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Abstract: We develop a method for generating focused vector beams with
circular polarization at any transverse plane. Based on the Richards-Wolf
vector model, we derive analytical expressions to describe the propagation
of these set of beams near the focal area. Since the polarization and the
amplitude of the input beam are not uniform, an interferometric system
capable of generating spatially-variant polarized beams has to be used.
In particular, this wavefront is manipulated by means of spatial light
modulators displaying computer generated holograms and subsequently
focused using a high numerical aperture objective lens. Experimental results
using a NA = 0.85 system are provided: irradiance and Stokes images of
the focused field at different planes near the focal plane are presented and
compared with those obtained by numerical simulation.
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1. Introduction

The propagation of electromagnetic field distributions generated at the focal region has been
extensively investigated in the last years [1–8]. Non-paraxial fields have demonstrated very
useful in many fields for instance in high-resolution microscopy, particle trapping, high-density
recording, tomography, electron acceleration, nonlinear optics, and optical tweezers [9]. Beam
shaping in the focal area of a high numerical aperture objective lens requires a careful design
of the input wavefront. In particular, full control of the complex amplitude and polarization
distributions of the paraxial input field is required to generate focused fields adapted to the
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requirements of a specific problem [10]. Interestingly, several authors described inverse meth-
ods to find the pupil function from a predetermined field distribution in the focal area [11, 12].
Light shaping can be accomplished by using an optical setup able to generate beams with arbi-
trary polarization and shape distributions at a given plane. This is usually carried out by means
of interferometric systems in combination with spatial light modulators and digital hologra-
phy [13–21]. The objective of this paper is to present a method for designing focused fields
with transverse circular polarization at any plane. Among many others applications, circularly
polarized tight focused beams are useful in resolution improvement [22–24], third harmonic
generation-based microscopy [25–27], plasmonics and nano-optics applications [28, 29], opti-
cal activity and chemical related problems [30, 31] or, conical refraction [32].

Using the Richards-Wolf vector diffraction theory, we derive analytical expressions to de-
scribe the propagation of these set of beams near the focal area. Complex amplitude and po-
larization of the input beam are manipulated by means of spatial light modulators (SLM) dis-
playing computer generated holograms. Numerical calculations and experimental results are
compared and analyzed. Accordingly, the paper is organized as follows: in section 2 we derive
the equations for describing circularly-polarized focused fields at any transverse plane. The ex-
perimental setup and the holographic procedure required to synthesize the beam are reviewed
in section 3. Experimental results including irradiance images and polarization analysis are
presented in section 4. Finally, the main conclusions are summarized in section 5.

2. Circularly-polarized highly focused beams

The electromagnetic field in the focal area of a high numerical aperture objective lens that obeys
the sine condition is described by the Richards-Wolf vector equation [33]

E(r,φ ,z) = A
∫ θ0

0

∫ 2π

0

√
cosθ

[
f1 (θ ,ϕ) e1 (ϕ)+ f2 (θ ,ϕ) eo

2 (θ ,ϕ)
]

× eikr sinθ cos(φ−ϕ)e−ikzcosθ sinθ dθ dϕ ,

(1)

where A is a constant, r, φ and z are the coordinates in the focal area, and angles ϕ and θ are
the coordinates at the exit pupil; note that θ0 is the semi-aperture angle. Functions f1 (θ ,ϕ) and
f2 (θ ,ϕ) are the azimuthal and radial components of incident field respectively,

f1 (θ ,ϕ) = ES (θ ,ϕ) · e1 (ϕ) (2a)

f2 (θ ,ϕ) = ES (θ ,ϕ) · ei
2 (ϕ) , (2b)

where ES(θ ,ϕ) = (ESx,ESy,0) is the input beam considered transverse and the dot stands for
the inner product. Vectors e1 and ei

2 are unit vectors in the radial and azimuthal directions
whereas eo

2 is the projection of ei
2 on the convergent wavefront surface, as shown in Fig. 1.

This figure shows the geometrical variables used throughout this paper at different reference
surfaces. Vectors e1, ei

2 and eo
2 are given by

e1 (ϕ) = (−sinϕ,cosϕ,0) (3a)

ei
2 (ϕ) = (cosϕ,sinϕ,0) (3b)

eo
2 (θ ,ϕ) = (cosθ cosϕ,cosθ sinϕ,sinθ) . (3c)

To analyze the polarization structure of E(r,φ ,z), an alternative base of mutually perpendic-
ular unit vectors u+, u− and uz is used

u± =
1√
2
(1,±i,0) uz = (0,0,1) , (4)
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Fig. 1. Notation and sketch of a highly focused optical system.

thus E(r,φ ,z) = E+ (r,φ ,z)u+ +E− (r,φ ,z)u−+Ez (r,φ ,z)uz. According to Eq. (1), compo-
nents (E+,E−,Ez) read

E± (r,φ ,z) =
A√
2

∫ θ0

0

∫ 2π

0

√
cosθ

[∓ i f1 (θ ,ϕ)+ cosθ f2 (θ ,ϕ)
]×

×eikr sinθ cos(φ−ϕ)e−ikzcosθ e∓iϕ sinθ dθ dϕ (5a)

Ez (r,φ ,z) = A
∫ θ0

0

∫ 2π

0

√
cosθ sinθ f2 (θ ,ϕ)eikr sinθ cos(φ−ϕ)e−ikzcosθ sinθ dθ dϕ . (5b)

Notice that E± represent the right (+) and left (-) circular content of the transverse field
at the vicinity of the focus plane and Ez is the magnitude of the longitudinal component.
Since our goal is to generate a focused field whose transverse component is circularly po-
larized at any plane z, either E+ or E− has to be zero. This condition is fulfilled when
f1 (θ ,ϕ) =±icosθ f2 (θ ,ϕ), which is equivalent to

f1 (θ ,ϕ) =± icosθ g(θ ,ϕ) (6a)

f2 (θ ,ϕ) =g(θ ,ϕ) (6b)

where, g(θ ,ϕ) is an arbitrary function. Additional characteristics of the global field can be
obtained by choosing a suitable function g(θ ,ϕ). For example, to obtain a non-zero longitudinal
component at the axis implies that g(θ ,ϕ) = g(θ).

In what follows and without loss of generality we choose the plus sign, i.e. we deal with
right handed circularly polarized fields. For this kind of incident beams the transverse and
longitudinal components of E(r,φ ,z) become

E+ (r,φ ,z) =
2A√

2

∫ θ0

0

∫ 2π

0

√
cosθ cosθg(θ)e−iϕ eik sinθr cos(φ−ϕ)e−ikzcosθ sinθdθdϕ (7a)

E− (r,φ ,z) = 0 (7b)

Ez (r,φ ,z) = A
∫ θ0

0

∫ 2π

0

√
cosθ sinθg(θ)eik sinθr cos(φ−ϕ)e−ikzcosθ sinθdθdϕ . (7c)
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Fig. 2. Irradiance maps for a circularly-polarized highly-focused beam (NA = 0.85): (a)
|E+|2, (b) |Ez|2 and (c) I. (d) Profiles of I at z = 0 (red) z =−3λ (blue), z =−5λ (magenta)
and z =−7λ (black).

Integrating over ϕ , field components E+ and Ez take the form

E+ (r,φ ,z) = i
4πA√

2
e−iφ

∫ θ0

0

√
cosθ cosθ g(θ) J1 (kr sinθ) e−ikzcosθ sinθ dθ (8a)

Ez (r,z) = 2πA
∫ θ0

0

√
cosθ sinθg(θ) J0 (kr sinθ) e−ikzcosθ sinθdθ , (8b)

where J0(x) and J1(x) are the first kind Bessel functions of order 0 and 1 respectively. Interest-
ingly, E+ presents topological charge e−iφ and |E+|2 and |Ez|2 show circular symmetry.

Figure 2 show irradiance maps for (a) the transverse component |E+|2, (b) the longitudinal
component |Ez|2 and (c) the total field I = |E+|2+ |Ez|2 when a microscope objective NA= 0.85

(θ0 ≈ 1 rad) is used. The illumination is assumed to be Gaussian i.e. g(θ) = exp
(
− 1

f0
sinθ
sinθ0

)2

and the filling factor f0 is set to 1. Notice that |Ez|2 presents high values at z = 0 and drops very
fast out of the focal plane. On the other hand, |E+|2 = 0 at r = 0 at any plane z. Figure 2(d)
shows the profiles of the total irradiance I at different distances from the focal plane (z = 0,
z =−3λ , z =−5λ and z =−7λ ).
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Fig. 3. Sketch of the optical setup. Light source: HeNe laser λ = 633nm; P1, P2 and P3:
linear polarizers; PBS1 and PBS2; polarizing beam splitters; M1 and M2: mirrors; HWP:
half-wave plate: QWP: quarter-wave plate; SLM1 and SLM2: spatial light modulators; L1,
L2 and L3: lenses; BS: beam splitter; MO: microscope objective.

3. Synthesis of beam ES

Figure 3 depicts an experimental setup based on a Mach-Zehnder interferometer able to gen-
erate arbitrary spatially-variant polarized focused beams. An extended explanation on how this
procedure can be used to generate beams with arbitrary polarization and shape can be found
in [17]. A linearly polarized input beam Ein is split into two beams by means of polarizing beam
splitter PBS1. Reflected by mirrors M1 or M2 the split beam (Ein1 or Ein2) passes through wave
plates HWP and QWP which rotate the oscillating plane and set the modulator to the required
desired modulation curve. Then, light passes through a translucent SLM (Holoeye HEO 0017)
displaying cell-based double-pixel holograms to encode complex transmittances Cx(x,y) and
Cy(x,y) [34].

Precise alignment of the different optical components is required, especially a good match
between the corresponding pixels of the two SLMs. This is carried out during the set up pro-
cedure by displaying the same distribution on SLM1 and SLM2 and imaging these scenes on
camera 1. Note that both displays are controlled independently. Then, the scene displayed on
one of the screens is shifted until a perfect match with the other one is accomplished. Shift
values are used later to adapt the holograms displayed on both SLMs.

These beams are subsequently recombined by means of polarizing beam splitter PBS2 and
fed into a 4f system. A spatial filter removes higher-order terms whereas allowing pass the syn-
thesized field ES. The irradiance of this beam can be observed by means of camera 1. Afterward,
ES is focused by means of a high numerical aperture microscope objective (MO) NA = 0.85.
The beam in the focal area is reflected on a glass surface and imaged on camera 2. Polariza-
tion analysis is carried out by placing a polarizer (and a quarter-wave plate if required) next to
camera 2.

According to Eqs. (2) and (6), the synthesized beam ES has to be

ES = (cosϕ − icosθ sinϕ)g(θ)ex +(sinϕ + icosθ cosϕ)g(θ)ey (9)

where ex and ey are orthogonal Cartesian unit vectors as shown in Fig. 1. In order to synthesize
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ES the following complex valued distributions are coded on each SLM

Cx(ρ ,ϕ) = cosϕ − i
√

1−ρ2 sinϕ (10a)

Cy(ρ ,ϕ) = sinϕ + i
√

1−ρ2 cosϕ . (10b)

It is assumed that the radius of the entrance pupil is set to 1 and ρ = sinθ is the radial distance
from the optical axis at the entrance pupil plane (see Fig. 1).

Figure 4 is a polar diagram displaying the values of the complex plane accessible by the
codification method (gray small dots) and the set of physically accessible values by modulator
SLM1 (red dots). A certain value C can be accessed as a combination of phasors ML and MR,
that belong to the modulation curve, and EL and ER, that are diffracted off-axis and removed
by the spatial filter at the focal plane of lens L1. As shown in this Figure, not all values of
the complex plane are accessed by the encoding procedure. This drawback could be overcome
using a light source with a shorter wavelength to improve the modulation response of the SLM
[35]. However, if the subset of accessible values C within the circle of transmittance T = 0.3 is
used (see inset in Fig. 4), almost any complex transmittance can be generated. Non accessible
values are approximated to the closest one belonging to the subset.

Fig. 4. A certain complex value C is generated as a combination of phasors ML and MR
(that belong to the modulation response curve), and EL and ER that are diffracted off-axis
and removed. The inset shows the subset of C values used to generate the holograms.

4. Experimental results

As explained in the previous section, the synthesized beam ES is focused by means of the ob-
jective lens and subsequently reflected on the cover slip, back-propagated through the objective
and imaged on camera 2 aided by lens L2. The cover slip (observation plane) is mounted on a
stage that enables to modify the observation distance z. Figure 5 (first row) shows the irradiance
I at z =−3.5λ , −5λ and −7λ . Distance z is estimated by comparing the angular average of the
experimental images with the numerical evaluation of I and |E+|2 (Eqs. (8a) and (8b)). These
curves are presented in the second row of Fig. 5. Notice that the irradiance at the focal plane
z = 0 is not analyzed due to lack of accuracy along the z-axis and insufficient resolution of the
camera. Furthermore, the sudden increase in irradiance around the focal plane complicates the
analysis, because camera is saturated.

To analyze the polarization of the focused beam a measure of the Stokes parameters has been
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Fig. 5. Experimental results at the observation plane: the first row corresponds to the image
captured by camera 2. These images are normalized to its corresponding maximum. The
second row shows the profile of the experimental images (black dots) and the numeric
evaluation of I(red solid line) for z =−3.5λ , −5λ and −7λ .

carried out. These parameters are obtained according to

S0 = I(0◦,0)+ I(90◦,0) (11a)

S1 = I(0◦,0)− I(90◦,0) (11b)

S2 = I(45◦,0)− I(135◦,0) (11c)

S3 = I(45◦,π/2)− I(135◦,π/2) , (11d)

where I(α,β ) stands for the recorded intensity when a polarizer is set at an angle α with respect
to the x direction in front of camera 2; β is the retardation between the x and y directions [36].
Retardation β = π/2 is accomplished by using also a quarter wave plate. Once the Stokes
parameters are found in each point of the beam, the polarization map can be generated. Figure
6 show the Stokes images S0, S1, S2, S3 for the focused field at z=−3.5λ . Notice that the values
of images S1 and S2 are very close to zero, whereas the high values present in S3 demonstrates
that the field is circularly polarized.

In order to provide global parameters to describe the polarization of the whole beam, the
following cumulative values Si are introduced:

S2
i =

∑S2
i (k, l)

∑S2
0(k, l)

i = 1,2,3 (12)

where (k, l) are the indexes of the pixels of the Stokes image. Table 4 shows the values of S1,
S2, S3 for the three positions of the observation plane considered. A clear circular character of
the beam along the z-axis is recognized since S2

3 � S2
1 +S2

2 at any transverse plane z.
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Fig. 6. Stokes images of the focused field at z =−3.5λ .

Table 1. Si values for the three transverse planes z analyzed.
z S1 S2 S3

−3.5λ 0.053 0.044 0.965
−5λ 0.051 0.045 0.966
−7λ 0.052 0.047 0.967

5. Conclusions

In this paper, a method for generating highly focused beams with circular polarization at any
plane is presented. Using the Richards-Wolf diffraction formalism analytical expressions have
been developed to design such fields. The analysis of the field in the focal area shows that the ir-
radiance of the longitudinal component present very high values. The use of an interferometric
setup for generating beams with arbitrary polarization combined with the use of digital holog-
raphy techniques has enabled the experimental generation of such beams. Satisfactory practical
results have been obtained showing a good agreement between theoretical predictions and the
experimental behavior of the beam.
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