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An object with a unique three-dimensional (3D) optical phase mask attached is analyzed for security and
authentication. These 3D optical phase masks are more difficult to duplicate or to have a mathematical formulation
compared with 2D masks, and thus have improved security capabilities. A quick response code was modulated
using a random 3D optical phase mask generating a 3D optical phase code (OPC). Due to the scattering of light
through the 3D OPC, a unique speckle pattern based on the materials and structure in the 3D optical phase mask is
generated and recorded on a CCD device. Feature extraction is performed by calculating the mean, variance,
skewness, kurtosis, and entropy for each recorded speckle pattern. The random forest classifier is used for
authentication. Optical experiments demonstrate the feasibility of the authentication scheme.

OCIS codes: (100.4993) Pattern recognition, optical security and encryption, (030.6140) Speckle; (110.0110) Imaging systems;
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1. Introduction

Optical information security has sought to ensure the secure
transmission of an image to a recipient. This area of research includes
image encryption [1-15], authentication [16-24], and compression or
secure storage [25, 26]. Authenticating sensitive information is critical
to discovering tampering caused by a miscreant. Methodologies for
image authentication includes both optical [16-21] and simulated [22,
23] authentication schemes.

Recently, authentication schemes have been investigated using
optically tagged security codes [19-21]. In these authentication
schemes, an object is optically tagged using a phase mask. In [19], these
phase masks were as simple as Scotch tape. In [20], optical codes based
on thin-film technology were produced for security applications. These
structures generate distinctive polarimetric information that can be
utilized to authenticate the message encoded. In [21], more complex
phase masks consisted of embedding nanoparticle structures such as
gold in an object. An optical set up was then used to authenticate
objects containing the phase mask by illuminating the object with a
laser diode. The polarimetric information from the object was
recorded and used for authentication. In [16], an authentication
scheme using a three-dimensional (3D) phase object was created by
illuminating a 3D phase object with two different wavelengths and
recording the resulting speckle pattern with a CCD device. These
speckle patterns were then correlated with authentic speckle patterns
from a database to verify the veracity of the 3D phase object.

In this work, we propose a 3D optical phase code (OPC) by encoding
a quick response (QR) code with a 3D optical phase mask. An
advantage of using a 3D optical phase mask compared with a 2D mask
is its difficulty in being duplicated by simple examination of the optical

phase mask or the resulting speckle pattern. The 3D optical phase
mask may be generated in a variety of methods. In our experiments, it
consists of a combination of glass slides and diffuser material. A 445
nm wavelength blue laser diode is transmitted through the 3D OPC
generating a unique speckle pattern that is recorded on a CCD. From
the recorded speckle pattern, the mean, variance, skewness, kurtosis,
and entropy is computed. The random forest classifier is then used to
authenticate the phase masks.

2. 3D Optical Phase Code Design and Feature
Selection

Three-dimensional OPCs were created as shown in Fig. 1. A4 mm x 4
mm QR code was first printed on transparency paper. A 3D optical
phase mask was then placed on the QR code. In the experiment, three
phase mask configurations were used. As shown in Fig. 1(a), a glass
slide and diffuser paper were placed on a QR code; we denote this
configuration as 3D OPC A. Figure 1(b) depicts a glass slide and diffuser
paper along with an additional glass slide and diffuser paper placed on
a QR code; we denote this configuration as 3D OPC B. Lastly, Fig. 1(c)
depicts a glass slide and diffuser paper along with an additional glass
slide, diffuser paper, and glass slide placed on a QR code, generating 3D
OPC C. We note that phase codes were held together by Scotch tape;
however we verified that the tape was placed sufficiently far from the
QR code. Thus, when illuminated by a laser source, the laser would not
be transmitted through the tape. Fig. 2(a) shows the experimental 4
mm x 4 mm QR code used while Fig. 2(b) depicts 3D OPC A. The 3D
OPCs generate a highly nonlinear scattering of light due to being an
inhomogeneous material [27-30]. In addition, the light transmitted



through the 3D OPCs cannot be easily described with conventional
wave propagation models [31]. This highly nonlinear light
propagation, though difficult to model, can be used as a unique phase
mask. Having this complex phase mask is ideal to serve as an optical
tag to create a unique signature for an object.

Once the 3D optical phase codes were developed, an optical
experiment was carried out as shown in Fig. 3. A 3D OPC was placed
on a translation stage. A blue laser diode having a wavelength of 445
nm was transmitted through first a polarizer to lower the intensity
followed by a lens to expand the light. The light was then transmitted
through the 3D OPC. A Canon EOS 600D with a CCD sensor size of
14.9 mm (v) x 22.3 mm (w) was used to record the resulting speckle
pattern which was 2784 (v) x 1856 (w) pixels. Twenty speckle
patterns were recorded for when the 3D OPC was 30 mm, 70 mm, 110
mm, and 150 mm from the CCD sensor. Note that the statistical
properties of a speckle, which is a nonstationary process, can be
influenced by environmental effects including vibrations [31].
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Fig. 1. Workflow for developing the 3D optical phase code for (a)
3D optical phase code A, (b) 3D optical phase code B, and (c) 3D
optical phase code C.
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Fig. 2. (a) Experimental 4 mm x 4 mm QR code and a picture of
(b) 3D optical phase code A, which consists of a QR code with an
optical phase mask consisting of a glass slide and diffuser paper.

A CCD is an intensity recording device and the recorded speckle
patterns can be approximated as a statistical distribution. It can be
shown that the statistical pattern can be approximated as a Gamma

distribution [32]:
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where I, 7 , and o are the intensity data points, its average and the
corresponding standard deviation, respectively.

An example of the speckle patterns captured is shown in Fig. 4 for a
distance, d, of 110 mm from the CCD using 3D OPCs A, B and C,
respectively, along with their corresponding histograms. We note that
the color map was adjusted to improve the visualization of the speckle.
Using Eq. 1, a gamma distribution was also fitted to the histograms.
The images were normalized to lie between the interval [0, 1].
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Fig. 3. Optical experimental setup. A 455 nm blue laser diode is
transmitted through a polarizer and lens. The laser is then
transmitted through the QR code which has a 3D optical phase
mask placed on it. A CCD sensor, a distance d away from the QR
code, records the speckle pattern.
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Fig. 4. (ab,c) The speckle patterns obtained using 3D optical
phase codes A, B, and C, respectively. The 3D optical phase codes
are a distance of 110 mm from the CCD sensor. The
corresponding histograms and a fitted Gamma distribution are
also shown.

In our proposed authentication scheme, we extract statistical
features from each speckle pattern to be used for classification. The
chosen features were: mean, variance, skewness, kurtosis, and
entropy. The skewness and kurtosis can be used to examine the
location and variability of a distribution, respectively [33]. The
skewness measures the third moment of a distribution and measures
the symmetry of a distribution. Since the speckle patterns are
unimodal, negative skewness values mean the left tail is longer than
the right tail of the distribution. Moreover, a positive skewness
indicates the right tail is longer than the left tail. The kurtosis measures
the fourth moment of a distribution and describes the curvature of the
distribution. This metric measures how much the data is peaked or flat
relative to a standard normal distribution. For feature extraction, the
unbiased skewness and kurtosis was used [34]. Lastly, the entropy [35,
36] measures the average uncertainty, or variability, of an image. The
minimum uncertainty occurs at an entropy of 0. The mean, unbiased
variance, skewness and kurtosis along with the entropy are defined as:
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where /1 is the sample mean, ¢ is the unbiased sample variance, s is

the unbiased skewness, ]€ is the unbiased kurtosis, H is the entropy,
p (xi ) denotes the probability mass function of x; found by using the

relative frequency distribution [37], and N is the total number of pixels,.

By calculating the mean, variance, skewness, kurtosis, and entropy,
pixel intensities no longer need to be stored; the only information
needed are the five feature values and the classification model. An
example of the features extracted at distances of 70 mm and 110 mm
are shown in Table 1.

Table 1. Example of mean, variance, skewness, Kurtosis, and
entropy calculated for recorded speckle patterns

3D Opitical N a2 2 ~
Phase Code H# o s k H
A 0.099 0.037 07142 3.815 5496
d =70 mm B 0.087 0.085 0.6202 3.629 4958
C 0.106 0.073 0.7013 3.810 4.862
A 0.070 0.030 09297 4313 5.678
d=110 mm B 0.070 0.062 1.0310 4982 4.682
C 0.065 0.059 11067 5598 4.297

3. 3D Optical Phase Code Authentication Scheme

We chose to use the random forest (RF) classifier [38, 39] for the
classification model. This supervised, non-parametric classifier has
reduced variance and is robust to overfitting. In essence, the random
forest combines the outputs of many independent decision trees,
which is a type of binary tree that contains nodes, branches, and leaves.
A “vote” is made by averaging the final results of each decision and the
majority vote indicates the predicted class of an input.

The splits are based on the Gini’s diversity index (GDI) [38]. This
metric measures the node impurity. The lower the GD], the better the
split. For a data set Sat node M, the GDI is defined as:

GpIs) =1- 5 [p, (1], (6)

where Kis the number of predefined classes, pi(x) is the relative
frequency [36] of class k at node M defined as:

P (1)=5 1 (4), )
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where s, is the number of data points in class k, I is the indicator

function, and N is the total number of data points in S at node M.
The number of features selected, at random, is also calculated for
each split. The advantage of using a limited number of features is that



it helps to decorrelate trees since strong predictors will not appear in
every tree. The minimum node size is one and the number of features
ateach nodeis:

m=| v, ®)

where v is the number of features and LJ denotes the floor operator.

Now using the m features at each split, pick the best variable/split
point [see Eq. 6] and split the node into two daughter nodes. The
process is repeated until a node has one class, which corresponds to a
GDI of zero.

The random forest classifier creates multiple decision trees by using
separate bootstrapped [38] samples from the data for each tree.
Bootstrapping also helps to ensure that the trees developed are not
correlated. Data not used to train a tree is known as being “out-of-bag”.
This data is used to evaluate the performance of the classifier.

Bootstrapping is sampling a data set of independent data with
replacement. For each bootstrap, z*b, bootstrapping is defined as:

* b *

z z(xl*,x;,...,xN), b=12,...B, (9)

where b is the bth bootstrap data set for N data points and B is the total
number of bootstrapped samples.

After forming the binary trees, a “vote” from each tree determining
the class of the “out-of-bag” data is computed by taking into account
only data samples that were not used in any decision trees. To form a

decision, we let é b (x) be the class prediction of the bth random forest

tree, then the final classification prediction is:

C 1 (x) = majority vote {éb (x)}B , (10)

where majority vote is the class that has the most “votes” from the
random forest consisting of B trees.

4. 3D Optical Phase Code Authentication

Twenty speckle patterns were recorded from 3D optical phase code A,
B, and C at distances of 30 mm, 70 mm, 110 mm, and 150 mm from the
CCD sensor [see Section 2]. In total, there were 12 classes, as described
in Table 2, and 120 true class images. Feature extraction was then
performed [see Egs. 1-5] and the random forest classifier was used to
authenticate these speckles. Fig. 5 below depicts an overview of the
proposed authentication system. The random forest classifier was
trained using ten speckles from each class while the other ten were
used for testing. The random forest classifier training model was
evaluated by calculating the out-of-bag error for the random forest
using 100 trees, shown in Fig. 6. After 100 trees, the percent error was
about 0.67%.
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Fig. 5. Overview of the 3D optical phase code authentication
system.

Testing data was then inputted into the model using the other ten
recorded speckles from each class. We note that the classifier
automatically places the data into a class. To determine the reliability of
a measurement, we also observe the score that the random forest
calculates. The score is the percentage of “votes” from each binary tree
to each class. There was a 100% correct classification rate for each
class. In addition, the number of votes to the correct class in the
proposed classification scheme was on average 99.953%. Thus, the
proposed classification scheme may be used to authenticate a unique
3D optical phase mask.

Table 2. A 12 class system was developed using 3D optical phase
codes (OPC) A, B, and C and placing the 3D codes at different
distances from the CCD sensor.

3DOPCA 3D OPCB 3DOPCC
30 mm Class 1 Class 2 Class 3
70 mm Class 4 Class 5 Class 6
110 mm Class 7 Class 8 Class 9
150 mm Class 10 Class 11 Class 12

A test was also conducted to determine the performance of the
classifier to speckles from 3D OPCs that do not fall into any classes,
which we consider false class data. Fifty speckles were captured from
different configurations of 3D OPCs, which were constructed using a
process similar to those constructed in Fig. 1, and placed at arbitrary
distances from the CCD sensor. Features were extracted from the
recorded speckle pattern and inputted into the random forest
classifier. If a speckle pattern did not have a 95% vote, it was assumed
that the classifier was unable to decide the class of the speckle. An
example of a false class speckle pattern is shown in Fig. 7. The false
class pattern was created by placing 3D optical phase code C 100 mm
from the CCD and recording the resulting speckle pattern. For this
particular false class speckle, the classifier determined that the pattern
belonged to class 8. Moreover, the score received only 84% of the votes
thus we could not determine the veracity of the phase mask and
conclude that it was not authentic. Table 3. shows the confusion matrix
of the classifier accounting for both true and false class data.
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Fig. 6. Out-of-bag classification error using 100 trees which
converges to about 0.0067.




Table 3. Classification results for the 12 class system for when
120 test images were used and 50 false class images

Predicted Class
True False
Actual True 120 0
Class
False 0 50

The accuracy of the classifier when the 3D OPC was shifted from
their original positions was also evaluated. At distances of 70 mm, 110
mm, and 150 mm, 3D optical phase code A was displaced up to +/- 10
mm from the original position by increments of 1 mm. As the 3D
optical phase code was further from the CCD device, the classifier was
less sensitive to displacement errors as shown in Fig. 8. We note that
the classifier was able to correctly classify speckles for all
displacements about 110 mm and 150 mm; however, at 70 mm there
were misclassifications at - 9 mm and - 10 mm. Thus, a user must be
mindful the distance the 3D optical phase code is from the CCD sensor.

Fig. 7. A false class speckle pattern obtained by placing 3D optical
phase code C 100 mm from the CCD sensor.
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Fig. 8. Effect of displacement of 3D optical phase code A on the
class confidence score output from the random forest classifier
for distances 70 mm, 110 mm, and 150 mm from the CCD sensor.

5. Conclusion

In conclusion, we present an authentication scheme using a
transparent QR code containing a 3D optical phase mask to generate a
3D optical phase code (OPC). An advantage of a 3D optical phase mask
over a 2D is that it is difficult to mathematically characterize a 3D code

made of randomly scattering medium and/or to duplicate it physically.
An optical authentication system was designed using 3 separate 3D
OPCs which were placed 30 mm, 70 mm, 110 mm, and 150 mm from a
CCD sensor. A 445 nm blue laser diode illuminated the 3D OPCs at each
distance to generate a unique speckle pattern that was captured by the
CCD. Feature extraction was then performed on the speckle pattern by
calculating the mean, variance, skewness, kurtosis, and entropy. A
multiclass random forest classifier was used to classify the recorded
speckles at each distance. A 100% accuracy rate was achieved. Thus,
we have shown we can use mean, variance, skewness, kurtosis and
entropy of a speckle image combined with the random forest classifier
to determine the authenticity of a 3D OPC. Overall, it is difficult to
reproduce the 3D optical code from either the resulting speckle pattern
or visual inspection. As a result, we can use this 3D optical phase code
system to authenticate an object.
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