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Abstract  It has often been proposed that the well-known standard activation enthalpy-

entropy linear plots usually found in kinetic studies for many series of homologous 

reactions are mere artefacts generated by the experimental errors committed in the 

determination of the rate constants. Here it is shown that the experimental errors can 

explain the existence of a standard activation enthalpy-entropy linear correlation only 

when the temperature obtained from the slope of that plot (compensation temperature, 

Tc) is lower than or equal to the mean experimental temperature used in that study (Tm), 

that is c m  T T . However, when Tc > Tm it is necessary to accept the existence of a real, 

physicochemically meaningful correlation between the values of 
oH
 
and 

oS
 
for 

each member of the series of reactions. Four different explanations (thermodynamic 

interpretation, solvent-cage effect, formation of a binding intermediate and a 

Hinshelwood-like model) for real enthalpy-entropy compensation effects are analysed 

in some detail. 
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Introduction 

 

Arguably, the existence of an enthalpy-entropy compensation effect is the most striking 

experimental result that a researcher can find in the field of Chemical Kinetics. Indeed, one 

does not expect from a simple inspection of the law known as Arrhenius equation (although 

initially proposed by van´t Hoff), expressing the dependence of the rate constant (k) of a 

particular reaction on the absolute temperature (T) [1]:  

  

 
- 

  

a

   =    

E

RTk A e   (1) 

 

that the pre-exponential factor A and the activation energy Ea be mutually dependent (R is the 

ideal-gas constant). In fact, it can be taken as certain that the mutual dependence of the two 

empirical parameters involved in Eq. 1 was not in the minds of van´t Hoff and Arrhenius 

when developing their famous equation.  

 According to the Transition State Theory, we can also express the dependence of the 

rate constant on temperature by means of the Eyring equation: 
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where n is the kinetic order of the reaction, c
o
 is the standard-state concentration (arbitrarily 

taken as 1 mol dm
-3

), 
oH  and 

oS  are the standard activation enthalpy and entropy, 

whereas kB and h are the Boltzmann and Planck constants, respectively. The factor (c
o
)
1-n

 was 

not initially used by Eyring but more recently it has been incorporated into the equation in 
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order to assure its dimensional homogeneity [2]. The relationships between the Arrhenius and 

Eyring parameters are straight forward: 

 

o
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 (4) 

 

where Tm is the mean of the experimental temperatures.  

 Thus, if we accept that, as confirmed by many experimental data reported in the 

published literature [3-5], there exists a linear correlation between the standard activation 

enthalpies and entropies for a family of related chemical reactions (differing usually either in 

the inert substituent of one of the reactants, provided that this is an organic species, or in the 

solvent used): 

 

o o o

,o c   =     +   H H T S       (5) 

 

where
o

,oH (the standard activation enthalpy for a hypothetical reaction with 
oS  = 0) and 

Tc (the compensation temperature) are the intercept and slope of the enthalpy-entropy linear 

plot, respectively, we must also accept (and confirmed by experimental results [6]) that there 

also exists a linear correlation between the Arrhenius parameters that can be expressed as: 

 

a a,o c  =     +   ln E E RT A   (6) 

 

where a,oE  (the activation energy for a hypothetical reaction with A = 1 dm
3n-3

 mol
1-n

 s
-1

) is 

the intercept of the activation energy-logarithm of the pre-exponential factor linear plot. From 
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Eqs. 3 and 4, it follows that the intercepts of the linear correlations shown in Eqs. 5 and 6 are 

related by the mathematical expression: 
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 The slopes of the linear correlations depicted in Eqs. 5 and 6 are in most cases positive 

(Tc > 0). This means that there seems to exist a compensation effect so that to a certain 

reaction with a high value of the activation energy (or of the activation enthalpy) 

unfavourable to the reaction, corresponds also a high value of the pre-exponential parameter 

(or of the activation entropy) favourable to the reaction. This compensation effect can be 

studied either in the Ea – ln A plane or in the 
oH
 
– 

oS  plane. The linearity of those plots 

leads to the conclusion that there must exist a certain temperature at which all the members of 

the homologous series of reactions have the same rate constant. Effectively, from Eqs. 2 and 5 

this common value of the rate constant would be given by: 
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We can see that the value of kiso is independent of the particular member of the reaction series 

considered, because the values of both 
o

,oH  and Tc (the intercept and slope of the linear 

relationship given in Eq. 5) involved in Eq. 8 are constant for the homologous series of 

reactions. However, the occurrence of 
oH
 
vs. 

oS  or Ea vs. ln A linear plots does not 

warrant the existence of a common value of the rate constant (kiso) for the family of reactions, 

since (as will be shown later) the compensation effect might sometimes be just an artefact 
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resulting from experimental errors in the determination of the activation parameters. When the 

value of kiso does exist, the compensation temperature is also called the isokinetic temperature 

for the homologous series of reactions (Tc = Ti). 

 Several proposals have been made to account for these theoretically unexpected 

experimental results, but a single explanation accepted by most researchers remains so far 

elusive. Nevertheless, we can safely state that the basis of the Chemical Kinetics field will not 

be complete until the existence of experimental standard activation enthalpy-entropy linear 

correlations and the physicochemical meaning of isokinetic temperatures are satisfactorily 

explained. Some attempts to advance further in that objective are developed in the following 

sections of this article. 

 

 

Results and discussion 

 

In this section, different possible explanations for the enthalpy-entropy compensation effect 

will be studied in detail. The list of proposals considered hereafter does not try to be 

exhaustive, but only illustrative of the complexity of the problem analysed. Other plausible 

theoretical approximations have already been published by other authors [7-21]. 

 

Experimental errors 

 

It has been shown that the accidental experimental errors associated to the rate constants 

determined at different temperatures lead to errors in the values of the activation enthalpy and 

entropy that are mutually interdependent [22, 23]. Thus, the accidental errors in the activation 

enthalpy and entropy always are of the same sign, and the higher the error associated to the 
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activation enthalpy the higher the error associated to the activation entropy. Moreover, it can 

be demonstrated that these interdependent errors lead to 
oH
 
vs. 

oS
 
linear plots with slopes 

very close to the mean of the experimental temperatures.  

 In Fig. 1 an example of this kind of behaviour is shown. To generate the plot, it has 

been assumed that the kinetics of a single reaction with the typical activation parameters 
oH
 

= 50 kJ mol
-1

 and 
oS
 
= - 100 J K

-1
 mol

-1
 has been studied at five temperatures in the range 

15-35 ºC, and that the rate constants at those temperatures have been determined 20 times 

with a different set of evenly distributed random errors each time. The same calculations were 

repeated for the experimental temperature ranges 40-60 ºC and 65-85 ºC. We can see (Table 

1) that, in the three cases, the compensation temperature obtained from the slope of the plot 

exactly matches the mean of the experimental temperatures corresponding to that plot (Tc = 

Tm), as theoretically predicted by statistical models [24-26]. It is interesting to notice that in 

many of the enthalpy-entropy linear correlations reported in the literature there is also a close 

convergence between the temperatures Tc (obtained experimentally from each plot) and Tm 

(arbitrarily chosen by the researchers) [27]. 

 A second example has been analysed. In this case, it has been assumed that the kinetics 

of a set of 50 different reactions, with values of 
oH  and 

oS  mutually independent and 

randomly scattered with divergences within the range of ± 2.5% with respect to the mean 

values of the activation parameters 
oH
 
= 50 kJ mol

-1
 and 

oS  = - 100 J K
-1

 mol
-1

 (Fig. 2, 

top), has been studied in the temperature range 15-35 ºC, again with evenly distributed 

random errors within the range of ± 10% in the determination of the rate constants, leading to 

a standard activation enthalpy-entropy linear correlation (Fig. 2, bottom) but with Tc < Tm 

(Table 1). 
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 Finally, a third example has been analysed whose only difference with respect to the 

former case is that the random divergences of the activation parameters with respect to the 

mean values for the set of 50 reactions are now within the range of ± 5% (Fig. 3, top), but 

keeping the evenly distributed random errors of the rate constants within the range of ± 10%. 

An acceptable standard activation enthalpy-entropy linear correlation was also obtained in this 

case (Fig. 3, bottom) and again it is fulfilled that Tc < Tm (Table 1). 

 We can see that for a single reaction the existence of evenly distributed random errors 

in the rate constants led to a standard activation enthalpy-entropy linear plot with Tc = Tm. For 

a set of reactions with values of 
oH  and 

oS  mutually independent (scattered) the 

experimental errors in the rate constants led also to a standard activation enthalpy-entropy 

linear plot but this time with Tc < Tm. Moreover, the higher the divergences between the 

activation parameters for the series of reactions the lower will be the value of Tc with respect 

to Tm (compare the values of Tc corresponding to the last two rows in Table 1).  

 This result could be easily anticipated considering that for a set of reactions with 

scattered, mutually independent values of 
oH  and 

oS  the slope of an activation enthalpy-

entropy linear plot is naturally close to zero (see Fig. 2, top and Fig, 3, top). If we incorporate 

now an artificial correlation between the values of 
oH  and 

oS  for the series of reactions 

caused by the experimental errors in the activation enthalpy and in the activation entropy (that 

are mutually dependent on each other), the slope of the enthalpy-entropy linear plot will be 

intermediary between those corresponding to the real, scattered values of 
oH  and 

oS  (in 

the absence of errors, slope = 0, Figs. 2, top and 3, top) and to the linearly correlated values of 

oH  and 
oS  induced by experimental errors (slope = Tc = Tm, Fig. 1), thus leading to a 

compensation temperature Tc < Tm (Figs. 2, bottom and 3, bottom). 
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 The data given in Table 1 and obtained from the linear plots shown in Figs. 1-3 can be 

generalized stating the following law: The experimental errors committed in the determination 

of the rate constants can explain the existence of a standard activation enthalpy-entropy linear 

correlation only when the temperature obtained from the slope of that plot is lower than or 

equal to the mean experimental temperature used in that study ( c m  T T ). Moreover, since 

the accidental errors in the activation enthalpy and entropy always are of the same sign (either 

both positive or both negative), they can only lead to positive values of the compensation 

temperature: c m0    T T  . It should be emphasized, though, that this law does not 

necessarily mean that all the 
oH
 
vs. 

oS
 
linear plots with c m  T T  are artefacts generated 

by the experimental errors, only that in these cases the experimental-error explanation should 

be regarded as a rational alternative. Because of this, some authors have discussed the 

possibility that all the enthalpy-entropy compensation effects reported in the literature through 

the years be merely a phantom phenomenon caused by the experimental errors [28-30]. 

  However, there exist some examples in the published literature of standard activation 

enthalpy-entropy linear correlations leading to values with distinctly Tc > Tm. For instance, we 

can analyse the results reported for the oxidation of a series of substituted cinnamic acids by 

N,N-dibutyl-N-methylbutylammonium permanganate in dichloromethane solutions studied in 

the temperature range 0.0-25.0 ºC [31]. In this case, a standard activation enthalpy-entropy 

linear correlation is obtained with Tc = 627 ± 52 K (much higher than Tm = 286 K) and r = 

0.96438 (Fig. 4).  

 We can conclude that, at least in the cases when Tc > Tm, it is necessary to invoke the 

existence of a real, physicochemically meaningful correlation between the values of 
oH
 
and 

oS
 
for each member of the series of reactions, since the experimental errors cannot account 
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for a correlation of this type. In the following subsections we will analyse some possible 

explanations. 

  

The thermodynamic interpretation 

 

A simple thermodynamic interpretation of the enthalpy-entropy compensation effect is 

possible if we take into consideration that most elementary reactions involve either the 

formation of new chemical bonds or the breaking of formerly existing chemical bonds or 

both. The formation of chemical bonds in the activation process is expected to contribute 

negatively to the value of 
oH  indeed, but also to the value of 

oS , since a strongly-bonded 

activated complex is more stable (less energetic) and more ordered (less entropic) than a 

loosely-bonded one. On the contrary, the breaking of chemical bonds in the activation process 

is expected to contribute positively to the values of both 
oH  and 

oS . Hence, on the basis 

of purely thermodynamic considerations, it seems clear that some kind of enthalpy-entropy 

compensation might exist. 

 Given that the same argument can be applied to the thermodynamic 
oH
 
and 

oS  

parameters of a reaction, a similar compensation effect would be expected in this case. 

Actually, some examples have been reported where measurement of the equilibrium constants 

of a homologous series of reactions at different temperatures leads to standard reaction 

enthalpy-entropy compensation correlations. In fact, a thermodynamic isoequilibrium 

relationship can be directly deduced from kinetic considerations if isokinetic relationships 

with equal or similar slopes are associated to both the forward and reverse rate constants 

involved in the equilibrium [32].  However, there are many other examples reported where no 

enthalpy-entropy compensation effect is associated with the equilibrium constants for a series 

of related reactions. For instance, we can see in Fig. 5 that a rather scattered 
oH  vs. 

oS  
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plot (r = 0.36542) is obtained for the dissociation reactions of a series of substituted anilinium 

ions in aqueous solutions [33]. Moreover, the negative value of the slope (Tc = - 303 ± 187 K) 

indicates that an enthalpy-entropy anti-compensation effect (rather than an enthalpy-entropy 

compensation one) is present in this case. Thus, it seems that, in cases such as this, a 

compensation effect is not found in the equilibrium constant because either at least one of the 

two rate constants (forward and reverse) involved does not present any kinetic compensation 

effect or, else, the two isokinetic temperatures are very different. We can also conclude that 

considerations of a purely thermodynamic nature might not be enough to explain the 

enthalpy-entropy compensation effect usually found in Chemical Kinetics, and that a 

genuinely kinetic interpretation might be necessary. 

 

The solvent-cage effect 

 

In the case of elementary bimolecular reactions performed in solution, a compensation 

between the Arrhenius pre-exponential factor and the activation energy for each member of a 

series of homologous reactions could be predicted from the existence of the solvent-cage 

effect, according to which, after their first collision, the two reactant molecules are trapped  

inside a cage whose walls are formed by the solvent molecules, so that if the first collision is 

not efficient for the reaction to take place (because of a bad orientation or a too low energy) 

new collisions with different orientation and energy are possible before the reactant molecules 

leave the solvent cage. If we consider that, following the collision theory for elementary 

bimolecular reactions, the Arrhenius pre-exponential factor is directly proportional to the 

frequency of collisions between the reactant molecules per volume unit, we can rewrite the 

Arrhenius equation for bimolecular reactions in aqueous solution as:  
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where sc a( ,  )E T  is the average number of collisions experienced by the reactant molecules 

inside the solvent cage after their first encounter. Given that an increase of aE (from one 

member of the reaction series to another) or a decrease of temperature both lead to a decrease 

in the probability of each collision to be reactive, and so to an increase in the time of 

residence of the reactant molecules inside the solvent cage leading to an increase in the 

average number of collisions per encounter, it is clear that parameter sc a( ,  )E T  increases 

with increasing aE  and decreases with increasing T. Hence, a compensation effect is 

predicted according to this explanation, since the Arrhenius pre-exponential factor would be 

now A = sc a( ,  ) ´E T A  and would increase when the activation energy increases from a 

member of the homologous reaction series to another. Thus, according to this model, the 

enthalpy-entropy compensation effect would be caused by the fact that an increase in the 

activation energy would be partially compensated by an increase in the number of collisions 

of the reactant molecules when they become trapped inside a solvent cage after their first 

encounter. 

 However, because of the lack of a mathematical model expressing the dependence of 

the function sc a( ,  )E T  on the independent variables aE  and T, this explanation for the 

enthalpy-entropy compensation effect cannot be analyzed further from a theoretical point of 

view. An experimental confirmation of dismissal of this proposal is possible in principle if we 

take into consideration that stirring of the solution should have a pronounced effect on the 

value of sc a( ,  )E T . Since an increase in the stirring rate is expected to provoke a decrease in 

the contribution of the solvent-cage effect, it should also provoke a progressive disappearance 
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of the standard activation enthalpy-entropy compensation effect, provided that the solvent-

cage interpretation of it be correct. 

 

Formation of a binding intermediate 

 

Most elementary reactions are indeed of the bimolecular type: 

 

A  +  B        Products   (10) 

 

We can assume as a working hypothesis what is widely accepted for unimolecular reactions in 

the gas phase, that bimolecular reactions might not be elementary after all either but 

composed by a sequence of two truly elementary steps, including in this case the formation of 

a binding intermediate between the two reactants: 

 

1

1

A  +  B        A - B
k

k


   (11) 

2A - B        Products
k

   (12) 

 

Now, if we assume that the binding intermediate is in steady state, the rate law obtained for 

the reaction is: 

 

1 2

-1 2

   
   =    [A] [B]

  

k k
v

k k
  (13) 

 

and the observed rate constant can be expressed as: 
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  (14) 

 

 Application of the steady-state approximation to the assumed binding intermediate 

requires as the only condition that the forward process in the reaction depicted in Eq. 11 be 

slow enough in comparison with the backward process in the same reaction and the reaction 

depicted in Eq. 12 globally considered. This must be so because this approximation can be 

applied only to intermediates present in minute concentrations with respect to the initial 

concentration of the limiting reactant. Since, according to this approximation, the total rate of 

decay of the intermediate equals its rate of formation, the latter condition must be understood 

in terms of rate constants rather than in terms of reaction rates and, taking into consideration 

the limitations imposed on the units of the magnitudes to be compared by the principle of 

dimensional homogeneity, the condition can be expressed as 1k [B]o << -1 2 k k  (assuming 

that A is the limiting reactant, that is [B]o > [A]o). We can thus see that the steady-state 

condition is compatible with any value of the -1 2/k k  ratio, and this consideration will be 

important below when this model is checked out from a numerical point of view.  

 On the other hand, application of the Arrhenius equation to the rate constants of the 

three elementary reactions involved leads to: 
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where QA = A-1/A2 and Ea = Ea,2   Ea,-1.  

 For a series of related reactions, the main difference between its members is expected to 

be in the activation energy (Ea,2) associated to the formation of products (Eq. 12), whereas the 

activation energies associated to the forward reactions (Ea,1) corresponding to the formation of 

the intermediate (Eq. 11), as well as those associated to the respective reverse reactions (Ea,-1), 

are expected to be very similar for the diverse members of the series. Moreover, and for the 

same reason, a positive value of Ea for each reaction of the homologous series is more 

probable than a negative one (Ea,2 > Ea,-1). Assuming as an example the values A1 = 1.15 108 

M-1 s-1, Ea,1 =  50  kJ mol-1, QA = 1.77 10-2 and  Ea =  10 kJ mol-1 excellent results were 

obtained for the binding-intermediate model. As indicated above, these values are perfectly 

consistent with the hypothesis of the binding intermediate being in steady state, because the 

values of the rate constants -1k  and 2k  are not required for the calculations, but only those of 

1k  and the ratio -1 2/k k .  In the first place, both the Arrhenius (Fig. 6, top, r = 0.9999945) and 

Eyring (Fig. 6, bottom, r = 0.9999903) plots obtained for the binding-intermediate model led 

to surprisingly good linear correlations in the temperature range 20-60 ºC. We can conclude 

that, although the existence of a sum in the denominator of Eq. 15 implies the presence of a 

certain curvature in both the Arrhenius and Eyring plots, it is in typical cases too small to be 

detected and would probably be masked by the experimental errors. Moreover, from the 

Eyring plots obtained in the range Ea = 0-10 kJ mol-1 (with increments of 1 kJ mol-1), the 

standard activation enthalpy-entropy linear plot obtained for the binding-intermediate model 

yielded an excellent straight line (Fig. 7, r = 0.99955) with a compensation temperature 

significantly higher than the mean experimental temperature (Tc = 469 ± 5 K > Tm = 313 K).   

 

The Hinshelwood-like model 
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This theoretical model was initially proposed for unimolecular reactions in the gas phase. 

Interestingly enough, it leads to an expression for the rate constant according to which the 

Arrhenius pre-exponential parameter depends on (and increases with) the activation energy of 

the reaction [34]. It may be proposed, in principle, its generalization to all types of elementary 

reactions, both unimolecular and bimolecular, either in the gas phase or in solution, the 

corresponding rate constants being then given by the equation:    

 

 
- 

a   

a1 
  =   ´́   

  
( )

E

RT
sE

k A e
RT


  (16) 

 

where s can be taken as the number of different vibrational modes of the activated complex. 

This model is thus based on the consideration of the distribution of internal energy between 

the different vibrational modes of the activated complex. We can see that for values of s > 1 a 

compensation effect is straightforwardly predicted from the mathematical form of Eq. 16, 

since if the activation energy increases from one member of the homologous series to another 

(unfavourable to the reaction), the same will happen with the pre-exponential factor 

(favourable to the reaction).  

 Assuming as an example the values A´´ = 3.69 10-3 M-1 s-1, Ea = 100 kJ mol-1 and s = 

9 both the Arrhenius (Fig. 8, top, r = 0.999988) and Eyring (Fig. 8, bottom, r = 0.999983) 

plots obtained for the Hinshelwood-like model (as found also above for the binding-

intermediate model) led to excellent linear correlations in the temperature range 20-60 ºC. 

From the Eyring plots obtained in the range Ea = 100-150 kJ mol-1 (with increments of 5 kJ 

mol-1), the standard activation enthalpy-entropy linear plot obtained for the Hinshelwood-like 

model yielded a reasonably good straight line (Fig. 9, r = 0.99840) with a compensation 

temperature much higher than the mean experimental temperature (Tc = 1855 ± 35 K > Tm = 
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313 K). Although a very slight upward-concave curvature can be observed in the plot, in a 

real case it would probably pass unnoticed because of the experimental errors.   

 

Comparison between models 

 

The fact that experimental errors in the determination of the activation parameters can explain 

the existence of enthalpy-entropy compensation plots under certain particular circumstances 

has already been addressed in the literature [22-26]. The new contribution from the present 

work in relation to this problem is that for an homologous series of reactions with equally 

dispersed activation enthalpies and entropies the experimental errors can only lead to 

compensation temperatures below the mean experimental temperature ( c m  T T ). 

 On the other hand, among the different tentative explanations proposed here for the  real 

standard activation enthalpy-entropy linear relationships, both the thermodynamic 

interpretation and the solvent-cage effect have the disadvantage of offering (at least for the 

time being) only qualitative predictions of the kinetic compensation effect. On the contrary, 

both the binding-intermediate and Hinshelwood-like models are capable of offering 

quantitative explanations. 

 The latter model seems to lead to values of the compensation temperature much higher 

than the mean experimental temperature ( c m  T T ), although in most of the experimental 

results reported in the literature the value of Tc is close to that of Tm. Actually, an equation 

mathematically equivalent to Eq. 16 has already been considered for the analysis of the 

isokinetic relationship in the reaction of p-fluoronitrobenzene and azide ion performed in a 

series of different solvents, obtaining a good agreement between experimental and calculated 

activation entropies, although the compensation temperature for that reaction series was rather 

high (Tc = 1724 K) [35]. In order to decrease the difference c m  T T , the Hinshelwood-like 
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model would require a very high value of parameter s. However, as we can infer from Eq. 16, 

this would result in a strong (inverse) dependence of the pre-exponential factor on 

temperature, leading to very pronounced deviations of the experimental data from the linear 

relationships predicted by both the Arrhenius and Eyring equations, deviations that are not 

observed for lower values of parameter s (Fig. 8). 

 Thus, of the four theoretical interpretations presented in this work for the real kinetic 

enthalpy-entropy compensation effect, it is the binding-intermediate model the one that can be 

selected as the best choice to explain the experimental data. According to this proposal, the 

physical meaning that can be attributed to parameter Tc at the molecular level is related to the 

values of the activation energies associated to rate constants -1k  and 2k . For instance, if the 

compensation temperature is higher than the mean experimental temperature ( c m  T T ) it 

must be concluded that for most members of the homologous series of reactions it is fulfilled 

that 
a,2 a,-1  E E . On the contrary, if c m <  T T  it must be concluded that 

a,2 a,-1 <  E E .  In this 

way, Tc can be interpreted as a temperature high enough ( a > 0E ) or low enough ( a < 0E ) 

so that 2 -1k k . The resulting compensation effect can be immediately inferred from Eq. 14 

provided that the value of rate constant k1 be approximately the same for all the members of 

the reaction series. 

 In addition, the equation serving as mathematical base for the binding-intermediate 

model (Eq. 15) can be regarded as a generalization of the Arrhenius equation (Eq. 1). 

Effectively, Eq. 15 can be reduced to Eq. 1 under three different situations: (i) a  0E  ,  (ii) 

 

  
A

a 

   <<  1

E

RTQ e



, and (iii) 

 

  
A

a 

   >>  1

E

RTQ e



, the observed activation energy being 

a,obs a,1   E E in the first two cases and a,obs a,1 a   + E E E 
 
in the third case. Thus, Eq. 15 is 

consistent with the kinetic behavior found for the majority of the reactions, for which the ln 

kobs vs. 1/T plots lead to straight lines. Moreover, Eq. 15 can potentially explain certain 
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deviations from the standard behavior, either when the Arrhenius plot shows an upward-

concave curvature [36] or a downward-concave curvature [37]. According to Eq. 15 these two 

different deviations from the Arrhenius behavior would be caused by the two possible signs of 

the a E  parameter ( a < 0E  in the first case and  a > 0E  in the second). 

 

 

 

Conclusions 

 

The existence of evenly distributed random errors committed in the determination of the rate 

constants at different temperatures can explain the finding of standard activation enthalpy-

entropy linear plots, but only when the compensation temperature is lower than or equal to the 

mean experimental temperature used in the study ( c m  T T ). However, some theoretical 

interpretations, such as the binding-intermediate model or the Hinshelwood-like model, can 

explain the kinetic enthalpy-entropy compensation plots found with Tc > Tm. Of the different 

theoretical interpretations proposed in the present work for the real kinetic enthalpy-entropy 

compensation effect (not caused by experimental errors), the binding-intermediate model 

seems to stand out as the best choice to explain the experimental data. Additionally, this 

model can account for deviations of the Arrhenius law observed in certain particular 

reactions. 

 

 

Methods 
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The simulation of experimental errors associated to the rate constants corresponding to 

different temperatures required for the calculations involved in this work, as well as the two 

sets of mutually independent standard activation enthalpies and entropies for two homologous 

series of reactions, were obtained with the aid of a computerized generator of random 

numbers (Kaleidagraph) within the limits from – 10% to + 10% for the rate constants (Fig. 1, 

Fig. 2, bottom and Fig. 3, bottom), and from – 2.5% to + 2.5% (Fig. 2, top) and from – 5% to 

+ 5% (Fig. 3, top) for the activation parameters. Different sets of evenly distributed random 

errors in the rate constants (or of evenly distributed random activation parameters) were 

generated with that program. It was checked that the mean value of the accidental errors 

approached zero. For instance, for 100 errors with absolute value < 10% the mean was 

0.0494, what represents less than 0.5% of the maximum value considered. Normal least-

square linear regressions were employed in the determination of the compensation 

temperatures (Tc), all the pseudo-experimental points being equally weighted. 
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Table 1  Statistical data for the standard activation enthalpy-entropy compensation plots 

generated by experimental errors 
a
 

 

Tm
b
 (K) Tc

c
 (K) r

 d
 

 

 

 298
 e
 298 0.99959 

 323
 e
 323 0.99966 

 348
 e
 348 0.99970 

 298
 f
 277  0.94835 

 298
 g
 237  0.84155 

 

 

a
 Accidental errors of up to ± 10% in the determination of the rate constants 

b
 Mean experimental temperature 

c
 Compensation temperature 

d
 Linear correlation coefficient 

e
 For a single reaction with the activation parameters 

oH
 
= 50 kJ mol

-1
 and 

oS  = - 100 

J K
-1

 mol
-1

 

f
 For a series of 50 reactions with random divergences of up to ± 2.5% with respect to the 

mean values of the activation parameters 
oH
 
= 50 kJ mol

-1
 and 

oS  = - 100 J K
-1

 mol
-1

 

g
 For a series of 50 reactions with random divergences of up to ± 5% with respect to the 

mean values of the activation parameters 
oH
 
= 50 kJ mol

-1
 and 

oS  = - 100 J K
-1

 mol
-1
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Fig. 1  Standard activation enthalpy-entropy linear correlations as artefacts generated by 

accidental errors of up to ± 10% in the determination of the rate constants for a single 

reaction with the activation parameters 
oH
 
= 50 kJ mol

-1
 and 

oS  = - 100 J K
-1

 mol
-1

 

studied at the mean experimental temperatures 25.0 (circles), 50.0 (triangles) and 75.0 

(squares) ºC  
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Fig. 2  Standard activation enthalpy-entropy linear correlation (bottom) as an artefact 

generated by accidental errors of up to ± 10% in the determination of the rate constants 

for a series of 50 reactions (top) with random divergences of up to ± 2.5% with respect to 

the mean values of the activation parameters 
oH
 
= 50 kJ mol

-1
 and 

oS  = - 100 J K
-1

 

mol
-1

 studied at the mean experimental temperature of 25.0 ºC 
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Fig. 3  Standard activation enthalpy-entropy linear correlation (bottom) as an artefact 

generated by accidental errors of up to ± 10% in the determination of the rate constants 

for a series of 50 reactions (top) with random divergences of up to ± 5% with respect to 

the mean values of the activation parameters 
oH
 
= 50 kJ mol

-1
 and 

oS  = - 100 J K
-1

 

mol
-1

 studied at the mean experimental temperature of 25.0 ºC 
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Fig. 4  Standard activation enthalpy-entropy linear correlation for the oxidation of a 

series of substituted cinnamic acids by N,N-dibutyl-N-methylbutylammonium 

permanganate in dichloromethane solutions studied in the temperature range 0.0-25.0 ºC. 

Substituents: None (1), -D (2), -D (3), -CH3 (4), -C6H5 (5), o-OCH3 (6), m-Cl (7), 

m-Br (8), m-NO2 (9), m-CF3 (10), m-OCH3 (11), p-OCH3 (12) and p-CH3 (13). The 

dashed line corresponds to a linear correlation with slope = Tm =  286 K 
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Fig. 5  Standard reaction enthalpy-entropy linear correlation for the dissociation of a 

series of substituted anilinium ions in aqueous. Substituents: None (1), o-F (2), m-F (3), 

p-F (4), o-Cl (5), m-Cl (6), p-Cl (7), o-Br (8), m-Br (9), p-Br (10), o-I (11), m-I (12), p-I 

(13), o-OCH3 (14), m-OCH3 (15), p-OCH3 (16), o-NO2 (17), m-NO2 (18) and p-NO2 (19) 
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Fig. 6  Arrhenius (top) and Eyring (bottom) linear plots for the binding-intermediate 

model with A1 = 1.15 108 M-1 s-1, Ea,1 = 50 kJ mol-1, QA = 1.77 10-2 and Ea =  10 kJ 

mol-1 in the temperature range 20-60 ºC   
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Fig. 7  Standard activation enthalpy-entropy linear plot for the binding-intermediate 

model with A1 = 1.15 108 M-1 s-1, Ea,1 = 50 kJ mol-1, QA = 1.77 10-2 and Ea = 0-10 

kJ mol-1 (with increments of 1 kJ mol-1) in the temperature range 20-60 ºC   
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Fig. 8  Arrhenius (top) and Eyring (bottom) linear plots for the Hinshelwood-like model 

with A´´ = 3.69 10-3 M-1 s-1, Ea = 100 kJ mol-1 and s = 9 in the temperature range 20-60 

ºC   
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Fig. 9  Standard activation enthalpy-entropy linear plot for the Hinshelwood-like model 

with A´´ = 3.69 10-3 M-1 s-1, Ea = 100-150  kJ mol-1 (with increments of 5 kJ mol-1) and 

s = 9 in the temperature range 20-60 ºC   


