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Abstract

Linear polarizers are commonly used for projecting the direction of the elec-
tric field of a transverse paraxial beam on the direction of the polarizer axis.
However, the use of these devices with highly convergent field poses a practical
problem because the non transversal character of electric field. In this article,
we discuss the behavior of highly focused beams with spiral polarization when
they pass through a polarizer. Interestingly, beams with azimuthal polarization
display a non negligible irradiance in the direction of propagation after passing
through a polarizer. On top of that, we found that the irradiance of a highly
focused radially polarized beam after a polarizer is notably different from the
projection of the field on the direction of the polarizer axis.
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1. Introduction

Polarizers are devices present in almost all optical systems. They are de-
signed to project the electric field in the direction of the polarizer axis and in
addition, they can be used to analyze the state of polarization of light. In par-
ticular, it is well known that the Stokes parameters can be determined with the5

help of a linear polarizer used in combination with a λ/4 plate. It is assumed
that polarizers are intended for paraxial beams with the electric field vibrat-
ing in a plane transverse to the direction of propagation. As some authors
have pointed out [1–3], the use of polarizers with highly focused beams raises
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doubts about how the beam is modified due to the presence of a non-negligible10

longitudinal electric field component.
Nowadays, highly focused beams are present in a variety of scenarios and

multiples studies and potential applications have been proposed in the litera-
ture [4–17]. For this reason, we have recently published a study on how linear
polarizers modify a tightly focused field when these devices are placed at the15

focal plane of a high numerical aperture objective lens [18]. The polarizer was
modeled as a plane-parallel uniaxial absorbing medium with the optical axis
parallel to the plate surfaces of the polarizer [19–22]. We found that the elec-
tric field component in the direction of propagation and the influence of the
Fresnel coefficients modify the performance of the polarizer. In particular, it20

was demonstrated that the Malus’ law is not strictly fulfilled for highly focused
beams. In the present paper, we focus on analyzing how beams with spiral
polarization are modified when they passes through a linear polarizer. The
important cases of radial and azimuthal polarization are discussed in depth.

The article is organized as follows. Section 2 reviews basic concepts on prop-25

agation of electric fields in the focal area (Richards-Wolf equation). In section
3, we describe a theoretical model for O-type polarizers and the projection vec-
tor equation for the angular spectrum of plane waves are also considered. We
also study how the projection of the angular spectrum modifies the components
of the electric field after passing though the polarizer. In particular, we focus30

our attention on spirally, radially and azimuthally polarized beams. In section
4 we discuss several parameters that are useful to provide more insight on the
behavior of the beam after crossing the polarizer. Finally, the conclusions are
presented in section 5.

2. Electromagnetic fields in the focal area35

The Richards-Wolf equation provides the framework to describe convergent
electromagnetic beams in the focal region of a a high NA lens. This formula pro-
vides a relationship between the transverse illuminating beam Ei = (Eix, Eiy, 0)
and the focused field distribution E [23]:

E(r) = A

θM∫
0

2π∫
0

E0 exp(−ikr · s) sin θdθ dϕ . (1)

Here r = (r, φ, z) denotes the polar coordinates at the focal area, A is a con-
stant value, k is the wave-number, θM is the semi-aperture angle (related to
the numerical aperture (NA) by means of NA=sin θM ), θ and ϕ are the coor-
dinates at the Gaussian sphere of reference and the wave-front vector s reads
s = (sin θ cosϕ, sin θ sinϕ, cos θ). E0 is the so-called vectorial angular spectrum,
namely

E0 =
√

cos θ (f1e1 + f2e2) =
√

cos θ
(
(Ei · e1) e1 +

(
Ei · ei2

)
e2

)
(2)
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where f1 and f2 are the azimuthal and radial transverse components of the
incident transverse field Ei respectively. Vectors e1, e2 and ei2 are described by:

e1(ϕ) = (− sinϕ, cosϕ, 0) (3a)

ei2(ϕ) = (cosϕ, sinϕ, 0) (3b)

e2(ϕ, θ) = (cos θ cosϕ, cos θ sinϕ,− sin θ). (3c)

Note that e1, e2 and s form a triad of mutually orthogonal right-handed system
of unit vectors. Figure 1 summarizes the systems of coordinates used (a) at
the entrance pupil, (b) at the Gaussian sphere of reference and (c) at the focal
plane.

Figure 1: Coordinate system and geometrical magnitudes.

3. Focused beams passing through polarizers.40

Linear polarizers have been described as a uniaxial anisotropic plane-parallel
media of thickness L. The optical axis is assumed to be parallel to the plate
surfaces and multiple internal reflexions are ignored[21, 22]. If the ordinary and
extraordinary refractive indexes of the material are very similar, the incident
and transmitted beams are related by

Pβ [E0] = exp (−ikn̂oL) (E0 · qo) po + exp (−ikn̂eL) (E0 · qe) pe . (4)
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where n̂o = no − iκo and n̂e = ne − iκe are the ordinary and extraordinary
complex refractive indices; Pβ [ ] the linear operator that mathematically de-
scribes an ideal linear polarizer whose optical axis (c-axis) is described by
(cosβ, sinβ, 0). Thus, vectors qo, po, qe and, pe are given by

qo = ts cosψ e1 − tp sinψ e2 (5a)

po = t′s cosψ e1 − t′p sinψ e2 (5b)

qe = ts sinψ e1 + tp cosψ e2 (5c)

pe = t′s sinψ e1 + t′p cosψ e2 (5d)

where cosψ and sinψ read

cosψ =
cos θ0 cos (ϕ− β)√

1− sin2 θ0 cos2 (ϕ− β)
(6a)

sinψ = − sin (ϕ− β)√
1− sin2 θ0 cos2 (ϕ− β)

. (6b)

The Fresnel transmission formulae for the first surface of the polarizing plate
reads:

ts =
2 cos θ

cos θ + no cos θ0
(7a)

tp =
2 cos θ

cos θ0 + no cos θ
(7b)

where θ0 is the refraction angle, i.e. sin θ = no sin θ0. The Fresnel coefficients
for the second surface are:

t′s =
2no cos θ0

cos θ + no cos θ0
(8a)

t′p =
2no cos θ0

cos θ0 + no cos θ
. (8b)

O-type polarizers transmit ordinary waves and attenuates extraordinary
ones, i.e. κo ' 0 and κe > 0 and thus, Pβ [E0] = (E0 · qo) po and the polarizer
axis direction is (− sinβ, cosβ, 0). Accordingly, the electric field of a focused
beam after the polarizer Pβ [E (r)] is obtained by projecting each contributions45

of the angular spectrum Pβ [E0]. In this case, the Richards-Wolf equation Eq.(1)
reads [18]

Pβ [E(r)] = A

θM∫
0

2π∫
0

Pβ [E0] exp(−ikr · s) sin θ dθ dϕ

= A

θM∫
0

2π∫
0

[(
E0 · qo

)
po

]
exp(−ikr · s) sin θ dθ dϕ (9)
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Equation 9 clearly states that the field after the polarizer is non-uniform polar-
ized and depends on the polarization state and topological charge of the vector
angular spectrum E0, and the NA of the focusing lens. In order to provide more50

insight on the meaning of the projected term Pβ [E(r)], it is straightforward to
derive Eqs. 10 and 11(a-c) from Eqs. 9 and 5:

Pβ [E0] = (E0 · qo) po =
√

cos θ (f1e1 + f2e2) (ts cosψ e1 − tp sinψ e2) p

=
√

cos θ (f1ts cosψ − f2tp sinψ)
(
t′s cosψ e1 − t′p sinψ e2

)
(10)

and thus,

Pβ [E0]x =
√

cos θ (f1ts cosψ − f2tp sinψ)
(
−t′s cosψ sinϕ− t′p sinψ cos θ cosϕ

)
(11a)

Pβ [E0]y =
√

cos θ (f1ts cosψ − f2tp sinψ)
(
t′s cosψ cosϕ− t′p sinψ cos θ sinϕ

)
(11b)

Pβ [E0]z =
√

cos θ (f1ts cosψ − f2tp sinψ) t′p sinψ sin θ . (11c)

Interestingly, Eq. 11c clearly shows that the beam after the polarizer dis-
plays a non-negligible longitudinal component even if the input beam is az-
imuthally polarized, i.e. when f2 = 0. The components of the input beam
Ei = (Eix, Eiy, 0) of a spiral polarized beam fulfills the following equations:

Eix = E cos(ϕ+ α) (12a)

Eiy = E sin(ϕ+ α). (12b)

as stated in [24]. Note that when α = 0 (α = π/2), radially (azimuthally)
polarized beams are obtained [25]. Now, we illustrate the behavior of Eqs. 1055

and 11 for three values of α: 0 (radially polarized), π/4 (spirally polarized)
and π/2 (azimuthally polarized). The polarization map of this kind of beams is
shown in Fig. 2.

Figures 3(a) and 3(b) show the irradiance distributions of the focused electric
field for a radially polarized beam before and after passing through a polarizer60

respectively. In what follows, the polarizer axis is set to the horizontal direction,
i.e. β = π/2. Moreover, the components images are normalized to the maximum
value of the total irradiance IT . The numerical aperture is set to NA=0.95.
Figures display the irradiances of the x−component Ix = |Ex|2, y−component
Iy = |Ey|2, z−component Iz = |Ez|2, the transverse part It = Ix + Iy, the total65

field IT = Ix+Iy +Iz and the 3D polarization map. The polarization axis is set
in the horizontal direction and thus, Iy = 0 in Fig. 3(b). Since the irradiance
of the longitudinal component is high, the total irradiance after the polarizer is
quite different when compared with the x−component before the polarizer.

The same calculations have been carried out for an azimuthally polarized70

beam [see Fig. 4]. In agreement with Eq. 11(c) for f2 = 0, it is worth to point
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Figure 2: Polarization map: left: radial polarization, center: spiral polarization α = π/4,
right: azimuthal polarization

Figure 3: Radially polarized beam NA=0.95, α = 0: (a) before and (b) after the polarizer.
Both subfigures display the following distributions: Ix, Iy , Iz , It, IT , and the polarization
map. Note that irradiance Iz after the polarizer is weaker when compared with Iz before the
polarizer.

out that Iz 6= 0 after the polarizer. Finally, a spirally polarized beam with
α = π/4 is also considered. Figs. 5(a) and 5(b) show the behavior of this field
before and after the polarizers respectively.

4. Analysis of the irradiance of the electric field after the polarizer75

In this section we introduce several parameters that may help to better un-
derstand the behavior of focused fields passing through a polarizer: (i) εz is
the ratio of the integrated irradiance of the longitudinal component and the
total integrated irradiance of the beam; (ii) τ is the ratio of the total inte-
grated irradiance of the polarized beam and the total integrated irradiance of80

the focused beam after the polarizer; (iii) βz is similar to εz but referred to the
polarized beam; finally, (iv) τz relates the integrated irradiance of the longitu-
dinal component of the projected beam and the total integrated irradiance of
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Figure 4: Azimuthally polarized beam NA=0.95, α = π/2: (a) before and (b) after the
polarizer. Both subfigures display the following distributions: Ix, Iy , Iz , It, IT , and the
polarization map. Note that irradiance Iz after the polarizer is not zero.

Figure 5: Spirally polarized beam NA=0.95, α = π/4: (a) before and (b) after the polarizer.
Both subfigures display the following distributions: Ix, Iy , Iz , It, IT , and the polarization
map.

the beam before the polarizer. Equations 13(a-d) indicates how this parameters
are calculated.85

εz =

∫ ∫
|Ez(r)|2 sinφdr dφ∫ ∫
|E(r)|2 sinφdr dφ

(13a)

τ =

∫ ∫
|Pβ [E(r)]|2 sinφdr dφ∫ ∫
|E(r)|2 sinφdr dφ

(13b)

βz =

∫ ∫
|Pβ [E(r)]z|2 sinφdr dφ∫ ∫
|Pβ [E(r)]|2 sinφdr dφ

(13c)

τz =

∫ ∫
|Pβ [E(r)]z|2 sinφdr dφ∫ ∫
|E(r)|2 sinφdr dφ

(13d)

Figure 6 shows the behavior of these parameters as a function of NA. As
expected, εz increases with NA and is always zero for azimuthally polarized
beams. τ compares the total energy of the transmitted and the incident beam:
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Figure 6: Behavior of the integrated irradiance parameters:(a) εz (b) τ , (c) βz and (d) τz

this parameter ranges from 0.4 to 0.5 and displays an increasing or decreasing
behavior depending on α. Since the polarizer operator depends on the Fresnel90

formulae, the polarization direction of the beam plays a role in the interpretation
of the behavior of this parameter. βz behaves in a similar way to εz but this
parameter is related to the field after the polarizer; interestingly, βz 6= 0 for
azimuthally polarized beams. Moreover, the longitudinal component can be
larger for the transmitted beam when compared with the impinging one: for95

instance εz(NA = 0.95, α = π/4) < βz(NA = 0.95, α = π/4) (see Figs. 6(a) and
6(c)). At last, τz is similar to τ but referred to the z− component. Note that
the three curves considered increase with NA:

Finally, we introduce parameter ρ described in Eq. 14. Note that ρ is closely
related to the similarity factor introduced in [26].

ρ =

∫ ∫
|Pβ [E(r)]| |Ex(r)| sinφdr dφ√∫ ∫

|Pβ [E(r)]|2 sinφdr dφ
√∫ ∫

|Ex(r)|2 sinφdr dφ
. (14)

From the physical point of view, ρ takes into account the correlation between
the x−component of the field before the polarizer and the total amplitude after100

the polarizer. This parameter ranges from 0 ≤ ρ ≤ 1; in particular, if ρ = 1 then
both distributions are indistinguishable. Figure 7 shows ρ as a function of NA.
Note that ρ ≈ 1 for paraxial beams and displays a monotonically decreasing
behavior with NA for the three cases considered. The minimum value for ρ
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Figure 7: Behavior of the integrated irradiance parameter ρ

is obtained for radially polarized focused beams. These values are compatible105

with the results presented in Fig. 5(b). In particular, Ix and IT looks quite
different and consequently, a measure of the irradiance of a focused beam after
a polarizer can produce an unappropriated estimation of the x-component.

5. Concluding remarks

In this paper we discussed how a spirally polarized focused beam is modified110

after passing through a linear polarizer. These devices are modeled as uniax-
ial anisotropic plane-parallel media with the optical axis parallel to the plate
surfaces. Moreover, the electric field component in the direction of propagation
and the Fresnel coefficients plays a key role in the description of this prob-
lem. Furthermore, the longitudinal irradiance can be larger for the transmitted115

beam when compared with the impinging one. Interestingly, pure-transverse
azimuthal beams display a non-negligible longitudinal component after the po-
larizer.

It is worth to point out that the irradiance of the recorded beam after a
polarizer differs from the projected component of the beam before passing the120

polarizer. The differences between these two distributions depend on the nu-
merical aperture and the type of polarization. Despite these two distributions
are identical within the paraxial domain, some differences exist with beams fo-
cused at high NA values (see Fig. 6). As a consequence, the evaluation of the
irradiance of a focused beam after a polarizer can provide an unfair account125

of the projected component. On the other hand, the usual projector charac-
ter of polarizers is recovered for paraxial beams when the influence of Fresnel
coefficients can be neglected.
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