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An object with a unique three-dimensional (3D) optical phase mask attached is analyzed for security and 
authentication. These 3D optical phase masks are more difficult to duplicate or to have a mathematical formulation 
compared with 2D masks, and thus have improved security capabilities. A quick response code was modulated 
using a random 3D optical phase mask generating a 3D optical phase code (OPC). Due to the scattering of light 
through the 3D OPC, a unique speckle pattern based on the materials and structure in the 3D optical phase mask is 
generated and recorded on a CCD device. Feature extraction is performed by calculating the mean, variance, 
skewness, kurtosis, and entropy for each recorded speckle pattern. The random forest classifier is used for 
authentication. Optical experiments demonstrate the feasibility of the authentication scheme.   

OCIS codes: (100.4993) Pattern recognition, optical security and encryption,  (030.6140) Speckle; (110.0110) Imaging systems;  
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1. Introduction Optical information security has sought to ensure the secure transmission of an image to a recipient. This area of research includes image encryption [1-15], authentication [16-24], and compression or secure storage [25, 26]. Authenticating sensitive information is critical to discovering tampering caused by a miscreant. Methodologies for image authentication includes both optical [16-21] and simulated [22, 23] authentication schemes. Recently, authentication schemes have been investigated using optically tagged security codes [19-21]. In these authentication schemes, an object is optically tagged using a phase mask. In [19], these phase masks were as simple as Scotch tape. In [20], optical codes based on thin-film technology were produced for security applications. These structures generate distinctive polarimetric information that can be utilized to authenticate the message encoded. In [21], more complex phase masks consisted of embedding nanoparticle structures such as gold in an object. An optical set up was then used to authenticate objects containing the phase mask by illuminating the object with a laser diode. The polarimetric information from the object was recorded and used for authentication. In [16], an authentication scheme using a three-dimensional (3D) phase object was created by illuminating a 3D phase object with two different wavelengths and recording the resulting speckle pattern with a CCD device. These speckle patterns were then correlated with authentic speckle patterns from a database to verify the veracity of the 3D phase object.   In this work, we propose a 3D optical phase code (OPC) by encoding a quick response (QR) code with a 3D optical phase mask.  An advantage of using a 3D optical phase mask compared with a 2D mask is its difficulty in being duplicated by simple examination of the optical 

phase mask or the resulting speckle pattern. The 3D optical phase mask may be generated in a variety of methods. In our experiments, it consists of a combination of glass slides and diffuser material. A 445 nm wavelength blue laser diode is transmitted through the 3D OPC generating a unique speckle pattern that is recorded on a CCD.  From the recorded speckle pattern, the mean, variance, skewness, kurtosis, and entropy is computed. The random forest classifier is then used to authenticate the phase masks.  
2. 3D Optical Phase Code Design and Feature 
Selection Three-dimensional OPCs were created as shown in Fig. 1. A 4 mm × 4 mm QR code was first printed on transparency paper.  A 3D optical phase mask was then placed on the QR code. In the experiment, three phase mask configurations were used. As shown in Fig. 1(a), a glass slide and diffuser paper were placed on a QR code; we denote this configuration as 3D OPC A. Figure 1(b) depicts a glass slide and diffuser paper along with an additional glass slide and diffuser paper placed on a QR code; we denote this configuration as 3D OPC B. Lastly, Fig. 1(c) depicts a glass slide and diffuser paper along with an additional glass slide, diffuser paper, and glass slide placed on a QR code, generating 3D OPC C. We note that phase codes were held together by Scotch tape; however we verified that the tape was placed sufficiently far from the QR code. Thus, when illuminated by a laser source, the laser would not be transmitted through the tape. Fig. 2(a) shows the experimental 4 mm × 4 mm QR code used while Fig. 2(b) depicts 3D OPC A. The 3D OPCs generate a highly nonlinear scattering of light due to being an inhomogeneous material [27-30]. In addition, the light transmitted 



through the 3D OPCs cannot be easily described with conventional wave propagation models [31]. This highly nonlinear light propagation, though difficult to model, can be used as a unique phase mask. Having this complex phase mask is ideal to serve as an optical tag to create a unique signature for an object. Once the 3D optical phase codes were developed, an optical experiment was carried out as shown in Fig. 3.  A 3D OPC was placed on a translation stage. A blue laser diode having a wavelength of 445 nm was transmitted through first a polarizer to lower the intensity followed by a lens to expand the light. The light was then transmitted through the 3D OPC.  A Canon EOS 600D with a CCD sensor  size of 14.9 mm (v) × 22.3 mm (w) was used to record the resulting speckle pattern which was 2784  (v) × 1856 (w) pixels. Twenty speckle patterns were recorded for when the 3D OPC was 30 mm, 70 mm, 110 mm, and 150 mm from the CCD sensor. Note that the statistical properties of a speckle, which is a nonstationary process, can be influenced by environmental effects including vibrations [31].  

 
Fig. 1. Workflow for developing the 3D optical phase code for (a) 
3D optical phase code A, (b) 3D optical phase code B, and (c) 3D 
optical phase code C.  

 
Fig. 2.  (a) Experimental 4 mm × 4 mm QR code and a picture of 
(b) 3D optical phase code A, which consists of a QR code with an 
optical phase mask consisting of a glass slide and diffuser paper. A CCD is an intensity recording device and the recorded speckle patterns can be approximated as a statistical distribution. It can be shown that the statistical pattern can be approximated as a Gamma distribution [32]: 
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 where I, I , and σ are the intensity data points, its average and the corresponding standard deviation, respectively. An example of the speckle patterns captured is shown in Fig. 4 for a distance, d, of 110 mm from the CCD using 3D OPCs A, B and C, respectively, along with their corresponding histograms. We note that the color map was adjusted to improve the visualization of the speckle. Using Eq. 1, a gamma distribution was also fitted to the histograms. The images were normalized to lie between the interval [0, 1].    
 

         

Fig. 3. Optical experimental setup. A 455 nm blue laser diode is 
transmitted through a polarizer and lens. The laser is then 
transmitted through the QR code which has a 3D optical phase 
mask placed on it. A CCD sensor, a distance d away from the QR 
code, records the speckle pattern.  



Fig. 4.  (a,b,c) The speckle patterns obtained using 3D optical 
phase codes A, B, and C, respectively. The 3D optical phase codes 
are a distance of 110 mm from the CCD sensor. The 
corresponding histograms and a fitted Gamma distribution are 
also shown. In our proposed authentication scheme, we extract statistical features from each speckle pattern to be used for classification. The chosen features were: mean, variance,  skewness, kurtosis, and entropy. The skewness and kurtosis can be used to examine the location and variability of a distribution, respectively [33]. The skewness measures the third moment of a distribution and measures the symmetry of a distribution. Since the speckle patterns are unimodal, negative skewness values mean the left tail is longer than the right tail of the distribution. Moreover, a positive skewness indicates the right tail is longer than the left tail. The kurtosis measures the fourth moment of a distribution and describes the curvature of the distribution. This metric measures how much the data is peaked or flat relative to a standard normal distribution. For feature extraction, the unbiased skewness and kurtosis was used [34]. Lastly, the entropy [35, 36] measures the average uncertainty, or variability, of an image. The minimum uncertainty occurs at an entropy of 0. The mean, unbiased variance, skewness and kurtosis along with the entropy are defined as: 
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             where μ̂ is the sample mean, 2σ̂ is the unbiased sample variance, ŝ is the unbiased skewness,  k̂  is the unbiased kurtosis, H is the entropy, 
( )ip x denotes the probability mass function of xi found by using the relative frequency distribution [37], and N is the total number of pixels,.   By calculating the mean, variance, skewness, kurtosis, and entropy, pixel intensities no longer need to be stored; the only information needed are the five feature values and the classification model. An example of the features extracted at distances of 70 mm and 110 mm are shown in Table 1. 
Table 1. Example of mean, variance, skewness, kurtosis, and 

entropy calculated for recorded speckle patterns 3D Opitical Phase Code μ̂  2σ̂  2ŝ  k̂  H 
d =70 mm A 0.099 0.037 0.7142 3.815 5.496B 0.087 0.085 0.6202 3.629 4.958C 0.106 0.073 0.7013 3.810 4.862
d=110 mm A 0.070 0.030 0.9297 4.313 5.678B 0.070 0.062 1.0310 4.982 4.682C 0.065 0.059 1.1067 5.598 4.297

 

3. 3D Optical Phase Code Authentication Scheme We chose to use the random forest (RF) classifier [38, 39] for the classification model. This supervised, non-parametric classifier has reduced variance and is robust to overfitting. In essence, the random forest combines the outputs of many independent decision trees, which is a type of binary tree that contains nodes, branches, and leaves. A “vote” is made by averaging the final results of each decision and the majority vote indicates the predicted class of an input.  The splits are based on the Gini’s diversity index (GDI) [38]. This metric measures the node impurity. The lower the GDI, the better the split. For a data set S at node M, the GDI is defined as: 
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     where Κ is the number of predefined classes, pk(x) is the relative frequency [36] of class k  at node M defined as: 
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 where ks  is the number of data points in class k, I is the indicator function, and N is the total number of data points in S at node M.  The number of features selected, at random, is also calculated for each split.  The advantage of using a limited number of features is that 



it hevat 
 

 whpoprGDseBocoThre
 

 whnuthondetre
 

 whra
4.TwB, CCin peauprtrausevusab

Fig
sy

helps to decorrevery tree. The mineach node is: 
here v is the numNow using the moint [see Eq. 6] rocess is repeatedDI of zero. The random foreparate bootstrapootstrapping alsoorrelated. Data nohis data is used toBootstrapping iplacement. For e

*,bz

here b is the bth bumber of bootstraAfter forming the class of the “ounly data samples ecision, we let ˆ
bCee, then the final c
(finalC

here majority voandom forest cons
. 3D Optical Pwenty speckle paand C at distanceCD sensor [see SeTable 2, and 12erformed [see Equthenticate theseroposed authentained using ten ssed for testing. Tvaluated by calcusing 100 trees, shbout 0.67%.  

g. 5. Overview 
ystem. 

late trees since snimum node size
m = 

mber of features an
m features at eacand split the nod until a node haest classifier creapped [38] sampo helps to ensureot used to train a o evaluate the peris sampling a dach bootstrap, z*,

( * * *
1 2, , ..., Nx x x=

bootstrap data seapped samples.   he binary trees, aut-of-bag” data isthat were not us
( )b x be the class classification pre

( )x majority v=

ote is the class thsisting of B trees. 
Phase Code Aatterns were recoes of 30 mm, 70 mection 2]. In total, 20 true class imqs. 1-5] and the rae speckles. Fig. 5 tication system. speckles from eaThe random forulating the out-ohown in Fig. 6. Aft

of the 3D opt

strong predictorse is one and the n
,v   nd ⋅    denotes tch split, pick the ode into two daas one class, whicates multiple deciples from the de that the trees tree is known as rformance of the ata set of indep,b, bootstrapping i

) , 1, 2,b B= …

et for N data pointa “vote” from eacs computed by tsed in any decisioprediction of thediction is: 
( ){ }ˆ B

bvote C x

hat has the mos
Authenticatioorded from 3D opmm, 110 mm, andthere were 12 clmages. Feature exandom forest clabelow depicts aThe random foach class while trest classifier trof-bag error for ter 100 trees, the

tical phase cod

s will not appear number of featur
(

the floor operatorbest variable/spughter nodes. Tch corresponds toision trees by usidata for each tredeveloped are nbeing “out-of-baclassifier.  pendent data wiis defined as: 
,B  (ts and B  is the toh tree determinitaking into accouon trees. To forme bth random fore
,  (1

st “votes” from t
n ptical phase coded 150 mm from tlasses, as describxtraction was thassifier was used an overview of trest classifier wthe other ten weraining model wthe random foree percent error w

 
de authenticatio

in res 
(8)

r. plit The o a ing ee. not ag”. ith 
(9)tal ng unt m a est 
10)

the 
e A, the bed hen to the was ere was est was 

on 

 Testrecordeautomaa meascalculatto eachclass. Inproposepropose3D optic
Table 2

code

30 m70 m110 150  A tesclassifiewhich wdifferenprocessdistancerecordeclassifiethat theexampleclass pafrom thparticulbelongethus weconcludof the cl
 

Fig. 6.
conver

ting data was theed speckles fromatically places thesurement, we alstes. The score is th class. There wan addition, the ned classification ed classification scal phase mask. 
2.  A 12 class sys
es (OPC) A, B, an

dista3D mm Clmm Clmm Clmm Clast was also conder to speckles frowe consider falsent configurations s similar to thosees from the CCDed speckle patter. If a speckle pae classifier was ue of a false classattern was createhe CCD and recolar false class speed to class 8. Morwe could not detde that it was not lassifier accountin

Out-of-bag cla
rges to about 0.0

en inputted into tm each class. e data into a class.so observe the sthe percentage ofas a 100% correnumber of votescheme was onscheme may be 
stem was develo
nd C and placing
ances from the COPC A 3lass 1lass 4lass 7ass 10ducted to determom 3D OPCs thae class data. Fiftys of 3D OPCs, whe constructed in D sensor. Featutern and inputtattern did not havunable to decides speckle patterned by placing 3D ording the resulteckle, the classifiereover, the score rtermine the verat authentic. Table ng for both true a

assification err
0067. 

 

the model using We note that . To determine thscore that the rf “votes” from eacect classification es to the correctn average 99.953used to authenti
oped using 3D o
g the 3D codes at
CCD sensor.  3D OPC B Class 2 Class 5 Class 8 Class 11 mine the perforat do not fall inty speckles were chich were constrFig. 1, and placeres were extracted into the rave a 95% vote, it e the class of then is shown in Figoptical phase coting speckle pater determined threceived only 84%acity of the pha3. shows the conand false class da

ror using 100 

the other ten the classifier he reliability of andom forest ch binary tree rate for each t class in the 3%. Thus, the icate a unique 
optical phase 
t different 3D OPC CClass 3Class 6Class 9Class 12rmance of the to any classes, captured from ructed using a ed at arbitrary cted from the andom forest was assumed e speckle.  An g. 7. The false ode C 100 mm ttern. For this hat the pattern % of the votes ase mask and nfusion matrix ata.  

 
trees which 



Table 3. Classification results for the 12 class system for when 
120 test images were used and 50 false class images 

   Predicted Class 
  True FalseActual Class True 120 0  False 0 50  The accuracy of the classifier when the 3D OPC was shifted from their original positions was also evaluated. At distances of 70 mm, 110 mm, and 150 mm, 3D optical phase code A was displaced up to +/- 10 mm from the original position by increments of 1 mm. As the 3D optical phase code was further from the CCD device, the classifier was less sensitive to displacement errors as shown in Fig. 8. We note that the classifier was able to correctly classify speckles for all displacements about 110 mm and 150 mm; however, at 70 mm there were misclassifications at – 9 mm and – 10 mm.  Thus, a user must be mindful the distance the 3D optical phase code is from the CCD sensor. 

 
Fig. 7. A false class speckle pattern obtained by placing  3D optical 
phase code C 100 mm from the CCD  sensor. 

 
Fig. 8.  Effect of displacement of 3D optical phase code A on the 
class confidence score output from the random forest classifier 
for distances 70 mm, 110 mm, and 150 mm from the CCD sensor. 

5. Conclusion In conclusion, we present an authentication scheme using a transparent QR code containing a 3D optical phase mask to generate a 3D optical phase code (OPC). An advantage of a 3D optical phase mask over a 2D is that it is difficult to mathematically characterize a 3D code 

made of randomly scattering medium and/or to duplicate it physically. An optical authentication system was designed using 3 separate 3D OPCs which were placed 30 mm, 70 mm, 110 mm, and 150 mm from a CCD sensor. A 445 nm blue laser diode illuminated the 3D OPCs at each distance to generate a unique speckle pattern that was captured by the CCD. Feature extraction was then performed on the speckle pattern by calculating the mean, variance, skewness, kurtosis, and entropy. A multiclass random forest classifier was used to classify the recorded speckles at each distance. A 100% accuracy rate was achieved. Thus, we have shown we can use mean, variance, skewness, kurtosis and entropy of a speckle image combined with the random forest classifier to determine the authenticity of a 3D OPC. Overall, it is difficult to reproduce the 3D optical code from either the resulting speckle pattern or visual inspection. As a result, we can use this 3D optical phase code system to authenticate an object.  
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