similar targeting phenotypes observed in fixed samples affect the 

same discrete developmental steps; if those genes differentially impinge on cytoskeletal 

behavior and what the changes they cause are; and how seemingly partially redundant 

functions converge in the regulation of cytoskeletal behavior. In addition, little is known 

about the specific molecular mechanisms and signaling pathways that link distinct cell-

surface molecules to cytoskeleton changes.   
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The knowledge we have gained as well as the new tools and technical developments 

available open exciting new avenues. The identification of synaptic pairs and reagents 

that could be used to study the development of postsynaptic partners is an exciting field. 

This is already permitting the study of the mechanisms that regulate dendrite 

development and their receptive fields (Luo et al., 2016; Ting et al., 2014). This type of 

studies, coupled with the visualization of synapses with light microscopy, will open the 

door to the study of synaptic specificity, synaptogenesis between partners and the 

exploration of synaptic plasticity in different scenarios. In addition, an important future 

application of variations to label active synapses, such as activity dependent-GRASP 

(Frank et al., 2015; Karuppudurai et al., 2014) and activity-dependent, multi-color 

fluorescence reconstitution across synapses (X-RASP) (Macpherson et al., 2015), is to 

detect functional synaptic partners in visual system regions, such as the lobula (Lin et 

al., 2016), for which no connectome has yet been generated. This will be the first step 

towards expanding our knowledge of the circuits that regulate distinct visual features 

and trace them from the medulla to higher visual centers in the brain. In addition, little 

is known about the unique components of circuits downstream of pale, yellow or dorsal 

rim ommatidia, and if or how they maintain retinotopy.  

 

It is well established that to fully understand the mechanisms regulating wiring and 

neural circuit function, in addition to neuron- neuron interactions, it is also important to 

take into account glial cell biology and glia-neuron interactions (Freeman, 2015). 

Indeed, the fly visual system contains many different glial types (Edwards & 

Meinertzhagen, 2010; Hartenstein, 2011) and some have been shown to play important 

roles in different aspects of circuit assembly. We have aimed to reflect this intimate 

relationship by including the diverse glia functions throughout the text, rather than in a 
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separate section. Glial contributions to neural circuit assembly include: the relay of 

signals to induce neuronal differentiation (i.e., lamina neurons) (Fernandes et al., 2017); 

ganglion specificity (i.e., R1-R6 photoreceptors terminating in the lamina); and the 

formation of boundaries between brain regions, facilitating axon guidance paths (i.e., 

R7 and R8 axon guidance to the medulla) (for a review of glial roles in the visual 

system, see Chotard & Salecker, 2008). Also of interest is the columnar- and layer-

specific arborization of astrocyte-like glia in the medulla neuropil at the time of 

synaptogenesis, underscoring a possible role of glia in this process (Richier et al., 

2017). Recent studies have elucidated: how differentiation of distinct glial populations 

is orchestrated (Bauke, Sasse, Matzat & Klambt, 2015; Chen et al., 2016; Sasse, Neuert 

& Klämbt, 2015; Suzuki, Takayama & Sato, 2016); the progenitor origin and migration 

of different glial subpopulations (Chen et al., 2016; Omoto, Lovick & Hartenstein, 

2016); and which drivers label and genetically manipulate distinct glial populations 

during development and in the adult (Edwards & Meinertzhagen, 2010; Edwards, 

Nuschke, Nern & Meinertzhagen, 2012; Kremer, Jung, Batelli, Rubin & Gaul, 2017). It 

is expected that this information, together with the appropriate genetic tools, will allow 

us to further test the roles of glia in wiring and circuit function; especially in the 

medulla, where glial function remains unexplored.     

 

In summary, in addition to open questions remaining, novel ones prompted by the 

progress made in the past decade will lead to further understanding of the mechanisms 

that regulate wiring. Moreover, given the similarities between the fly and the vertebrate 

visual systems (Kolodkin & Hiesinger, 2017; Sanes & Zipursky, 2010), it is expected 

that findings in both systems will continue to contribute in a complementary way to the 
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identification of conserved developmental principles regulating the wiring of neural 

circuits. 
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Figure legends 

Figure 1. Adult structure of the fly visual system. (A) Illustration representing the 

main different types of neurons in the optic lobe and their synaptic organization and 

relationship. R1-R6 photoreceptors terminate in the lamina neuropil and relay motion 

information to lamina neurons (L1-5) in synaptic units called lamina cartridges. This 

information is in turn relayed to the medulla by the axonal projections of lamina 

neurons, each with its unique arborizations in specific medulla layers. R7 and R8 

photoreceptors send color information directly to medulla layers M6 and M3, 

respectively. Motion and color information converges in medulla columns where it is 

further processed. A registered set of ommatidia, cartridges and columns ensure the 

coverage of the visual field in a retinotopic fashion. Different types of neurons in the 

medulla process the visual information. Among these are intrinsic multi-columnar 

medulla neurons such as the Dm and Pm types, with arborizations spanning more than 

one column in the distal (M1-M6) or proximal (M7-M10) medulla, respectively. The 

medulla intrinsic neurons (Mi) are uni-columnar and arborize in various layers in the 

medulla. The Tm types send processed information from the medulla to the lobula plate; 

while the TmY types, in addition, project to the lobula plate. Specific members of these 
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classes of neurons arborize in distinct layers of these neuropils. (B) Detailed schematic 

of a lamina cartridge, which is the synaptic unit that pools visual information of one 

point in space. Due to the curvature of the eye, the R cells that “see” the same point in 

space are located in different ommatidia; they converge in the central cartridge, which 

contains the axons of R7 and R8 “seeing” that same point in space. R1-R6 neurons 

make connections with L1, L2 and L3 lamina neurons. (C) Representation of the 

relative positions of R7 and R8 terminals and lamina neuron arborizations in distinct 

layers, shown separately in panel (A), in one column. Colors correspond to the cell-type 

specific color code in (A). Medulla columns contain some 80 different types of neurons; 

for simplicity only 7 are superimposed here. Among medulla neurons, many are uni-

columnar, such as Tm20, with one neuron present in each of the columns. Other 

neurons, such as Dm8, are present in fewer numbers than columns. However, with 

arborizations spanning multiple columns, they cover the visual field.  

 

Figure 2. Innervation of the optic lobe. The R cell and lamina neuron (Ln) color code 

is the same as in Fig. 1. (A) Illustration of the late 3rd instar larval eye disc and optic 

lobe. Medulla and lamina neurons are generated from the OPC neuroepithelium (NE). 

On its lateral side, after the lamina furrow (LF) lamina precursor cells (LPC) are 

generated. On its medial side, medulla neurons (Mn) originate from a proneural wave 

that transforms the NE into neuroblasts (Nb). Another profileration center, the distal 

Inner Proliferation Center (dIPC) generates distal cells and lobula plate neurons not 

depicted here. Sequential differentiation of ommatidial rows and sequential R cell 

recruitment into developing ommatidia results in sequential innervation of the optic 

lobe. This creates a wave of differentiation of lamina neurons (Ln, stacked circles in 

shades of green) and termination of R1-R6 in the lamina plexus. The wedge shape of 
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the developing medulla reflects the sequential innervation by R8 and R7 neurons. The 

wide edge of the wedge shows R8 and R7 axons of the first differentiated ommatidia 

(older); while the thin end so far only contains R8 axons from recently differentiated 

ommatidia (younger). Although not depicted for simplicity reasons, lamina neuron 

axons will extend into the developing medulla in close association with R7 and R8 

axons in each column, and project between the R8 and R7 terminals. Medulla neurons 

originate from the terminal division of ganglion mother cells (GMC). As Nb age, their 

progeny expresses distinct transcription factors giving rise to different types of medulla 

neurons and these will integrate into developing columns. (B) Detailed schematic of the 

R1-R6 selection of their respective target cartridge. Photoreceptors from a single 

ommatidia project to the lamina in a bundle. Starting at 20 hours after puparium 

formation (APF), each specific R1-R6 subtype must defasciculate, orient and extend to 

its specific target cartridge in a stereotyped fashion. This results in the formation of 

lamina cartridges pooling information from R cells “seeing” the same point in space.  

 

Figure 3. Molecular mechanisms that mediate columnar restriction. Depiction of 

the columnar organization of specific cell types in the wild-type medulla (left side of the 

panel), and the effects in mutant situations (right side of the panel). Mutant neurons are 

outlined in red. (A) It is easy to envision that cell intrinsic mechanisms regulating axon 

growth could be part of the mechanisms ensuring columnar restriction. This is one of 

the mechanisms that mediates R7 axon columnar restriction. R7 axons mutant for 

members of the TFG-β signaling pathway such as the ligand (dAct), the receptor (Babo) 

or downstream effectors (Smad2), fail to respond in an autocrine fashion to the pathway 

and extend laterally into neighboring columns. Interestingly, while R8 cells also express 

dAct, mutations do not affect columnar restriction of this cell. (B) Interestingly, dAct 
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secreted from R8 axons acts in a paracrine anterograde fashion to regulate the dendritic 

field of the Tm20 medulla neuron, a major postsynaptic partner of R8. babo and smad2-

mutant Tm20 dendrites extend into neighboring columns. (C-D) Cell–cell contact 

events between processes of neurons is another type of mechanism that regulates 

wiring. (C) Dscam2 homophilic interactions, which result in repulsive signaling, 

between neurites of L1 lamina neurons in neighboring columns during development are 

important to limit their arborization to their own column. The absence of Dscam in one 

cell causes a non-autonomous side-specific phenotype in the neighboring cell: wild-type 

dash-outlined L1 neuron dendrites invade the column where the mutant L1 neuron is 

present. (D) CadN homophilic adhesive interactions regulate L5 arbor extensions at M2 

and M5. The fact that CadN-mutant L2 neurons (outlined in red) result in an L5 non-

autonomous phenotype indicates that CadN interactions between these two neurons 

shape L5 dendritic arborization at M2. Other neurons with processes at M5 and 

expressing CadN are candidates to limit L5 arborizations at M5 to the home column.  

 

Figure 4. Formation of medulla layers. Diagram representing the development of 

medulla layers along time and axonal behaviors of the R7 and R8 photoreceptors. 

Layers were initially defined by the branching of neurons at specific location along the 

Z-axis of the medulla (Fischbach & Dittrich, 1989). Layers can be recognized by 

labeling the neuropil with molecules enriched at synaptic sites and a combination of cell 

specific markers. The diagram presented here (adapted from Ngo, Andrade & 

Hartenstein, 2017) reconstructs the development of the medulla layers based on CadN 

expression (Ngo et al., 2017). The lighter the grey color, the higher NCad expression. 

Dark grey regions represent expression domains with the lowest CadN expression. At 

late 3rd instar larval stages the developing medulla represents a single protolayer with 
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homogeneous CadN staining. At 24h APF the medulla is divided in two CadN staining 

regions separated by a band of low signal. The upper band corresponds to the protolayer 

for M1 to M6, the lower band to the protolayer M9-M10. This lower band does not 

experience major changes in CadN signal over time. At 48 h APF the protolayer for 

M1-M6 has further stratified with the appearance of a thin band of low CadN. The top 

band corresponds to the protolayer for M1 and M2. The lower band represents the 

primordium of the M4 to M6 layers. The low CadN band comprising the future M7-M8 

layers gets separated by a band of very low CadN staining, which demarcates the 

M7/M8 boundary. At 72 h APF the pattern of CadN resembles the adult expression. 

Major changes compared with the earlier stage include: the subdivision of the M3 layer 

in a middle stratum with a thin band of CadN signal surrounded by two thin dark bands, 

and the very low expression of CadN in the M5 and M6 layers. The behavior of R7 and 

R8 growth cones along these time points has been studied both in fixed and in vivo 

samples. When R7 axons project to the medulla they do so to a region that seems to 

correspond to the same region they will occupy in the adult. Passive dislocation, axon 

elongation, and specific growth cone dynamics as the medulla grows due to innervation 

by other neurons explain R7 layer selection. The R8 axon initially projects to the edge 

of the medulla and actively extends from there to the M3 layer. The stereotyped 

behavior of R8 growth cones has been carefully described. After mid pupal 

development, when R7 and R8 have positioned themselves in the protolayers that will 

give rise to their adult layer termination pattern, both neurons will undergo further 

changes. In addition to axon elongation, their growth cones’ transformation to synaptic 

terminals and synaptogenesis will proceed.  

 



	 65	

Figure 5. Stepwise development and sequential axonal derived cues shape the 

wiring of neural circuits. (A) Early on in the wiring of the fly visual system, afferent-

derived cues shape the target region. The first example is the influence of photoreceptor 

signals in directly ensuring the formation of the right number of lamina neurons 

(through Hh); and, indirectly through wrapping glia (wg) (photoreceptor-derived EGF 

to glia, Ilp from glia to lamina neurons), their proper differentiation. Another instance is 

the effect of anterograde signaling on target survival as seen in panel B. (B) R cells 

mediate survival of L3 through Jeb/Alk signaling. R8 layer selection depends on L3 

survival and the expression of Netrin, which will stabilize the R8 growth cone to its 

target layer. At the same time, the development of the medulla layers relies on cellular 

interactions between afferents. These interactions shape the medulla in a stepwise 

fashion as new afferents innervate the neuropil and protolayers evolve to the adult 

structure. In this way, L1, L3 and L5 project together, most probably through CadN 

homophilic interactions between them, to a common region delimited by Sema/PlexA-

repulsive interaction between these lamina neurons and medulla transversal axons 

(MeT). Sema/Plex-repulsive interactions are also used to facilitate L3 sculpting and 

targeting of the proto M3. (C) All together, these interactions give rise to the adult 

layered medulla. The layered pattern is based on CadN expression, as in Fig. 4.   
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