Data Driven Approach to Enhancing Efficiency and Value in Healthcare

Richard E. Guerrero Ludueña
Appendix A

Predicting the burden of revision knee arthroplasty: simulation of a 20-year horizon
Predicting the Burden of Revision Knee Arthroplasty: Simulation of a 20-Year Horizon

Richard E Guerrero-Ludueña, MSc, a,b,c, Mercè Comas, MSc, PhD, a,b,c, Mireia Espallargues, MD, PhD, a,b,c, Moisés Coll, MD, a, Miguel Pons, MD, a, Santiago Sabatés, MD, a, Alejandro Allepuz, MD, a, Xavier Castells, MD, PhD, a,b,c

aEpidemiology and Evaluation Department, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; bHealth Services Research en Chronic Patients Network (Red de Investigación en Servicios de Salud en Enfermedades Crónicas [RESCESC]), Barcelona, Spain; cAgency for Health Quality and Assessment of Catalonia (Agència de Qualitat i Avaluació Sanitàries de Catalunya [AQuAS]), Barcelona, Spain; dTraumatology and Orthopaedic Surgery Department, Hospital de Mataró, Mataró, Spain; eTraumatology and Orthopaedic Surgery Department, Hospital de Sant Rafael, Barcelona, Spain; fTraumatology and Orthopaedic Surgery Department, Hospital Mutua de Terrassa, Terrassa, Spain

ABSTRACT

Objectives: To estimate future utilization scenarios for knee arthroplasty (KA) revision in the Spanish National Health System in the short- and long-term and their impact on primary KA utilization.

Methods: A discrete-event simulation model was built to represent KA utilization for 20 years (2012–2033) in the Spanish National Health System. Data on KA utilization from 1999 to 2011 were obtained from the minimum data set. Three scenarios of future utilization of primary KA (1, fixed number since 2011; 2, fixed age- and sex-adjusted rates since 2011; and 3, projection using a linear regression model) were combined with two prophylaxis survival functions (W [worse survival], from a study including primary KA from 1995 to 2000, and B [better survival], from the Catalan Registry of Arthroplasty, including primary KA from 2005 to 2013). The simulation results were analyzed in the short-term (2015) and the long-term (2033).

Results: Variations in the number of revisions depended on both the primary utilization rate and the survival function applied, ranging from increases of 8.3% to 31.6% in the short-term and from 38.3% to 176.9% in the long-term, corresponding to scenarios 1-B and 3-W, respectively. The prediction of increases in overall surgeries ranged from 0.1% to 22.3% in the short-term and from 3.7% to 98.2% in the long-term. Conclusions: Projections of the burden of KA provide a quantitative basis for future policy decisions on the concentration of high-complexity procedures, the number of orthopedic surgeons required to perform these procedures, and the resources needed.

Keywords: burden of illness, health care utilization, osteoarthritis, simulation models.

Copyright © 2016, International Society for Pharmacoeconomics and Outcomes Research (ISPOR), Published by Elsevier Inc.

Introduction

Knee osteoarthritis is a frequent cause of musculoskeletal pain in older adults and can impair mobility and quality of life. In Spain, as in other countries, its incidence has increased as a result of population ageing and the growing prevalence of risk factors, mainly obesity [1,2].

When the disease is severe and conservative treatment fails, knee arthroplasty (KA) is a highly effective procedure [3,4]. Some studies have shown that despite KA’s high cost, it is highly cost-effective from the societal perspective over the entire lifespan [5]. In recent years, rates of KA have increased in most Western countries because of ageing, reduced surgical risk, and broader criteria for surgery [6,7].

A key point in effectiveness assessment is the survival of knee prostheses, and guidelines recommend a minimum of 90% survival 10 years after surgery [8]. Besides effectiveness assessment, it is important to take into account the future burden of revision KA and its impact on the availability of resources for primary KA in the coming years. Predictions of future demand for nonelective health services are important for decision makers, especially nowadays when there are increasing constraints on health provision. Specifically, present elective primary KAs are expected to influence the future demand for KA surgeons because of the not always lifelong duration of prostheses causing a need for urgent revision.

Health care organizations face challenges in efficiently accommodating increased patient demand with limited resources and capacity [9]. Discrete-event simulation models are increasingly being applied in the analysis of health care systems and have been accepted by health care decision makers as a viable tool for...
improving health resource planning [10]. Few authors, however, have used discrete-event simulation models for the arthroplasty process [11–13] and none to plan the future resources needed to meet the demand for revision KA. Only a few studies have evaluated international temporal trends for total joint replacements [14,15,16]. One of them showed that in the United States alone, the growth in demand for joint replacement surgery is projected to exceed available surgical and economic resources if the historic growth rates continue in the next two decades [17]. For predictions in Sweden, studies used a model with an upper asymptote and led to more conservative predictions [15,16]. None of them, however, used prosthesis survival to predict the burden of revision KA. The growth in demand for total knee surgery has major implications for national health care delivery systems, given the many years required to train surgeons and the equally complex task of planning hospital capacity. Thus, reliable projections of the demand for arthroplasties are crucial for policymakers in government, education, and industry. Importantly, reliable projections for revision arthroplasties would be particularly useful because these interventions consume greater economic resources than do primary procedures.

Thus, the aim of this study was to estimate future scenarios of revision KA utilization in the Spanish National Health System in the short- and long-term and their impact on primary KA utilization according to different scenarios of utilization and prosthesis survival.

Methods

Methodology based on discrete-event simulation models consists of defining a conceptual model to represent the reality to be analyzed, estimation of the necessary parameters, and computer programming to run the model and obtain results. The present discrete-event simulation model was developed to estimate the impact of primary KA on revision KA for the next 20 years (to 2031) in the Spanish health system. Discrete-event simulation was chosen because of its potential to include continuous survival time and the need to model the waiting list as a queue, even though a waiting list analysis was out of the scope of the study. Previous studies predicting the burden of KA used regression models based on historical data and took into account population ageing projections. Nevertheless, none of them used prosthesis survival to predict the burden of revision KA.

Conceptual Model

Figure 1 shows a schematic representation of the conceptual model. The model was built to represent the process from a primary KA to a revision KA or death. New patients in the model represented demand for primary KA, had their own characteristics, such as age and sex, and were included on a waiting list. Primary KA surgery applied to patients on the waiting list according to the estimated number of primary KAs. Each patient who underwent primary KA was assigned a survival time for the prosthesis. If the prosthesis survival was shorter than the lifetime, the patient returned to the waiting list with the highest priority. All patients needing revision had their operation. Patient death could occur at any time, representing exit from the model. Re-revision was not considered.

Parameter Estimation

Information on the sources and the values of the parameters is presented in Table 1. Population data between 1997 and 2011 were obtained from the Spanish National Institute of Statistics [17]. The lifetime distribution (probability distribution of the time until death depending on present age) was estimated through Gompertz models for men and women [18] using 2011 features on inhabitants and number of deaths [17]. See the Appendix in Supplemental Materials found at http://dx.doi.org/10.1016/j.jval.2016.02.018 for details.

The hospital discharge minimum data set of the Spanish health system was used to estimate KA utilization [19]. Data on the number of surgeries were available per year from 1997 to 2011, by sex and age group (45–64 years, 65–74 years, and ≥ 74 years). The International Classification of Diseases, Ninth Revision, Clinical Modification code 81.54 (total knee replacement) was used to identify total primary KA utilization, and codes 81.55 (revision of knee replacement, not otherwise specified) and 00.8x (00.81: revision of knee replacement, tibial component; 00.82: revision of knee replacement, femoral component; 00.83: revision of knee...

![Fig. 1 - Conceptual model.](image-url)
Appendix A. Predicting the burden of revision knee arthroplasty
predicted on the basis of an age-specific population group (aged ≥75 years), following the methodology described by Bashinskaya et al. [44]. See the Appendix in Supplemental Materials for details.

The preceding scenarios for primary KA utilization were combined with two scenarios for prosthesis survival time. The “scenario B: better survival (RACat)” function (5-year survival 96.5%) was based on the primary KAs and their first revision registered in RACat between 2005 and 2011 (n = 44,557), adjusted by age group (55-64 years, 65-74 years, and ≥75 years) and arthroplasty type (unicondylar and patellofemoral, posterior cruciate ligament-retaining and posterior-stabilized, or others) through the Cox proportional hazards models for men and women separately. A distribution was adjusted for the survival time of the most frequent group (age ≥75 years and posterior cruciate ligament-retaining and posterior-stabilized [CA-PF], Table 1). This group was also used as the baseline group for the Cox model. The hazard ratios estimated for the other categories were applied to the parameters of the distribution according to each patient’s characteristics. Table 1 includes the parameters and hazard ratios for age and type of prosthesis. The “scenario W: worse survival (AMQOS)” function (5-year survival 91.5%) considered the survival function estimated within a retrospective cohort study on KA in eight hospitals in Spain between 1995 and 2000 (n = 2,009) [31]. Survival time was modeled using the same distribution as in scenario B (Table 1). The survival functions were compared with the Australian [20] and Danish [21] KA registries, with 5-year survival rates of 96.5% and 95.0%, respectively (fig. 1). See the Appendix in Supplemental Materials for details.

Simulation and Analysis of Results

The discrete-event simulation model was built in ARENA version 14.0 (Rockwell Software, Inc., Milwaukee, WI). The results were analyzed as the mean of 100 replications in the short-term (results at year 2015) and in the long-term (results at year 2030). The survival analysis was performed using both the Kaplan-Meier method and the Cox proportional hazard model were performed using STATA version 11 (Stata Corporation, College Station, TX).

Future demand for resources for KA in the Spanish National Health System between 2012 and 2031 was estimated from the simulation outputs through operating room time. The latter was defined as the time, including anesthesia, surgery, and cleaning, that an operating room was occupied for to perform one intervention, with values of 2 and 3 hours for primary and revision surgery, respectively. The percentage of change in resource demand from 2011 was calculated.

The assumptions used in the model were developed by reviewing data from the National Joint Registers [32] and RACat, as well as from clinical expert opinion and the literature [33]. The research team, including orthopedic surgeons, epidemiologists, and statisticians, analyzed the results of the model and considered the model as valid, credible, and useful for the study objectives. Validation results on inputs and outputs are included in the Appendix in Supplemental Materials.

Results

From 1997 to 2011, a total of 473,460 KAs were registered, ranging from 12,819 to 43,602. Of these, 431,349 were primary KAs (ranging from 12,126 in 1997 to 38,756 in 2011) and 42,111 were revisions (ranging from 693 to 5,139 in 2013) (fig. 1). Simulation results confirmed that the number of primary KAs was similar throughout the simulation horizon for scenario 1 (low primary KA utilization rate) but increased for the other scenarios: 3.4% in the short-term and 32.9% in the long-term for scenario 2 (moderate primary KA utilization rate) and 21.0% in the short-term and 87.1% in the long-term for scenario 3 (high primary KA utilization rate). The variations in the number of revisions depended on both the primary utilization rate and the survival function applied, ranging from an increase of 8.3% to 31.6% in the short-term and from 38.3% to 176.9% in the long-term. These extreme values were obtained from the simulations combining scenario 1 (low primary utilization rate) and survival function B (better survival) versus scenario 3 (high primary utilization rate) and survival function W (worse survival), respectively. For the same scenario, the predicted increase in overall surgeries ranged from 0.1% to 22.3% in the short-term and from 3.7% to 98.2% in the long-term (Table 3). Resource demand in terms of operating room time showed similar or slightly higher increases than those for the overall number of KAs.

Figure 4 shows the number of primary KAs: real data between 1997 and 2011 and simulation results from 2011 to 2031, according to the three scenarios on primary KA utilization (1, low; 2, moderate; and 3, high).

Figure 5 shows the number of revision KAs: real data between 1997 and 2011 and simulation results from 2011 to 2031.

Appendix A. Predicting the burden of revision knee arthroplasty
Appendix A. Predicting the burden of revision knee arthroplasty
<table>
<thead>
<tr>
<th>Outcome</th>
<th>Scenario 1 and survival B</th>
<th>Scenario 1 and survival W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2015</td>
</tr>
<tr>
<td>Number of procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary KA</td>
<td>38,038</td>
<td>37,654</td>
</tr>
<tr>
<td>Revision KA</td>
<td>5,139</td>
<td>5,567</td>
</tr>
<tr>
<td>95% CI</td>
<td>5,132–5,146</td>
<td>5,560–5,574</td>
</tr>
<tr>
<td>Total procedures</td>
<td>43,177</td>
<td>43,221</td>
</tr>
<tr>
<td>% Revision KA</td>
<td>11.9</td>
<td>12.9</td>
</tr>
<tr>
<td>Percentage change from 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary KA</td>
<td>0.0</td>
<td>–1.0</td>
</tr>
<tr>
<td>Revision KA</td>
<td>0.0</td>
<td>8.3</td>
</tr>
<tr>
<td>Total procedures</td>
<td>0.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Operating room time demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total time (h/y)</td>
<td>91,403</td>
<td>92,009</td>
</tr>
<tr>
<td>Percentage change from 2011</td>
<td>0.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 3 - Results of the prediction of future KA utilization for each simulation scenario combining future primary KA utilization and prosthesis survival.

Appendix A. Predicting the burden of revision knee arthroplasty

inputs beyond our simulation horizon. Nevertheless, within our 20-year simulation horizon, the numbers used are comparable to real data from other countries and, thus, were considered as valid.

Finally, as we were interested in estimating the burden of revision KA for planning purposes, an analysis of waiting list times or incidence of KA was out of the scope of our study. An analysis of a waiting list at the level of the Spanish National Health System would not be applicable not only because health competences are transferred to the autonomous communities but also because a warranty time of 6 months applies to all KAs. Moreover, because re-revisions were not considered, our results on the number of revision KAs may be underestimated.
Appendix A. Predicting the burden of revision knee arthroplasty

To our knowledge, our study is the first to use simulation to predict the future burden of KA according to prosthesis survival and its impact on the demand for revision KA.

Conclusions

The simulation results demonstrated that the most important factor in the analysis is the effect of the prosthesis survival function. The required increase in resources will be relatively manageable in the short-term (a maximum of 23% in operating room occupancy time), but will be much greater in the long-term. Given the present economic constraints with no prospects for resource expansion, meeting the greater revision rate will entail reducing short- and long-term primary arthroplasties by about 1%. This trend has been observed since 2010.

Projections of the burden of revision KA require a quantitative basis for future policy decisions relating to the concentration of high-complexity procedures, the number of orthopedic surgeons required to perform these procedures, and the number of resources needed. This is important in Spain, given that the Spanish health system is publicly funded and that demand for KA is managed through waiting lists. Moreover, the methodology used in the present study will allow systematic evaluation and revision of projections for orthopedic surgery through regular updates in the coming years.

Acknowledgments

We thank Olga Martínez-Cruz, from Agència de Qualitat i Avaluació Sanitàries de Catalunya (AQuAS), for her support during the study.

Source of financial support: This research has been produced under the collaboration agreement signed by the Instituto de Salud Carlos III, an autonomous body of the Ministry of Economy and Competitiveness, and the Agència de Qualitat i Avaluació Sanitàries de Catalunya (AQuAS), under the development of activities of the Spanish Network of Health Technology and Health Services Provision Assessment Agencies of the National Health Service, funded by the Ministry of Health, Social Services and Equality.
Appendix A. Predicting the burden of revision knee arthroplasty