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Chapter 5

Routing Home Healthcare services

This chapter discusses the problem of routing healthcare professionals to deliver

home healthcare services to the patients, and how metaheuristics algorithms can be
used to solve this problem.

This chapter is structured as follows: Section 5.1 introduces the Clinical Home-
care and the impact of this system of care in National Health Services; Section 5.2
presents the Home Health Care Problem from an Operational Research point of view,
and discusses the application of the classic Travelling Salesman Problem to routing
healthcare professionals; Section 5.3 presents algorithm and the parameter selection
process; Section 5.4 presents the implementation of GA and experimental results; and

Section 5.5 summarises the chapter.

5.1 Introduction

Home healthcare is defined as a system of care provided by skilled practitioners to pa-
tients in their homes under the direction of a physician [54]. Home healthcare include
services such nursing, physical therapy, speed-language therapy, occupational ther-
apy, medical social services, medical visits, house cleaning, home life aides, old people
assistance, etc. Examples of home healthcare services are the attention of patients
with cancer; palliative care at home; home treatment of long-term conditions, care
of patients with early hospital discharge; and care home 'virtual’” wards to promote

Recovery at home [88, 89, 90].
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102 5.1. Introduction

The UK National Clinical Homecare Association (NCHA), organisation that rep-
resents companies and organisations providing clinical homecare services to 275,000
patients in the UK mentioned on their website a growth over 20% year on year [148].
NCHA defined Clinical Homecare as the provision of medicines, supplies and sup-
porting clinical services directly to patients at times and places most convenient to
them.

In a report published in 2015 in the UK [89], a group of experts from the public
and private healthcare sector concluded that the Clinical homecare helps to address

two major challenges for the NHS:

e Faster recovery, better quality of life and less hospital readmissions for patients.

e Reduction of pressure for hospital beds, waiting lists, and the number of hospi-

talised patients.

The goals of home healthcare services are to help individuals to improve function
and live with greater independence; to promote the patient’s optimal level of wellbe-
ing; and to assist the patient to remain at home, avoiding hospitalisation or admission
to long-term care institutions [54].

The NCHA summarises the benefits of Clinical Homecare as follows [148]:

e Benefits for patients. Improved treatment outcomes as a result of faster access
to treatment and regular contact and support from healthcare professionals.
Choice of location for service. Time and money saving associated with travels

and time off work. Control over treatment. Discrete and confidential services.

e Benefits for clinicians. Improved treatment outcomes by proactive prescrip-
tion management and treatment delivered according to agreed pathways and

protocols. Fully traceable supply chain. Reduced hospital capacity pressure.

o Benefits for Commussioners. Reduced capacity pressure on hospitals, treatment
costs, and working capital. Better clinical outcomes as a result of improved

adherence to treatments.

Both the NHS Five-year-forward view (FYFV) report published in October 2014
by NHS England and other bodies [154, 136], as the roadmap for NHS between 2015
and 2020, and the Next steps on the NHS FYFV report published in March 2017
[153], anticipates the further extension of clinical homecare services to treat patients

in community settings.
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5.2. Home Health Care Problem and Travelling Salesman Problem 103

5.2 Home Health Care Problem and Travelling Sales-
man Problem

As described in the Section 5.1, the Home healthcare service consists of visiting
patients who required some professional treatment in the home or other location out
of acute care settings. Home healthcare are an important component of healthcare
systems with a potential to lower the system-wide costs of delivering care and free
capacity in overcrowded care settings such as hospitals.

In Operational Research, the planning problem addressed with this service model
is known as Home Health Care Problem (HHCP). One of the first papers dealing with
this problem was published in 1997 [11], and since then many scholars have conducted
research in the application of home healthcare, considering different optimisation
criteria, for example: travel time or cost; overtime costs; number of visits; workload
balance; and waiting time for patients [133, 132, 3, 157].

The Travelling Salesman Problem (TSP) is one of the most widely studied com-
binatorial problems in Operational Research (OR) and computer science [44] [123].
The TSP presents the task of finding an optimum path through a set of given loca-
tions (cities), such that each location is passed through only once, and the salesman
returns to the start location [52]. The Travelling Salesman Problem is one of the
famous NP-hard problems, which means that there is no perfect algorithm to solve
it in polynomial time. The minimal time required to obtain optimal solution is ex-
ponential [114]. Exact algorithms, including enumeration method and branch and
bound algorithm are only suitable for small scale problems due to the limitation of
time and memory. In contrast, heuristic techniques and intelligent optimisation al-
gorithms such as genetic algorithm, ant colony optimisation and simulated annealing
are reliable to find an acceptable solution within reasonable time.

The TSP aims to find the shortest path to visit each city once and only once. Both
symmetric and asymmetric TSP can be modelled as a complete graph G = (N, A),
where N is a set of n cities, and A is a set of arcs. The cost of distance of each
arc(i,j) € A is represented in d;; in the distance matrix D. The problem is defined
as follows:

The variables:

1 if the arc(i, j) is selected in the path
T =
’ 0 otherwise
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The objective function:

i=1 j=1
The constraints:
 wy=1 jeN (5.2)
i=1
> wy=1, ieN (5.3)
j=1
Tij € {O, 1}, Z,j e N (54)
> wy=15-1, SCN (5.5)

i,jes

Where |S| is the number of nodes in set S.

Equation 5.1 shows the requirement to minimise the total cost of the tour. Con-
straints (5.2-5.5) assure that the tour visits every city once and only once.

HHCP can be compared with the TSP with some special constrains (e.g. time
windows, fixed number of travelling salesmen, maximum or minimum number of
vertices to visit, etc.) on a complete directed graph.

The HHCP can be defined as a combination of two/three problems:

e Assignment of care services to a sub-population of patients
e Assignment of care workers to specific care services

e Routing the care working team

In this chapter, the focuses is on the routing problem, directly linked with the
TSP described above. Next section includes the implementation of a metaheuristic

algorithm to solve this problem.
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5.3 Proposed solution based on a Genetic Algo-
rithm

In this section, a Genetic Algorithm (GA) approach to solve the problem of rout-
ing clinical staff to deliver clinical homecare services is presented. The problem is
modelled using the representation described above.

GA was introduced by Holland in 1975 [94], and is a search method for solving
combinatorial optimisation problems based on the natural selection process proposed
by Darwin, whereby organisms evolve by rearranging genetic material to survive in
environments confronting them (’Survival of the fittest’). The algorithm repeatedly
modifies a population of individual solutions. GA provide optimal or near optimal
solutions for both constrained and unconstrained optimisation problems. GA is part
of the Evolutionary Algorithms, a classic example of heuristic search algorithms yet
they do not yield exact optimal solutions, but will certainly help to find better optimal
solutions when compared with other algorithms within less amount of time.

Several version of GA implemented in Java are presented. The impact of differ-
ent selection strategies and genetic operators on the performance of the GA is also
analysed.

As described in Chapter 2, the GA is a general method for solving search for
solution problems (as are other evolution-inspired methods, such as evolutionary pro-
gramming and evolutionary strategies). Figure 5.1 indicates the position of the GA
in the family three of optimisation techniques classified by search techniques.

Algorithm 1 presents pseudo-code for a classic GA.

Algorithm 1 A classic Genetic Algorithm
INITTALISE population with random candidate solutions

EVALUATE each candidate solution
DETERMINE population’s average fitness

while termination condition is not true do
SELECT individuals for the next generation
RECOMBINE pairs of parents
MUTATE the resulting offspring
EVALUATE each candidate solution

end while

Each iteration of this process is called generation. The entire set of generations is

called a run. At the end of a run there are often one or more highly fit chromosomes
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Figure 5.1: Genetic Algorithms. Family three of Optimisation approaches based on
search techniques.

in the population. Since randomness plays a large role in each run, two runs with
different random-number seeds will generally produce different detailed behaviours.

Procedure described above and summarised at the Figure 5.2, describes the basis
for most applications of GAs. There are a number of details to fill in, such as the size
of the population and the probabilities of crossover and mutation, and the success of
the algorithm often depends greatly on these details. There are also more complicated
versions of GAs (e.g., GAs that work on representations other than strings or GAs
that have different types of crossover and mutation operators).

The proposed algorithm consists of chromosome representation, generation of ini-
tial population, determination of fitness function followed by the crossover and mu-

tation operation. We discuss all these steps in the following sections.

5.3.1 Genetic encoding

Chromosomes were represented using an order-based representation. Figure 5.4 shows
the this representation, where a possible solution is coded as the sequence of visited

cities (or patients).
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Population

Mutation

Crossover

Selection

Figure 5.2: Evolution flow of Genetic Algorithms.

Chromosome C' was represented as a permutation of cities (or patients) (cica...c,).
For instance, C' = 136245 represents the path 1 -3 -6 -2 — 5 — 1.

5.3.2 Initial population

The initial population is a randomly generated set of chromosomes in which each
chromosome is a collection of numbers which represent a path.

The initial population was created by using the encoding representation described
above. A random population of 1,000 individuals was generated with the same path
for all of them (1 — 2 — 3... — n). A permutation based on Order changing- where
two numbers are randomly selected and exchanged - was applied 4n-times to all of
them. The same population size was used through all the process. Initial population

generation algorithm is shown in Algorithm 2.
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Figure 5.3: TSP instance with 51 cities to visit (eil51.tsp) from TSPLIB library.

(a) Patients to visit (b) Selected path (c) Chromosome

Figure 5.4: Order-based representation: the chromosome (possible solution) is coded
as the sequence of cities (or patients) to visit. In (a), the set of patients to visit are
shown. In (b), a path selected to visit all patients is shown. In (c), the associated
chromosome is represented as the sequence of the visited patients.
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Algorithm 2 [Initial Population

InitialPopulation = [ |;

for all chromosome members of population do
for all genes of chromosome do

gene; =1
end for
SWAP genes randomly selected
end for

5.3.3 Estimation of fitness function

The fitness value of a chromosome represents its level of quality on the basis of the
objective. In the proposed implementation, the goal is to select the shortest tour. is
the criterion of individuals’ quality and it is associated with the objective function.

Equation 5.6 shows the definition of fitness function, in which d, is the distance

CiCi+1

—1 . .
between ¢; and ¢;y1, and Y7771 dee,,, + de,e, 18 the tour distance.

n—1 -1
fitness = (Z Aeesy + dcnq) (5.6)

=1

5.3.4 Selection and genetic operators

To the selection of parents to be reproduced to the next generation, the fitness was
compared using a k-tournament selection, with k = 2. Two individuals were randomly
selected and then the individual (or chromosome) with greater fitness was selected
into the next generation.

After several experiments, the mutation rate that consistently generated the best
solutions was selected. An order changing permutation encoding was used as a mu-
tation operator, with a probability of 0.0001. Invert-section permutation was used as
for crossover with a probability of 0.0001 of crossover. Figure 5.5 shows the effect of

this two genetic operators in a chromosome.

5.4 Experimental results

Several experiments were done to compare the performance of the implementations

of GA, using different initialisation techniques, population size, genetic parameters,
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5 Ci 5
|
5 o3 4| 2 6 3 1 S
(a) Order changing (b) Invert-section

Figure 5.5: Genetic Operators for mutation and crossover. (a) shows the effect of the
Order changing mutation operators over the chromosome (', selecting the nodes 3
and 6. (b) shows the effect of the Invert-section operator used as a crossover.

and processes to create generate the offsprings, with instances extracted from TSLIB
[175].

The GA was coded in Java on a computer with 2.90 GHz CPU and 16 GB physical
RAM. Each case run 50 times, and the average value was collected for analysis.

In the first implementation (GAO1), the instance eil51.tsp (see Figure 5.3) was
solved using the genetic encoding and genetic operators in the same manner as de-
scribed above. The process of evolution ends after 50,000 generations.

Figures 5.6 and 5.7 demonstrated the convergence process after 50,000 generations
of the GA, in a run for an instance with 51 cities or patients to visit, average and best
solution for each generation are presented, as well as the optimal solution extracted
from the TSPLIB website [175]. Figure 5.7 shows the performance of the algorithm for
the 250-first generations, with a convergence to a population with a small variability
between individuals after 10 generations.

Figure 5.8 shows the best solution for the first generation randomly generated, the
best solution found after 50,000 generations, and the optimal solution. The initial
solution has a length of 1,358 units, and the best solution of the GA was 435. Optimal
solution reported at the TSPLIB website for this problem is 426.

Different seeds are used to generate random numbers involved in the initialisation,
selection, reproduction, and replacements operations of a GA. Random numbers are
used to generate the initial population, to select the parents in each generation, to
create new offspring through the application of mutation and crossover operators,

etc. Figure 5.9 demonstrates the impact of the random seed in the performance of
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Figure 5.6: Performance of the Genetic Algorithm: graph shows the average and best
solution in each generation. Optimal solution extracted from TSPLIB website is also
included.

the GA. The graphs shows the results of 20 runs with the same parameters and with
different seeds. Lines represents the minimum, average, and maximum tour length.

Figures 5.6, 5.7, and 5.9 shown the GA performance with pre-defined parameters
such population size, crossover rate, and mutation rate (selected experimentally).

Below we present an evaluation of the combined impact of those parameters in the
performance (tour length), and in the execution time. Figure 5.10 shows the impact
of mutation rate and population size for different crossover rates on the tour length.
Figure 5.11 shows the impact on the execution time.

As Figure 5.10 illustrates for six datasets, the surfaces defined by these points
do not vary significantly from one crossover rate to another. We observed two main
trends. Tour length decrease with the population size. Impact of mutation rate
decreases with population size. Interestingly, a good performance is observed A dif-
ference of less than 5% with the optimal solution (426) is observed without relation

with crossover nor mutation rates, when a GA is implemented with population over
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Figure 5.7: Performance of the Genetic Algorithm for the 250-first generations: graph
shows the average and best solution in each generation. Optimal solution extracted

from TSPLIB website is also included.
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(a) Best solution for initial population

(b} Best solution after 50,000
randomly generated

generations
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Figure 5.8: TSP instance with 51 cities to visit (eil51l.tsp) from TSPLIB library.
Random solution, best solution with GA, and optimal solution.
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Figure 5.9: Performance of the Genetic Algorithm: graph shows the impact of the
random seed in the performance of the algorithm. Minimum, average and maxi-
mum tour length after 20 runs with the same parameters and with different random
numbers.

1,000 chromosomes. Figure (f) shows the effect of a crossover rate = 1 (i.e., the
crossover operator is applied to all the chromosomes selected for the next genera-
tion), providing additional randomness when the algorithm is applied to an small
population.

In Figure 5.11, execution time remains constant (near zero) until the population
size grows to a value between 100 and 1,000, after that, the execution time grows
exponentially with the population size in most of the cases. The surfaces defined
by these points vary significantly from one case to another when the population size
is over 1,000 chromosomes. The choice of the mutation rate does not have a clear
impact on the execution time (See for example (b) and (f)).

Overall, this analysis suggest that not only the best pair crossover and mutation
rates are important, but mainly the population size to find a good solution without

sacrificing execution time. It is particularly important when implementing Genetic
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Figure 5.10: Impact of parameters on the Genetic Algorithm performance: x-axis
represents the population size (log); y-axis represents the mutation rate (log); and
z-axis shows the tour length.

Algorithm to solve real world problems, as is the case of the home care routing
problem analysed in this chapter.
5.4.1 Conclusions

This chapter described how Metaheuristic optimisation can be used to solve complex

problems associated, for example, with scheduling or routing in healthcare. Particu-
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Figure 5.11: Impact of parameters on the execution time: x-axis represents the pop-
ulation size (log); y-axis represents the mutation rate (log); and z-axis shows the
execution time.

larly, Genetic Algorithm was implemented to solve a simplified version of the Home
Care Healthcare Problem, focusing on the problem of routing healthcare professionals
to deliver home healthcare services to the patients.

The basics of optimisation and the Travelling Salesman Problem were presented.
Genetic Algorithm was introduced in order to shed new light on the impact of pa-
rameters selection in its performance and execution time. An theoretical case was

solved using a benchmarking dataset.
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Several commercial options are currently available to solve this and much more
complex problems related with scheduling and routing healthcare professional, never-
theless, in this chapter we described an alternative approach using only open source
tools.

Future research can consider the solution of a problem with multi-agents, or ad-
ditional constraints as time-windows for the patient visit, work-load balance between
clinical staff, or patients preferences. Additional metaheuristic can also be analysed.

Metaheuristic optimization deals with optimization problems using metaheuristic
algorithms. This approach can provide a useful solution to tackle complex problem
in healthcare, and through this, enhancing efficiency and value. Metaheuristic al-
gorithms remains an open field of research for which many questions are still left

unanswered, even regarding well-established methods.

5.5 Chapter Summary

Section 5.1 introduced the problem of routing healthcare professionals to deliver home
healthcare services to the patients. Section 5.2 presented the Home Health Care
Problem and the Travelling Salesman Problem. Section 5.3 described a solution based
on a Genetic Algorithm (GA), described the algorithm and the process of parameter
selection. Section 5.4 presented the implementation of GA and the experimental

results. Finally, Section 5.4.1 summarised the conclusions and future research.
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