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HIGHLIGHTS 

• Improvements in dietary assessment will deal with weaknesses between diet and health. 

• Multi-metabolite biomarker panels offer a better estimation than single biomarkers. 

• Untargeted metabolomics enables the proposal of new multi-metabolite biomarker panels. 

• A series of challenges should be addressed before panels can reach their full potential. 

• The combined use of biomarker panels with questionnaires will enable increasing accuracy 

and precision in dietary assessment. 

 

ABSTRACT 

Background: Accurate measurement of food intake is the cornerstone of understanding the links 

between diet and optimal health status or risk of disease. The utilization of metabolomics 

approaches is revolutionizing the field of dietary assessment by associating metabolic profiles with 

intake of specific foods or dietary patterns and/or investigating human health status in nutritional 

trials. Combining dietary biomarkers with conventional dietary assessment methods is considered 

a potential strategy for tackling the complexity of dietary exposure fingerprinting. 



Scope and approach: We discuss existing approaches among dietary assessment methods and 

dietary biomarkers. A combined approach taking into consideration data from dietary 

questionnaires with measurements of dietary biomarkers is emphasized. 

Key findings and conclusions: Trends in novel strategies for improving dietary exposure 

assessment will be influenced by the discovery and validation of dietary exposure biomarkers. 

Among different strategies, multi-metabolite biomarker panels enable more reliable estimation of 

dietary exposure than does the traditional single-biomarker approach. Therefore, a combined 

approach using data from dietary questionnaires along with measurements of dietary biomarkers is 

considered an excellent strategy for improving dietary exposure assessment. 

 

Keywords: Dietary assessment; Dietary questionnaires; Biomarkers; Metabolomics; Multi-

metabolite biomarker model; Nutrimetabolomics 

 

1. INTRODUCTION 

Diet and nutrition are major determinants of human health. Accurate measurement of food intake 

is the cornerstone of understanding the links between diet and optimal health status or risk of 

disease. Dietary assessment has been traditionally performed using conventional methodologies of 

food surveys such as food frequency questionnaires (FFQs), 24-h dietary recalls or food records. 

However, the accuracy of the dietary intake and nutritional status is frequently challenged due to 

the subjective nature of these dietary instruments. This limitation can be improved by the 

application of metabolomics to characterize dietary exposure. 

Metabolomics approaches are revolutionizing the field of dietary assessment by associating 

metabolic profiles with intake of specific foods or dietary patterns, and/or investigating human 

health status in nutritional trials. Recently, exploring the food metabolome has been defined as a 

data-driven strategy for identifying novel biomarkers and improving the accuracy of measurement 

of dietary exposures by traditional dietary assessment instruments (Scalbert et al., 2014). In this 

way, the use of metabolomics has enabled the identification of novel and robust biomarkers of food 

or nutrient intake, which provide an objective measure of exposure that is devoid of many of the 

biases and errors associated with self-reported methods (Scalbert et al., 2014). 



However, there are some factors not present in the traditional dietary assessment instruments that 

could misrepresent biomarker measures of dietary intake. These factors include genetic variability 

(e.g. biological variation in nutrient absorption and metabolism, epigenetic variation or gene-gene 

interactions), lifestyle/physiological factors (e.g. smoking, alcohol consumption, physical exercise 

or influence of microbiota), dietary factors (e.g. nutrient bioavailability or nutrient-nutrient 

interactions), biological samples and analytical methodology (Scalbert et al., 2014). Further 

research will address this issue and identify the best emerging dietary biomarkers. Therefore, as 

biomarkers cannot replace conventional dietary assessment methods, the use of conventional 

dietary instruments together with dietary biomarkers is considered the best strategy for tackling the 

complexity of dietary exposure fingerprinting. Fig. 1 represents a schematic diagram for combining 

dietary questionnaires with biomarkers. 

 

Fig. 1. Schematic diagram for combining dietary questionnaires with biomarkers. 

 



The main aim of this paper is to highlight existing approaches aimed at improving dietary exposure 

assessment and the novel combined measure considering data from dietary questionnaires with 

measurements of dietary biomarkers. 

 

2. DIETARY ASSESSMENT METHODS 

2.1. Dietary questionnaires 

In nutritional studies, the traditional method of collecting data on foods and beverages consumed 

over a prescribed period of time relies on information gathered using dietary assessment 

questionnaires. As previously mentioned, the most commonly used dietary assessment methods are 

open-ended questionnaires such as food records or 24-h dietary recalls, or closed-ended 

questionnaires including FFQs (Tucker, 2007). Generally, these instruments require a systematic 

estimation of the frequency and usual serving size of foods, as well as detailed information about 

the ingredients of a meal recipe, combinations of foods consumed together, and sometimes cooking 

processes, which may influence the estimation of exposure to a particular dietary constituent. 

Moreover, the estimation of nutrient/compound intakes depends largely on the existence of 

appropriate, complete, reliable and up-to-date food composition tables or databases. Many users 

are often not conscious of the high composition variability, particularly in terms of micronutrients 

(e.g. vitamins) and phytochemicals, between similar foods, and even in the same type of food (e.g. 

raw, cooked or processed foods). For this reason, a great dependency on professionals’ knowledge 

is needed to generate, compile, update and use the food composition data adequately. Indeed, the 

Food and Agriculture Organization of the United Nations (FAO) and the International Network of 

Food Data Systems (INFOODS) have recently published three comprehensive guidelines on 

conversions, data evaluation and food matching in order to improve and harmonize the compilation 

of food composition data, which could also lead to more accurate nutrient intake estimations 

(Charrondiere et al., 2016). 

The consumption data obtained through these methods are used to compute the intake of whole 

diets/dietary patterns, food groups, foods, energy, nutrients, bioactive compounds and other food 

components. Recently, dietary pattern analysis has emerged as a useful approach for investigating 

diet-disease associations. Thus, eating patterns may be more predictive of disease risk than isolated 

analysis on foods or nutrients (Hu, 2002). The 2015 Dietary Guidelines Advisory Committee 



recognized the advantages that dietary patterns offer as an approach for informing public health 

recommendations (U.S. Department of Health and Human Services & U.S. Department of 

Agriculture, 2015, p. 2). Different approaches for developing dietary patterns exist (Lassale et al., 

2016). The most prominent methods are, a priori, numerical indexes, scores that measure adherence 

to disease-specific dietary and lifestyle guidelines (e.g. Dietary Approaches to Stop Hypertension 

(DASH)), scores that measure adherence to a regional diet (e.g. Mediterranean Diet Score) and 

scores based on nutritional guidelines (e.g. Diet Quality Index International (DQI-I). Other 

approaches have been proposed to derive patterns by using all food groups available, such as 

principal component analysis (PCA), reduced rank regression, partial least-squares regression 

(PLS), confirmatory factor analysis (CFA) and treelet transform (Hu, 2002; Imamura and Jacques, 

2011 ;  Varraso et al., 2012). 

The strengths of these methods are the lower relative cost, the ease with which the questionnaires 

can be completed with the help of a trained interviewer (dietician) or by participants themselves 

(self-reported questionnaires), and the chance to gather a large amount of dietary data. However, 

the use of questionnaires is also subject to some limitations (Tucker, 2007). The main one is that 

they are mostly self-reported, wherein the estimation of food portion size is an important source of 

errors (perception, conceptualization and memory), which could be inappropriate for some 

populations (children, obese people, and elderly people with cognitive impairment, among others). 

Such systematic errors inherent in self-reported data plus random errors (e.g. the accuracy of the 

food composition tables) can bias the estimation of dietary intake. However, the FFQ is the most 

common dietary assessment method used to estimate habitual dietary intake (e.g. the previous 12 

months) of specific nutrients, dietary exposures related to a certain disease or various dietary 

components in large-population studies, due to its self- or interviewer-administered and 

economical machine-readable features. In this context, the use of a previously validated FFQ is an 

essential requirement for improving the measurement of errors previously mentioned. FFQs should 

be developed specifically for the research objective because diet may be influenced by participant's 

characteristics such as ethnicity, culture, dietary habits and lifestyle, among others. Nevertheless, 

more precise measurements are obtained when using multiple 24-h dietary recalls or dietary 

records, but only short-term intake (actual intake information over the previous 24 hours) is 

estimated. In this context, long-term intake can also be estimated if repeated during the year. 

Recently, it has been suggested that a combination of two different dietary assessment instruments, 



such as four to six 24-h dietary recalls with a FFQ, could improve estimates of dietary intakes with 

regard to the methods separately. In this study, the association between diet and disease was 

statistically significant with food records but not with a FFQ (Carroll et al., 2012). Therefore, if 

new nutritional studies are designed to include FFQs plus repeat 24-h evaluations, further 

improvements to minimize their measurement errors might be seen by combining data from the 

two methods. Our group has recently observed that the highest tertile of total dietary polyphenols, 

which were estimated using a validated FFQ and an ad hoc database on polyphenol content in 

foods, was not associated with the risk of cognitive and physical decline, frailty and total mortality, 

in comparison with the lowest tertile (Rabassa et al., 2015; Rabassa et al., 2015; Rabassa et al., 

2016 ;  Zamora-Ros et al., 2013). However, an association with total urinary polyphenols was 

observed. Moreover these studies have demonstrated the importance of assessing dietary 

polyphenol exposure whenever possible, using dietary biomarkers and not only through dietary 

questionnaires. 

Despite these strengths, more refined and improved techniques of dietary assessment intake are 

essential to reduce the limitations of traditional dietary questionnaires and also to reduce the cost 

associated with the collection and processing of dietary data (Illner et al., 2012 ;  Stumbo, 2013). 

This is being met with intense methodological research and innovative technologies. Many 

applications of information and communication technologies are currently under development and 

validation, and great strides have been made. An example of interactive computer-based techniques 

is a menu-driven standardized 24-h dietary recall program (called EPIC-SOFT) developed by the 

European Prospective Investigation into Cancer and Nutrition study (Slimani et al., 2011). The 

National Cancer Institute in the US has also developed an interactive computer-based approach but 

with an Internet-based technology, called the Automated Self-Administered 24-h Dietary Recall, 

which is based on the Automated Multiple-Pass Method approach (Schatzkin et al., 2009). In 

addition, mobile phone applications have been released such as Nutricam, which allows users to 

capture images of foods and verbally describe their items before intake, and then to upload both 

the image and voice file onto a website for analysis (Rollo, Ash, Lyons-Wall, & Russell, 2011). 

Another example is a wearable electronic device that resembles a necklace and includes a 

microphone, camera and other sensors. In this case, dietary intakes are collected from the video 

recording and are calculated automatically (Sun et al., 2010). However, these methods have not yet 

been widely implemented in large-population studies due to their related technical issues (data 



transfer, storage, battery life and others) and methodological difficulties such as self-reporting and 

higher costs. In addition, certain users are not familiar with innovative technologies or new devices. 

Despite these limitations, automated versions promise to overcome the labour-intensive and costly 

coding of the 24-h dietary recalls (Shim, Oh, & Kim, 2014). 

 

2.2. Dietary biomarkers 

Thus far, individual biomarkers of dietary intake have been used to assess exposure to specific 

foods or food groups. However, this strategy has important limitations and only in some cases it 

has been successful. The more relevant limitations can be grouped into a wide distribution of food 

components (low specificity of biomarkers), high interindividual variation and the microbiota 

metabolism, among others. 

A common approach when the research community looks for a biomarker of intake is first to study 

the food composition, then try to identify the possible modifications caused by the host metabolism 

and finally look for metabolites (e.g. biomarkers) in the biofluid (mostly blood and/or urine). 

Usually, the food composition is very complex (from the quantitative and qualitative point of view) 

and many of the compounds are widely distributed in different foods. For instance, most 

polyphenols are present in a wide range of plant foods, such as chlorogenic acids (e.g. coffee and 

apple) and flavan-3-ols (e.g. cocoa and tea) (Clifford, 2000 ;  Monagas et al., 2010). Another 

example of a compound widely distributed in many plant foods is vitamin C. This compound has 

been used as a biomarker of consumption of fruits and vegetables, although differences in 

concentration between different foods reduces their ability to be a good biomarker (Scalbert et al., 

2014). Therefore using the single-biomarker strategy compromises its usefulness because there are 

a number of factors that limit the prediction of dietary exposure. 

It is worth noting that in some cases, similar compounds from different food sources could produce 

the same biomarker. One of the most relevant cases is ellagitannins. This class of polyphenols (with 

some differences) is present in foods such as pomegranate, strawberries and walnuts (Espín, 

Larrosa, García-Conesa, & Tomás-Barberán, 2013). They are poorly absorbed and when they reach 

the gut they are largely metabolized by the microbiota, producing urolithin derivatives (Espín et al., 

2013). Selma, Beltrán, García-Villalba, Espín, & Tomás-Barberán (2014) showed the ability of the 

bacteria Gordinobacter to produce urolithins from ellagitannins. This means that urolithins are 



biomarkers of ellagitannin intake instead of particular foods. This relevance of the microbial effect 

is crucial because a significant number of food components are degraded by the colonic microbiota 

and after absorption and distribution are excreted in urine. Therefore, the real biomarker of intake 

is provided by the microbiota instead of the host metabolism. 

Procyanidins are a good example of this behaviour. This class of polyphenols is present in many 

dietary sources, such as cocoa, tea, wine and apples (Monagas et al., 2010). These polyphenols 

show low bioavailability. However, gut microbiota have the capacity to degrade these metabolites 

and produce other compounds called hydroxyphenylvalerolactones and hyxdroyphenylvaleric 

acids (Monagas et al., 2010). In fact, these metabolites have been used as biomarkers of 

procyanidin-rich foods. Both urolithins and hydrophenylvalerolactones have been used as 

biomarkers of intake of single foods (e.g. walnuts and tea, respectively). However, taking into 

account the variety of dietary sources that could provide these parent compounds (e.g. ellagitannins 

and procyanidins), these compounds are not suitable for use as single accurate biomarkers. 

In relation to the interindividual variation, there are some interesting examples. According to Lars 

O. Dragsted (2010), creatinine can be considered a potential marker of meat intake (even cooked). 

However, endogenous levels connected with creatine turnover showed important variations 

between subjects (Dragsted, 2010). Another example is a recent study about polyphenols and their 

urinary quantification (Achaintre et al., 2016). In this paper the authors showed that in urine from 

475 EPIC participants a total of 34 polyphenols were evaluated and in general these compounds 

showed large interindividual variations (Achaintre et al., 2016). 

There are several examples where a single metabolite could be a potential biomarker of a particular 

food intake. Some metabolites have been proposed as a biomarker of intake of a particular group 

of plant foods. However, in these groups there are particular foods that could represent a very 

important part of the dietary source (e.g. citrus fruits and oranges, or cruciferous vegetables and 

broccoli). The compound termed proline betaine has been identified in both intervention and cohort 

studies (Pujos-Guillot et al., 2013) as a candidate biomarker of citrus intake and, in particular, a 

powerful biomarker of orange intake (Lloyd, Beckmann, Favé, Mathers, & Draper, 2011). This 

biomarker was detected and its urinary excretion kinetics reported after an intervention study with 

orange juice consumption (Heinzmann et al., 2010). However, increased urinary excretions of 

proline betaine have also been observed after diets enriched with rye bran, bringing its specificity 



under the spotlight (Pekkinen et al., 2015). With regard to cruciferous intake, and in particular that 

of broccoli, sulforaphane (mainly its mercapturic acid derivative) was proposed as a potential 

biomarker of intake of this particular food (Dominguez-Perles et al., 2014 ;  Vermeulen et al., 

2003). 

 

2.2.1. Multi-metabolite biomarker models 

Given the already mentioned inconsistencies that can limit the usefulness of single biomarkers for 

dietary intake evaluation, the question emerges of whether a combination of food-derived 

metabolites, namely a multi-metabolite biomarker panel (MBP), would be more likely to capture 

dietary exposure and improve the accuracy and precision of dietary assessment. The rationale 

behind the use of MBPs is that a wider range of metabolites would improve the measurement of 

dietary intake, capturing a broader perspective of the diet and thereby giving a more complete 

coverage of dietary exposure. It opens a new framework in the research area of nutritional 

biomarkers. However, while almost all studies investigating dietary biomarkers have focused on 

single candidate biomarkers, MBPs have remained practically unexplored and only a few research 

groups have addressed this question during the last few years. These studies are summarized in 

Table 1 ;  Table 2. 

 



Table 1. Summary of multi-metabolite biomarker panels identified using untargeted metabolomics approaches. 

Food 
item 

Statistical 
test Metabolites in the panel Study design 

TS 
& 
VS 

Panel-diet associations  

Was the panel 
better than 

single 
biomarkers? 

Reference 

Walnuts Stepwise 
logistic 
regression 

3-Indolecarboxylic acid glucuronide 
10-Hydroxy-decene-4,6-diynoic acid sulphate 
Urolithin A glucuronide 
Tridecadienoic/tridecynoic acid glucuronide 
Urolithin A sulphate 

Observational 
(cross-sectional)  

Yes AUC (95% CI): 
• TS = 93.4% (90.1–96.8 

%)  
• VS = 90.2% (85.9–94.6 %) 

Yes Garcia-Aloy 
et al., 2014 

Cocoa Stepwise 
logistic 
regression 

7-Methylxanthine 
 5-(3’,4’-dihydroxyphenyl)-valerolactone GlcA 

Observational 
(cross-sectional) 

Yes AUC (95% CI): 
• TS = 95.7% (89.8–100 %)  
• VS = 92.6% (81.9–100 %)  

Yes Garcia-Aloy, 
Llorach, 
Urpi-Sarda, 
Jáuregui, et 
al., 2015 

Bread Stepwise 
logistic 
regression 

White Bread: 
HPAA GlcA 
HMBOA 
Riboflavin 
 
 

Wholegrain Bread: 
HHPAA 
HPPA 
HMBOA 
Enterolactone GlcA  
Pyrraline 
3-Indolecarboxylic acid GlcA 
Riboflavin 

Observational 
(cross-sectional) 
 
 
 

 

No AUC (95% CI): from 77.8 % 
(69.1–86.4 %) to 93.7% (89.4–
98.1 %). 

Yes Garcia-Aloy, 
Llorach, 
Urpi-Sarda, 
Tulipani, et 
al., 2015 

Wine Stepwise 
logistic 
regression 

Tartrate 
Ethyl glucuronide 

Sustained 
intervention 
[TS] 
Observational 
(cross-sectional) 
[VS] 

Yes AUC (95% CI): 
• TS = 90.7% (84.5–96.4 %)  
• VS= 92.4% (84.1–100 %) 

Yes Vázquez-
Fresno et al., 
2015 

Orange 
juice 

Random 
forest 

Stachydrine 
Methyl glucopyranoside (α+β) 
Dihydroferulic acid 
Galactonate 

Sustained 
intervention 

Yes AUC (95% CI): 99.6% (96-100 %) 
Accuracy: 
• Entire data set = 93%  
• Hold-out data set = 87.5%  

Permutation test: 
• Entire data set: p-value = 

0.006  
• Hold-out dataset: p-value = 

0.004 

Yes for some 
metabolites 

Rangel‐
Huerta et al., 
2016 



*Some samples of the training and validation sets were from the same subjects. 

AUC, area under the curve; CI, confidence interval; DA, discriminant analysis; GlcA, glucuronide; HHPAA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide; HMBOA, 
2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one; HPAA, N-(2-hydroxyphenyl) acetamide; HPPA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide; LP, lipid pattern; 
NR, not reported; PCA, principal component analysis; PLS, partial-least squares; TS, training set; VS, validation set 

Coffee Support 
vector 
machines 

Cyclo(isoleucylprolyl) 
1-Methylxanthine  
Trigonelline 

Observational 
(cross-sectional) 

Yes AUC (95% CI): 98% (93–100 %) Yes Rothwell et 
al., 2014 

Sugar-
sweetened 
beverages 

PLS 
regression 

Formate 
Citrulline 
Taurine 
Isocitrate 

Observational 
[TS] 
Acute intervene-
tion [VS] 

Yes AUC [TS]: 80%  
Specificity [TS]: 80%  
Sensitivity [TS]: 70% 

Yes Gibbons et 
al., 2015 

Nordic 
diet 

PLS-DA  (2-Oxo-2,3-dihydro-1H-indol-3-yl)acetic acid  
6-Amino-5-[N-methylformylamino]-1- methylurac. 

Sustained 
intervention 

Yes* Misclassified samples: 
• TS: 35%  
• VS: 19% 

NR Andersen et 
al., 2014 

Hydroquinone GlcA  
3,4,5,6-Tetrahydrohippurate  
3-Indoleacetic acid GlcA  
Limonele-1,2-diol GlcA  
Limonele-8,9-diol-GlcA  
p-Menth-1-2ne-6,8,9-triol 
Trimethylamine N-oxide 
Perillic acid GlcA  
Perillic acid-8,9-diol-GlcA 
Dihydroperillic acid GlcA  
Pyroglutamyl proline 

 
Cyclo(Pro-Val) 
Hippuric acid 
Octanoyl GlcA  
Proline betaine 
7-Methyluric acid 
3,7-Dimethyluric ac 
7-Methylxanthine 
Pyrraline 
Theobromine 
Unknowns 

Diet in 
general 

PCA LP1: 
PCaeC36:2 
PCaeC38:3 
PEaaC22:2 
PEaaC34:0 
PEaeC40:4 
SMC15:0 
SMC19:0 
SMC20:2 
SMC21:0 
SMC21:1 
LPCaC18:2 
LPEeC18:0 

LP6: 
PEaaC36:1 
PSaaC36:2 
PEaaC38:4 

Observational 
(cross-sectional) 

No Correlations 
• LP1: 
- SFA: p-value = 0.015 
- MUFA: p-value =0.011 
- PUFA: p-value = 0.018 

• LP6: 
- Meat: p-value = 0.024 
- Fish: p-value = 0.026 
- Vegetable intake: p = 0.036 

AUCs: 
• LP1: Fat = 82% 
• LP6:  
- Meat and vegetable <70% 
- Fish = 76% 

NR O’Gorman et 
al., 2014 



Table 2.  Summary of multi-metabolite biomarker panels identified using targeted approaches. 

Food item Statistical 
test Metabolites in the panel Study design 

TS 
& 
VS 

Panel-diet associations  

Was the panel 
better than 

single 
biomarkers? 

Reference 

Wholegrain 
wheat and rye 

Sum 
 
Ratio 

Sum of AR homologues (AR 
C17:0-C25:0) 
AR C17:0/C21:0 ratio 

Sustained 
intervention 

- Increase: p-value < 0.05 NR Linko-Parvinen 
et al., 2007 

Rye 
wholegrain / 
bran 

Sum 
 
Ratio 

Sum of AR homologues (C17:0, 
C19:0, C21:0, C23:0, C25:0) 
AR C17:0/C21:0 ratio 

Sustained 
intervention 

- Increase: p-value < 0.0001 NR Landberg et al., 
2009 

Wholegrain 
wheat 

Sum Sum of AR homologues (C17:0, 
C19:0, C21:0, C23:0, C25:0) 

Sustained 
intervention 

- Increase: p-value < 0.001 NR Kristensen et al., 
2012 

Wine 
 

Sum cis-Resveratrol-3-O-GlcA 
trans-Resveratrol-3-O-GlcA 
cis-Resveratrol-4′-O-GlcA 
trans-Resveratrol-3-O-sulphate 
cis-Resveratrol-4′-O-sulphate 
trans-Resveratrol-4′-O-sulphate 

Observational 
(cross-
sectional) 

- Correlation: r = 0.895 (p-value < 0.001)  
AUC (95% CI) = 98.3 (97.3–99.0 %) 
Sensitivity (95% CI) = 93.3% (91.5–94.7 %) 
Specificity (95% CI) = 92.1% (90.2–93.7 %) 

NR Zamora-Ros et 
al., 2009 

Sum Resveratrol Metabolites: 
cis-Resveratrol-3-O-GlcA 
trans-Resveratrol-3-O-GlcA 
cis-Resveratrol-4′-O-GlcA 
cis-Resveratrol-3-O-sulphate  
trans-Resveratrol-3-O-sulphate 
cis-Resveratrol-4′-O-sulphate 
trans-Resveratrol-4′-O-sulphate 
Dihydroresveratrol Metabolites 
Total Metabolites (Resveratrol 
and Dihydroresveratrol) 

Sustained 
intervention 

- Increase: p-value < 0.05 NR Queipo-Ortuño et 
al., 2012 

Sum Resveratrol Phase II Metabolites 
cis-Resveratrol-3-O-GlcA 
trans-Resveratrol-3-O-GlcA 
cis-Resveratrol-4′-O-GlcA 
trans-Resveratrol-4′-O-GlcA 
cis-Resveratrol-3-O-sulphate  
trans-Resveratrol-3-O-sulphate 
cis-Resveratrol-4′-O-sulphate 
trans-Resveratrol-4′-O-sulphate 

Sustained 
intervention 

- Increase: p-value < 0.05 NR Rotches-Ribalta 
et al., 2012 



trans-Resveratrol-3,4′-O-disulph. 
Resveratrol sulphoglucuronide 
Resveratrol Glucosides  
cis-Piceid  
trans-Piceid 
Piceid-GlcA 
Piceid sulphate 
Gut Microbial Resv. Metabolism 
Dihydroresveratrol  
Dihydroresveratrol-GlcA 
Dihydroresveratrol-sulphate 
Dihydroresveratrol-sulphoglucur. 

Stepwise 
logistic 
regression 

Urine - hydrolysed samples: 
2,4-Dihydroxybenzoic acid 
Gallic acid 
Ethylgallate 
 
Urine - non-hydrolysed samples: 
Methylgallic acid sulphate 
Ethylgallate sulphate 
 
Plasma - hydrolysed samples: 
3-Hydroxyphenylacetic acid 
Gallic acid 
p-Coumaric acid 

Sustained 
intervention 

Yes AUCs (95% CI): 
• Urine: from 96.00% (89.24–100 %) to 

98.68% (97.13–100 %)  
• Plasma: from 80.13% (71.75–88.51%) to 

91.07% (80.22–100 %) 

Yes for most 
MBP 

Urpi-Sarda et al., 
2015 

Fruit & 
vegetables 

Sum Eriodictyol 
Naringenin 
Hesperetin 
Quercetin 

Kaempferol 
Isorhamnetin 
Tamarixetin 
Phloretin 

Sustained 
intervention 

- Increase: p-value < 0.001 NR Brevik et al., 
2004 

Naringenin 
Hesperetin 
Quercetin 
Kaempferol  
Isorhamnetin 
Tamarixetin 
Phloretin 

Acute 
intervention 

- Correlation:  
• 24 h urine: r=0.86 (p-value < 0.000001) 
• morning urine: r=0.43 (p-value < 0.01) 

Yes for 24 h 
urine 
No for morning 
urine 

Krogholm et al., 
2004 

Sustained 
intervention 

- Correlation: r=0.35 (p-value = 0.0007) 
Increase: p-value < 0.0001 

Yes for most 
single 
biomarkers 

Nielsen et al., 
2002 

Vitamin C 
b-Carotene 
Lutein 

Observational 
(cross-
sectional) 

- Correlation: r=0.42 Yes Cooper et al., 
2015 



Stepwise 
logistic 
regression 

α-Carotene 
Energy intake 
Lutein 
β-Cryptoxanthin 

Observational 
(cross-
sectional) 

No Explained variability: 53%  NR Gross et al., 1994 

Regression 
model 

Vitamin C 
Carotenoids (cholesterol-
adjusted) 
Ferric-reducing antioxidant 
power 

Sustained 
intervention 

Yes
* 

Correlation 
• TS: r=0.47 (p-value < 0.001)  
• VS: r=0.18-0.36 (p-value ≤ 0.05) 

Yes Jin et al., 2014 

Logistic 
regression 

Vitamin C 
Carotenoids 

Sustained 
intervention 

No Correct allocation: 45–86 % Yes for most 
studies 

McGrath et al., 
2016 

Diet Quality 
Index Score 

Stepwise 
linear 
regressions 

Vitamin C 
α-Tocopherol 
α-Carotene 

β-Cryptoxanthin 
Oleic acid 
Stearic acid 

Observational 
(cross-
sectional) 

No NR NR Neuhouser et al., 
2003 

Mediterranean 
diet 

NR Carotenes 
Vitamin E 

EPA 
DHA 

Observational 
(cross-
sectional) 

No Correlation: r=-0.52 (p-value = 0.03)  NR Gerber, 2006 

Nordic diet Rank 
scores 
PCA 

α-Linolenic acid 
β-Carotene 
Alkylresorcinols 

EPA 
DHA 

Sustained 
intervention 

No NR NR Marklund et al., 
2014 

*Samples of the training and validation sets were from the same subjects. 

AR, alkylresorcinol; AUC, area under the curve; CI, confidence interval; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; GlcA, glucuronide; MBP, 
multi-metabolite biomarker panel; NR, not reported; PCA, principal component analysis; TS, training set; VS, validation set. 

 



Over the last few years, our research group has made great efforts to instigate a novel approach for 

improving dietary exposure assessment through MBPs. This concept has been used in a number of 

recent studies where we suggested MBPs of walnuts (Garcia-Aloy et al., 2014), wine (Vázquez-

Fresno et al., 2015), cocoa (Garcia-Aloy, Llorach, Urpi-Sarda, Jáuregui, et al., 2015) and bread 

(Garcia-Aloy, Llorach, Urpi-Sarda, Tulipani, et al., 2015) using urine samples analysed by an 

untargeted metabolomics approach, and dietary data from FFQs, in studies with different designs. 

The results showed that MBPs perform better in terms of predicting dietary exposure. Our first 

study in this field identified an MBP that was highly predictive of walnut intake with an area under 

the curve [AUC (95% CI)] of 93.4% (90.1–96.8%) and 90.2% (85.9–94.6%) in the training and 

validation sets, respectively (Garcia-Aloy et al., 2014). In line with these results, a “tartrate-ethyl 

glucuronide” model showed an AUC of 90.7% (84.5–96.4%) in the training set composed of 

samples from volunteers that participated in a controlled clinical trial with a nutritional intervention 

with wine, and an AUC of 92.4% (84.1–100%) in the validation set composed of samples assessed 

at baseline from a subcohort of volunteers included in the PREDIMED study with a reported wine 

intake of ≥180 mL/day (Vázquez-Fresno et al., 2015). Additionally, this model showed promising 

performance in terms of its sensitivity, which enabled discernment of an intake of one glass of wine 

3 days after consumption in an observational study. Another MBP was highly predictive for cocoa 

consumption [AUC = 95.7% (89.8–100%) in the training set, and 92.6% (81.9–100%) in the 

validation set]. It was built with one component of theobromine metabolism (7-methylxanthine) 

together with another from microbial metabolism of polyphenols (5-(3′,4′-dihydroxyphenyl)-

valerolactone glucuronide). Both metabolites have been proposed as biomarkers of cocoa intake in 

studies with different designs (i.e., acute interventions, long-term intervention trials and 

observational studies) and provided the model with complementary information about habitual 

cocoa intake (Garcia-Aloy et al., 2015). Finally, an additional MBP was highly predictive for 

wholegrain bread intake [AUC = 93.1% (88.7–97.4%) and 93.7% (89.4–98.1%) for data from 

positive and negative ionization mode, respectively], while the MBP designed to evaluate white 

bread consumption had a reasonably good predictive ability [AUC = 80.6% (72.1–89.0%) and 

77.8% (69.1–86.4%) for data from positive and negative ionization mode, respectively] (Garcia-

Aloy et al., 2015). 

Previously, Campbell et al. (1994) published one of the first studies suggesting a combination of 

biomarkers of intake. They used a stepwise logistic regression analysis to assess fruit and vegetable 



consumption. The resultant prediction model included compounds measured in biological samples 

(three carotenoids determined in plasma) and data from dietary questionnaires (energy intake) 

(Gross et al., 1994). Later, Nielsen, Freese, Kleemola, and Mutanen (2002) proposed measuring 

the sum of different flavonoids determined in urine for examining the intake of fruits and 

vegetables (Nielsen et al., 2002), an approach also suggested in other studies (Brevik et al., 

2004 ;  Krogholm et al., 2004). In the same vein, summing individual resveratrol or alkylresorcinol 

metabolites has also been attempted for assessing wine (Queipo-Ortuño et al., 2012; Rotches-

Ribalta et al., 2012 ;  Zamora-Ros et al., 2009) and wholegrain wheat and rye consumptions 

(Kristensen et al., 2012; Landberg et al., 2009 ;  Linko-Parvinen et al., 2007), respectively. In 

parallel, the ratio between to alkylresorcinols, C17:0/C21:0, has shown the ability to discern 

between wholegrain wheat and rye intakes (Landberg et al., 2009 ;  Linko-Parvinen et al., 2007). 

However, although these later examples exhibited a good predictive capacity, these statistical 

approaches could not give the real weight of each metabolite within the biomarker panel, and 

therefore more sophisticated approaches could be required for the assessment of dietary exposures 

for more complex foods, food groups or dietary patterns. At the same time, it is important to bear 

in mind that using metabolites from the same class could not deal with the problem of specificity 

previously highlighted. 

As mentioned above, recent work from our laboratory applied a multivariate statistical approach to 

link dietary data with both targeted and untargeted metabolomics data to identify a series of MBPs 

(Garcia-Aloy et al., 2014; Garcia-Aloy et al., 2015; Garcia-Aloy et al., 2015; Urpi-Sarda et al., 

2015 ;  Vázquez-Fresno et al., 2015). In this approach, stepwise logistic regression analysis was 

used to include more than one metabolite in biomarker panels and regressed against dietary data to 

identify MBPs. Other research groups also applied regression analysis for addressing this issue (Jin 

et al., 2014; McGrath et al., 2016 ;  Neuhouser, Patterson, King, Horner, & Lampe, 2003), whereas, 

more recently, other multivariate statistical strategies such as PCA, PLS, random forest and support 

vector machine algorithms have also been used to build MBPs for assessing the consumption of 

different foods or dietary patterns (Andersen et al., 2014; Gibbons et al., 2015; Marklund et al., 

2014; O'Gorman et al., 2014; Rangel-Huerta et al., 2017 ;  Rothwell et al., 2014). These 

multivariate methods may be of interest in terms of the further discovery of dietary exposure 

biomarkers. For example, Marklund et al. (2014) created a novel dietary biomarker score based on 

a combination of several individual biomarker concentrations, using rank scores or principal 



component analysis to assess compliance in a dietary randomized controlled trial, Systems Biology 

in Controlled Dietary Interventions and Cohort Studies (SYSDIET), and to investigate how a 

healthy Nordic diet influences cardiometabolic risk factors (Marklund et al., 2014). Their results 

suggest that this dietary biomarker score provides a better reflection of the dietary intake and 

thereby increases the strength of detecting potential cardiometabolic health effects. In addition, 

they proposed that future studies should evaluate the combined use of dietary biomarkers and 

reported dietary intake methods for assessing compliance. 

Nevertheless, since until now MBPs have been proposed for a limited number of foods, food groups 

and dietary patterns, further work in this line is required. This will enable a broad coverage of 

dietary exposure, including the assessment of exposure to bioactive compounds, foods, food groups 

or complex dietary patterns reflective of habitual dietary intake. The challenge that lies ahead will 

be finding the simplest combination of metabolites that is able to properly evaluate dietary 

exposure. In the same vein, the capacity of metabolomics to measure simultaneously a high number 

of metabolites offers a great opportunity to propose new MBPs clustering in the same model 

metabolites of different classes, providing the panels with complementary information about 

dietary intake. 

However, before translating MBPs into nutritional epidemiology, appropriate validation steps in 

the post-discovery phase are essential in order to assess their robustness. Firstly, it is necessary to 

develop analytical methods for accurate and specific quantification of the metabolites included in 

each MBP, as recently suggested for simultaneous quantification of multiple biomarkers associated 

with alcohol intake (Monošík & Dragsted, 2016). Additionally, the specificity, sensibility, kinetics 

and dose-response relationships of proposed MBPs should be investigated in separate studies with 

different designs and populations, including people with different genetic and dietary backgrounds. 

2.3. Methods of combining dietary questionnaires and biomarkers 

Taking into account all of the above, and with a view to evaluating the diet-disease relationship, 

the use of validated dietary biomarkers helps to improve precision in the measure of dietary intake 

of different foods, nutrients and other components, and to then strengthen the ability to detect 

dietary effects. In addition, a combined approach using data from dietary questionnaires with 

measurements of dietary biomarkers has emerged as a good strategy, especially when the extent to 

which the biomarker mediates the dietary effect is unknown. Freedman, Kipnis, et al. (2010) and 



Freedman, Tasevska, et al. (2010) proposed two main direct approaches, Howe's method with ranks 

or PCA, for combining questionnaires and biomarkers related to whole diet, food group, food, 

nutrient or other food components (Freedman et al., 2010 ;  Freedman et al., 2010). Comparing the 

results obtained from the two approaches, Freedman, Kipnis, et al. (2010) and Freedman, Tasevska, 

et al. (2010) found that Howe's method gives results close to those from the PCA approach 

(Freedman et al., 2010 ;  Freedman et al., 2010). It can be said that Howe's method is more 

appropriate due to its simplicity than the approach based on PCA. Later, these authors proposed a 

more complex modelling-based approach, namely the regression calibration method, for 

combining dietary biomarkers and reports that recovers lost power and gives unbiased relative risk 

estimates (Freedman et al., 2011). However, this method is not applicable to food patterns or foods 

that have no known specific biomarkers. Unlike this, PCA and Howe's method do not require 

knowledge of the quantitative relationship between biomarker level and true usual intake. 

Freedman, Kipnis, et al. (2010) and Freedman, Tasevska, et al. (2010) applied Howe's method in 

an analysis of a diet-disease association in a real example from the Carotenoids and Age-Related 

Eye Disease Study (CAREDS) (Freedman et al., 2010 ;  Freedman et al., 2010). In their study, the 

estimated odds ratios [OR (95% CI)] for the primary nuclear cataract outcome using the reported 

dietary intake (FFQ-lutein plus zeaxanthin), the biomarker level (serum lutein plus zeaxanthin) and 

the combined FFQ-biomarker were 0.77 (0.57–1.02), 0.69 (0.51–0.94) and 0.66 (0.48–0.91), 

respectively. As can be seen from the statistical significance, the combination of exposure was 

higher than that for the FFQ and biomarker alone. In addition, an increase in statistical power was 

also observed in detecting a diet-disease association. Recently, Rabassa, Cherubini, et al. (2015) 

and Rabassa, Zamora-Ros, et al. (2015) applied this approach to study the association between 

habitual dietary resveratrol exposure and the development of frailty syndrome in older adults from 

the InCHIANTI study (Rabassa et al., 2015). Inverse associations between resveratrol exposure 

and frailty syndrome risk were observed for FFQ-total resveratrol [OR for comparison of extreme 

tertiles = 0.17 (0.05–0.63)], biomarker-total urinary resveratrol [0.32 (0.09–1.11)] and 

FFQ&biomarker-total resveratrol [0.11 (0.03–0.45)]. The most successful results from the 

combined exposure measure will emerge when the strength of the associations for each separate 

exposure is similar, as occurs in the examples described in this section. 

 

  



3. FUTURE TRENDS 

Future research trends should focus on exploring more novel approaches for the discovery and 

validation of dietary exposure biomarkers. While considerable progress has been made in 

demonstrating how dietary biomarkers can be used as dietary assessment tools, a number of 

challenges have still to be overcome before they can achieve their complete validation, including 

both analytical and biological perspectives. Recent studies have suggested different strategies for 

identifying panels of biomarkers. They have also demonstrated that MBPs offer a more reliable 

estimation of dietary exposure than the traditional single-biomarker approach used until now. 

Therefore, future studies will face up to the complexity of evaluating the use of MBPs in 

combination with conventional dietary questionnaires to assess dietary exposure fingerprinting. 

These advances will enable more detailed information to be obtained about the associations 

between diet and health, providing better evidence of the development of health claims and dietary 

advice for both public health institutions and the food industry. 
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