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Abstract: The introduction of hybrid materials in regenerative medicine has solved some problems related to the 

mechanical and bioactive properties of biomaterials. Calcium phosphates and their derivatives have provided the basis 

for inorganic components, thanks to their good bioactivity, especially in bone regeneration. When mixed with 

biodegradable polymers, the result is a synergic association that mimics the composition of many tissues of the human 

body and, additionally, exhibits suitable mechanical properties. Together with the development of nanotechnology and 

new synthesis methods, hybrids offer a promising option for the development of a third or fourth generation of 

smart biomaterials and scaffolds to guide the regeneration of natural tissues, with an optimum efficiency/cost ratio. 

Their potential bioactivity, as well as other valuable features of hybrids, open promising new pathways for their use 

in bone regeneration and other tissue repair therapies. This review provides a comprehensive overview of the 

different hybrid organic-inorganic scaffolding bio- materials developed so far for regenerative therapies, especially 

in bone. It also looks at the potential for research into hybrid materials for other, softer tissues, which is still at an 

initial stage, but with very promising results. 

 

Keywords: Biodegradable polymer, hybrid materials, nanoparticles, ormoglass. 

 

1. INTRODUCTION 

Many strategies involving composites have been implemented since the 80s, particularly for second generation 

biomaterials [1, 2]. The development of hybrid materials (i.e. composites whose components demonstrate interactions at 

the molecular or nanometric level) in regenerative medicine accomplishes several requirements that pure materials 

cannot fulfill, especially those linked to mechanical issues. The possibility of introducing the inherent bioactivity of calcium 

phosphates (CaP) is a bonus that makes any composite involving CaP very interesting. 

The main aim of composite materials in therapies is to obtain templates which have suitable mechanical properties, 

as well as bioactivity. Nowadays, their potential use can be extended to almost all human tissues. However, the main field 

whose requirements have triggered the development of composite and hybrid materials has been bone regeneration, as a 

way to develop a third and fourth generation of smart biomaterials and scaffolds to guide the regeneration of natural 

tissue [1, 3] . The use of hybrids in other branches of regeneration is an easy step forward thanks to their potential 

bioactivity and versatile features. In this review, we will describe recent developments using hybrid inorganic/organic 

materials which have already been developed for tissue regeneration. In addition, we discuss carbon nanotubes (CNT) and 

their derivatives, as they have gained popularity in several applications in the field of tissue regeneration, in particular 

nerve and muscle regeneration. Even though carbon nanotubes are not inorganic materials, they present some similar 

properties to inorganic materials, and we con- sider that they also deserve our attention. 

In today’s biomaterials for tissue regeneration, the trend is to be able to mimic the natural extracellular matrix (ECM) 

with its corresponding features, functions and hierarchical organization [3]. Bone, for example, is the result of an 

osteoblast-mediated mineralized ECM or osteoid, whose Young modulus goes from 27 kPa to 1 GPa, referred to as final 

rigid bone [4]. These values have generated a controversy in bone regeneration: should implanted grafts be as rigid as 

bone, or should high stiffness be relinquished for the final result? In addition, mature bone is made up of different 

components, each with a specific role within a comprehensive function. Function strongly depends on architecture, which 
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is why there is no universal bone substitute, but instead specific designs for particular applications. 

 
2. INTRODUCTION TO BONE TISSUE 

Basically, bone tissue is a strong and tough connective tissue that supports and protects the rest of the internal 

organs, allows the body to move, offers an ideal environment for blood cell formation, and acts as a store for salts 

(especially calcium phosphates), among other functions [5]. Bone, as a hybrid natural construct, is an inspiring material that 

presents a complex and highly hierarchical organized structure [6]. Morphologically, it can be subdivided into two distinct 

types according to porosity and unit microstructure: the cortical bone (also known as compact bone) and the trabecular 

bone (also called cancellous or spongy bone) [7, 8]. The cortical bone is distinguished by its high density (low porosity and 

void spaces) and represents the higher percentage of the total bone mass of an individual (around 80%). It typically 

forms the outer shell of most bones and supports the mechanical properties of the skeleton. The trabecular bone is 

defined by its low density and accounts for the other 20% of the total bone mass of an adult. It possesses a significantly 

higher surface area, and its high porosity allows room for blood vessels and bone marrow. 

 

Fig. (1). Hierarchical structural organization of bone. (scheme reprinted from [7] with permission). 

 

Cortical and trabecular bones are both made of nearly the same organic and inorganic components (Fig. 1). The 

combination of these two phases with different natures makes bone a composite tissue. Each component phase contributes 

to the unique mechanical properties of bone and depends on the structural organization of each phase [7]. Generally, it 

is commonly accepted that the organic part provides elasticity and flexibility to the bone, whereas the inorganic one provides 

rigidity and load-bearing strength [6]. The major organic constituents are collagens organized in fibril bundles that form 

a 3D nanoscaled collageneous matrix network [7, 9]. Proteoglycans, noncollageneous macromolecules (other proteins like 

osteocalcin, osteopontin, bone morphogenetic protein-2 (BMP-2), etc) [6] and cells complete the organic composition. The 

inorganic constituent is mainly formed by carbonated hydroxyapatite, a calcium phosphate mineral with low crystallinity and 

some amounts of carbonate that epitaxially nucleates and grows along the collagen fibrils. 

 

Fig. (2). Dynamic dependence between the various features of 3D scaffolds on cells and involved in the regulation of a material’s 
biological performance. (scheme adapted from [13]). 

 
3. SCAFFOLD PROPERTIES AND THEIR  EFFECT ON CELLULAR BEHAVIOR 

Adhesion, proliferation and differentiation of cells cultured on a scaffold constitute the basis of tissue engineering 

approaches. It is well known that cell-cell interactions direct cellular activity towards these behaviors and contribute to 

determining the fate of uncommitted stem cells [10, 11]. In addition, the material properties also directly affect cell 

function; in fact, these can be efficiently used to control cellular processes through three-dimensional chemical and physical 
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guidance. The key design factors in developing a biomaterial aimed at triggering specific cellular responses are its chemical 

and mechanical surface properties and its architecture (Fig. 2). Together, all these material properties coordinate the 

interplay be- tween intrinsic and extrinsic determinants of stem cell fate to pro- duce a desired phenotype [12, 13]. 

3.1. Scaffold Architecture 

The choice of a suitable fabrication technique to produce 3D structures is a significant hurdle for the improvement 

of tissue engineering treatments [14]. The architecture of the fabricated material should, in fact, not only have suitable 

mechanical properties, but also enable an optimal mass and fluid transport through the whole template [15]. In other 

words, the substrate prepared should exhibit a suitable porosity to ensure the efficient colonization of the material by 

cells, enable the supply of nutrients and oxygen, ensure the evacuation of detritus, and support the invasion of blood 

vessels. All these phenomena will contribute to the performance of the material and, ultimately, to the formation of fully 

functional and healthy bone. Appropriate porosity is thus a crucial requirement for bone regeneration [16]. 

As seen in (Fig. 3), materials can be shaped into different forms depending on the processing techniques used to 

fabricate scaffolds (foaming [17, 18], sintering [19], salt leaching [20], rapid- prototyping [21], electrospinning [22], 

etc). Each technique results in materials with specific pore size and interconnectivity, which can be controlled by varying 

the experimental parameters [23]. Porosity can be considered at three levels: macro-, meso- and microporosity. 

Macroporosity refers to pores having a width larger than 50 nm, mesoporosity to those between 2 and 50 nm, and 

microporosity to those with a width smaller than 2 nm [24]. 

Macroporosity is considered the most relevant factor that influences cell behavior, bone growth and vascularization. For 

example, Valerio et al. demonstrated that bioactive glass macroporous structures with pores ranging from 100 µm to 500 

µm (prepared by the sol-gel method and foaming technique) support cell migration to- wards the inside of the scaffold 

[25]. Sepulveda et al. and Xynos et al. also showed that foams with large pores (diameters between 10 and 500 µm) enhanced 

cellular differentiation and proliferation, as well as bone formation and vascularization [26, 27]. According to Hulbert et 

al., the minimum size requirement for macropores is around 100 µm [28]. In their study in dogs, they showed that samples 

with pores between 75 µm to 100 µm induced only little bone ingrowth, whereas samples with pores ranging from 100 µm to 

150 µm in size promoted better bone ingrowth and the formation of calcified tissue. Samples with pores smaller than 75 

µm were infiltrated by fibrous connective tissue only. 

 

 

 
 

Fig. (3). Examples of hybrid scaffolds prepared using different process techniques (from left to right): foams, monoliths, fibers. (picture 
a is adapted from [17] and from [18] with permissions, picture b from [19] with permission, picture c from the author’s own propriety). 

 

The samples with the largest pores in the study (150-200 µm) exhibited the best results in terms of calcification, 

vascularization and the presence of unmineralized bone within the pores. They justified the relevance of their results by 

correlating their observations with the diameter of the normal harversian system (100-200 µm). This showed the critical 

importance of macroporosity on cellular response in terms of osteo- and angiogenesis. However, depending on the testing 

conditions (load bearing or non-load bearing conditions), the critical pore size mentioned by Hulbert and coworkers appears 

not to be universal [29, 30]. Also, results differ between in vitro and in vivo assays, which make it difficult to define 

precise criteria for the size of macropores. In in vitro conditions, a low porosity can stimulate osteogenesis by 

suppressing cell proliferation and forcing cell aggregation, while in in vivo conditions, a higher porosity and pore size 

promoted better bone ingrowth due to good vascularization and oxygenation, thus favoring osteogenesis [15]. Moreover, the 

optimal or range of optimal pore size required for bone regeneration has been suggested to be dependent on each distinct 

cell type, and has also been shown to possess an upper limit of efficient functionality [31]. Finally, the interconnectivity 

of pores is essential for bone regeneration as it enables the infiltration of bone, the development of an efficient network 

a) b) c) 
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of blood vessels, and the promotion of cell- cell interactions [16, 25, 32]. 

On the other hand, meso- and microporosity also affect cellular response. The presence of these very small pores 

increases the surface area of the scaffold, promotes the adsorption of biological metabolites such as proteins, and 

enhances cell adhesion [33, 34]. The roughness created by these small pores can favor the anchorage of cells, and improves 

the proliferation and differentiation of bone cell lineage [34-36]. In parallel, in the case of biodegradable materials, it 

contributes to better ion exchange and bone-like apatite formation by the dissolution and re-precipitation process [37]. 

Simon et al. showed that geometrical parameters (pore size and the spatial arrangement of pores) affect the pattern of 

bone ingrowth [38]. The ability to vary and control the level of the three different types of porosity (i.e. meso-, micro- 

and macroporosity) is, therefore, a key factor in the development of scaffolds for bone tissue engineering. As previously 

explained, the sol-gel technology ap- pears to be a noteworthy method of tailoring cellular response by varying porosity, 

because it enables the control of the macroporosity of materials by using different fabrication methods to tune their 

texture at the meso- and micro levels [27, 39]. It should be noticed, however, that the porosity of the material always has 

to be a com- promise between biological behavior and mechanical properties, as a too high void volume may provide good 

vascularization and osteointegration, but significantly decreases the scaffold’s resistance to mechanical failure [40]. 

Another predominant research topic regarding the optimization of bone tissue repair is the ability to control cell-ECM 

interactions and to optimize cellular responses by producing materials with features tailored at the micro- and nanoscales. 

If roughness can be achieved through the fabrication of meso-microporous scaffolds, it can also be tailored by engineering 

the surface of materials using various techniques. The texturing and patterning of a material’s surface [41] can be 

performed using blasting [42], electropolishing [43], chemical treatments [44], lithography [45],plasma treatment [46] 

and focused ion beam [47], among other methods. It is well known that micro- and nanofeatures (roughness, for example) 

created on the surface positively affect cellular response (adhesion, detachment, proliferation, differentiation, 

spreading) compared to materials prepared with a smooth topography [43, 48]. Materials with nanofeatures are even 

thought to be more suitable than ones with microfeatures because they may be more biomimetic, and are consequently 

better at guiding cell behavior [49]. 

The base membranes of various tissues are composed of complex mixtures of nanoscale pits, pores, striations, 

particles, fibers and protrusions [48]. Based on a study conducted by Palin et al., the replication of nanoscale bone roughness 

on material surfaces indeed induces greater bone-forming cell adhesion and proliferation [50]. Other researchers have 

also shown that, for some materials, the smaller the nanofeatures, the better the cell adhesion and differentiation [51-

54]. However, it is difficult to establish a limit range of nanotopographic scale, in which bone regeneration is positively 

affected due to the diversity in topographic characteristics associ- ated to the different studies mentioned above (size, 

uniformity and shape). What is clear is that nanotopography controls cell behavior through the regulation of focal adhesion 

formation and cytoskeleton contractility, and activation of processes taking place at the sub-cell level (gene upregulation, 

cell signaling, cell metabolism) [45, 49, 54]. 

However, the physical surface patterning or texturing approach is not only used to modify the nanotopography of a 

material in terms of depth, pattern size or shape. It also enables the control of the anisotropy of a material’s surface, a 

property to which cells are highly sensitive too. Cells cultured on grooved substrates, for ex- ample, elongate and align 

in the direction of the groove [55, 56] (Fig. 4a). 

 
 

Fig. (4). Examples of morphology of cells cultured on a) tissue culture plate, e.g, not patterned or textured surface b) grooved substrate 
and c) aligned electrospun fibers. Arrows symbolize the direction of the anisotropy. (picture a is adapted from [57], picture b from [55] 

and picture c from [59] with permissions). 

The degree of alignment seems to be directly related to the depth of the grooves [56, 57], which demonstrates once 

again the importance of the roughness and the interplay of various physical factors for cellular activity. The spatial 

arrangement of fibers produced by electrospinning also induced similar responses [57, 58]. When cultured on aligned 

fibrous mats, cells oriented them- selves in the direction of the anisotropy (Fig. 4b) [55]. In contrast, on non-woven mats, 

cells spread following the multi-directions of the random fiber organization. In addition to this physical guidance, electrospun 



fibers present numerous particular advantages for bone tissue engineering (Fig. 4c) [59]. 

In summary, material properties directly influence bone formation in tissue engineering. Both physical and chemical cues 

play a role in the targeting of specific cellular responses required for the regeneration of a fully healthy functional bone 

(osteo- and angiogenesis). The choice of material constituents, the nature of the functional groups present at the material 

surface, the stiffness, rough- ness, nanofeatures and topography, among others, are many of the parameters that influence 

the mechanism. It is, however, difficult to investigate the role of each factor in an independent manner, as all of them are 

related. What is clear, though, is that bone formation is the result of a dynamic dependence between numerous properties, 

and that alongside cell-cell interactions and external mechanical stimulus, cell-biomaterial interactions account for an 

essential part of the regeneration process. Given the diversity of the materials currently produced, it is necessary to 

specify that each material possesses a unique combination of properties, and that each tem- plate will require specific 

improvements in order to achieve the proper biological performance. This should be achievable by finding a good 

compromise between all the criteria that the ideal scaf- fold should fulfill (mechanical properties, biological response, 

sterilizability, etc). Up to now, no ideal material has been developed – even though some are promising – and the design of 

biomaterials remains a challenging field of research with many and various development perspectives. 

 

3.2. Scaffold Surface Chemical Properties 

Scaffold surface chemical properties depend on the compounds selected to prepare the material (composition), the 

processing method, and an eventual functionalization step that can be per- formed on the surface after fabrication. Each 

biomaterial therefore possesses specific surface properties, such as for example wettability, electric charge, protein 

adsorption ability and bioactivity, which regulate the biological performance of the scaffold. One of the factors that can be 

considered to explain these differences in properties and in cellular response induced by the material is the nature of the 

functional groups present on its surface [60]. Hence, Lee et al. demonstrated that the functionalization of polyethylene 

substrates with different organic functional groups (COOH, CH2OH, CONH2, CH2NH2) resulted in a better cellular adhesion 

[61]. This was explained by a better wettability of the functional groups on grafted surfaces in comparison to non-grafted 

ones. They also showed that the chemistry of the functional groups itself was important, as it modifies the electric 

charge of the polymeric surface. Negatively charged substrates showed poor cell adhesion, whereas the positive ones 

exhibited the best. On neutral surfaces (-CH2OH and CONH2 groups), cell adhered better on hydroxyl-grafted substrates, 

possibly because of specific hydrogen bonding created between the surface hydroxyl groups of the polymer and the 

polar groups of the cell surfaces [62, 63]. However, the adhesion was still lower than on positively charged materials. 

Cell replication followed the same tendency as the cell adhesion assay: the more hydrophilic the material, the better the 

proliferation. Finally, it was demonstrated that substrates inducing the best proliferation were not necessarily those with 

the best cellular spreading. Indeed, cells spread significantly on the neutral surfaces, despite proliferating less than on 

the positively charged surfaces. The authors suggested that the compatibility between the cells and the surface chemistry 

plays a direct role in cellular spreading. Other research groups also described the general observations made by Lee et al. 

and gave further evidence that the nature of functional groups can also trigger osteoblastic differentiation [64, 65]. 

Other studies reported in the literature shows, moreover, that cell behavior can be influenced by these functional 

groups in an indirect manner: the surface properties that functional groups pro- vide to the material affect protein 

adsorption and, consequently, the cellular response [66-68]. Arima et. al. examined the kinetics of protein adsorption 

on materials having different functional groups and identified a correlation with cell adhesion [69]. Results showed that, 

depending on the chemistry of the functional groups exposed at the materials’ surfaces, non cell-adhesive proteins such 

as bovine serum albumin (BSA) previously adsorbed on self-assembled monolayers of alkanethiols (SAMs) were more or 

less rapidly replaced by cell-adhesive proteins  (fibronectin, vitronectin, etc). This induced difference in cell adhesion: 

SAMs terminated with COOH groups supported a better cell adhesion than ones having NH2 groups. This was explained 

by the slower protein displacement process in NH2-terminated materials. Thus, the efficiency of protein displacement 

(rate and amount of replaced proteins) ultimately modulated cell adhesion, as it is well known that cell-adhesive proteins, 

natural or engineered, adsorbed or covalently linked to materials, facilitate cell adhesion [66, 70]. Currently, the grafting 

of biomolecules (peptides or proteins) is in fact an approach extensively used in tissue engineering to guide cellular 

adhesion and activity [71, 72]. In this case, ligand identity, conformation and density are key parameters when 

developing materials [12, 73] because they regulate the efficiency of integrin-mediated cell adhesion [74], modulate the 

matrix deposition by osteogenic cells [75] and control the cell-type specificity of these responses [76]. 

The last factor related to the surface that should be considered when developing smart artificial materials is the 

ions dissolution that occurs alongside the material resorption [77]. Nowadays, bio- active glasses are one of the materials 

most able to stimulate osteogenesis and angiogenesis due to their ion release ability [78-82]. The dissolution products of 

bioactive glasses (calcium, silicon, titanium, phosphate or another element used as a doping constituent) modify the chemical 
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physiological environment of biological entities, and consequently mediate the cell metabolism. Extracellular Ca2+, for 

example, is known for interacting with bone cells by 

affecting their calcium-sensing receptors (CaSR) and directly activating intracellular mechanisms [83]. Concretely, one 

study per- formed by Honda et al. demonstrated that  extracellular  calcium increases the expression of the insulin-like 

growth factor 2 (IGF-II), which mediates the subsequent increase in human osteoblast proliferation. Other studies revealed 

that cell migration, proliferation and 

differentiation may be controlled by the activation of various CaSR- mediated intracellular signaling pathways [84, 85]. Ca2+ 

is therefore very important for bone remodeling and can be used in scaffolds for 

bone tissue engineering to serve as an extracellular messenger that guides the cell behavior of osteoblastic cell lineage. 

In fact, it is already commonly accepted that ions released from silicon-based bioactive glasses play a critical role in that 

direction. Xynos et al. in 2001 were the first to suggest that ion products of bioactive glass dissolution have a direct 

effect on the gene expression profile of human osteoblasts; more precisely, on genes relevant to osteoblast metabolism 

and bone homeostasis [86]. More recently, an osteogenic glass based on a titanium network has also been shown to act as a 

gene expression regulator able to stimulate the activation of genes involved in angiogenesis [87]. The up-regulation of 

gene expression that can be achieved by the use of bioactive glasses in tissue engineering is thus a very promising 

approach to control cellular activity towards the desired responses. However, it should be stressed that the concentrations 

of these ions is critical, and that the precise control of the material dissolution rate should be required in order not to 

induce cytotoxicity [88]. 

The ion concentration and release kinetics of bioactive glasses can be controlled by the material composition [89] or by 

the fabrication polymer/bioactive glasses constructs [90]. However, in some cases it is still extremely difficult to precisely 

monitor the features of the ion release of the inorganic phase in a predetermined manner, as it is often embedded in the 

organic matrix. This affects the dissolution of the bioactive glass and consequently its ability to trigger the desired cellular 

response (cell adhesion, spreading, proliferation, differentiation and migration) [87, 91]. This problem also affects the 

mineralization potential of the materials [92, 93]. For these reasons, the tailoring of the chemical material surface proper- 

ties is essential. 

 

3.3. Mechanical Properties of Scaffolds 

In addition to the influence that chemical surface properties of a material have on cellular activity, there is significant 

evidence that the other physical properties of the substrates also contribute to stem cell fate determination [94]. 

One of them is the material’s mechanical properties, e.g. its stiffness or elasticity. The local mechanical interactions 

between cells and their microenvironment regulate cell shape, organization and differentiation of the different tissues 

[95, 96] as can be observed in (Fig. 5) [97-107]. This observation is true in the natural environment as well as in artificial 

3D structures. Cells are able to discriminate between different ranges of stiffness in their microenvironment, and to respond 

to this stimulus by pulling on the extracellular matrix. The contractile forces that cells exert on the matrix result in 

tensile stresses in the cytoskeleton. This phenomenon occurs through the transmission of force between the cell and 

the cellular cytoskeleton by means of focal adhesions (cell-extracellular matrix contacts) [13]. The pathway of force 

transmission from inside the cell to the elastic matrix is pro- vided by actin structures that are in turn linked to focal 

adhesions [108, 109], and by well-known signaling proteins such as rho guanosine triphosphatase (Rho GTPase) associated 

with the focal adhesion complexes which act as mechanotransducers [110, 111]. These intracellular forces regulate the 

signaling pathways involved in the fundamental processes that determine cell functions. A very popular study conducted 

with gels by Engler et al. demonstrated that the elastic modulus of the matrix plays a role in directing stem cell lineage 

specifications [4]. Contractile forces in the cytoskeleton are suggested to be driven by actin-myosin action and to regulate 

human stem cell differentiation. Soft substrates mimicking the stiff- ness of the brain tissue induced cell differentiation 

towards a neurogenic lineage, whereas cells cultured on substrates with intermediate and higher stiffness mimicking that 

of muscle and bone tis- sues respectively evolved towards myogenic and osteogenic cells. They also showed that cells 

adjust their internal stiffness to match that of the substrate. Stiffer matrices, in fact, produced stiffer and increasingly 

tense cells. Solon et al. made similar observations with fibroblasts using soft elastic substrates [99]. 

Although it is recognized that the stiffness of materials has an effect on cell behavior, it should be emphasized that 

the stiffness alone does not always seem to be an efficient cell differentiation parameter. For example, Rowlands et 

al. showed that, unlike in Engler and coworkers’ findings, the substrate stiffness alone was not sufficient to achieve 

osteogenic differentiation of mesenchymal stem cells (MSCs) in the stiffness range that they investigated [112]. The 

coating of the gel with biomolecules, such as collagen, fibronectin or laminin, was necessary to induce this phenotype. The 

type of molecules present on the material surface, in fact, modulates the differentiation process for a given substrate 

stiffness.  Their study thus demonstrated that there is feedback between the material stiffness and the adhesive ligand 



as regards osteogenic differentiation. For myogenic differentiation this observation is also valid, but the interplay of these 

two extracellular environmental factors seems to be less obvious. This difference was attributed to a predisposition of 

MSCs to differentiate into myogenic lineage in comparison to osteogenic lineage when cultured on the studied substrates. 

The studies mentioned here thus highlight the difficulties in clearly defining how each material parameter, in an individual 

manner, can be responsible for the triggering of a specific cell phenotype. Such assays often lead to controversial discussions 

because the conditions in which the material is investigated usually differ from one study to another (cell type used, cell 

badge, parameters set for the assay, material conditioning, etc). Nevertheless, it is commonly accepted that, whether 

combined with other factors or not, a material’s mechanical properties play an important role in the de- termination of cell 

behavior. This is particularly clear when looking at the numerous studies reported in the literature on cells and 

mechanosensing, mechanotransduction and mechanoresponse [95, 111, 113]. 

 

 

 

Fig. (5). Stiffness of several different healthy tissues (notice elastic modulus is in logarithmic scale). [4,97–107] On the bottom, 

typical substrate materials used for cell culturing. Polyacrylamide (PAM); Polydimethylsiloxane (PDMS); Polystyrene (PS). 
 

 
4. COMPOSITE MATERIALS AND HYBRIDS FOR BONE REGENERATION 

In bone regeneration since the 80s [114], composite materials are usually made by associating an organic phase with an 

inorganic one. This combination is an interesting approach for scaffold fabrication, as the nature of the selected constituents 

resembles the structure of natural bone. The organic part can mimic the collagen and the glycosaminoglycans (GAG) present 

in the extracellular matrix, while the inorganic one can mimic the bone mineral phase. The aim is that the global properties 

of the scaffold are supported by both constituents [115, 116]. A typical example of a composite is a scaffold prepared by 

incorporating hydroxyapatite (HA) granules or fibers in a polymeric matrix [117-122]. Such studies reveal, how- ever, 

that the contents of the inorganic and organic phases directly influence the bioactivity and mechanical properties of the 

scaffolds. In many cases, a template that is efficiently bioactive often has weak mechanical properties [93]. Thus, a 

compromise should be found when developing composites in order to obtain a suitable balance between the two properties, 

considering too that inorganic compound shape, size, dispersion, orientation and mechanical features also play a role [115]. 

Furthermore, the scaffolds should have an appropriate structure with interconnected pores to enable cell attachment, 

migration into the scaffolds, and fluid and blood vessel infiltration [15, 123, 124]. Interestingly, composites can be shaped 

with diverse architectures and with different porosity [15, 90]. This is possible thanks to the various processing technologies 

currently available, such as solvent-casting and particulate leaching techniques, gas foaming, rapid prototyping and 

electrospinning. 

Another parameter that is also crucial to the scaffold’s final properties is the interaction between the organic phase 

and the inorganic one [125]. Composites commonly prepared with micro-sized inorganic particles by conventional melting 

processes, for example, do not have a direct interface between their compounds (Fig. 6). This may be caused by the 

manufacturing process used to prepare the material (such as, for example, a drawing method that may be responsible for 

the formation of a void between the compounds [93] (Fig. 6a), and/or non-optimal affinity between the compounds [126]  

(Fig.  6b)). Usually, nanosized inorganic compounds  are therefore preferred for preparing composites (nanocomposites), 

because an enhancement in the interfacial interactions between the phases can be easily achieved [127]. Indeed, the 

number of inter- faces is increased due to the high surface area provided by nanoscaled compounds, which can lead to 
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better control of the mechanical and degradation properties. However, this strategy is not completely optimal, and the 

probability of crack initiation- propagation may be high due to these numerous interfaces. This may result in an ultimate 

depreciation of the mechanical properties [115, 128]. To avoid this and also a possible phase segregation [129], 

polymer/inorganic nanofiller compatibility is often improved by modifying the surface with organic molecules or 

surfactants [130, 131]. Despite this, the synergy between the two phases is still often inappropriate for the targeted 

application because of the heterogeneous degradation of the phases, the rapid loss of the composite mechanical properties, 

or the inappropriate release rate of ions/monomers from the material [93, 132]. Hence, composite materials with 

interactions at the molecular or nanometric level (also called hybrid materials) have been developed in order to produce 

more homogeneous templates with improved properties for bone regeneration (superior mechanical properties, 

homogeneous degradation and synergistic material). The fabrication of such materials usually involves a common versatile 

technique: the sol-gel method [133]. This method allows the manipulation of the nanostructure of the materials at the 

molecular level and the control of the nature of the interfaces. Thus, it is a very powerful tool to develop hybrids. 

 

4.1. Hybrid Materials 

Hybrids are classified into two categories depending on the nature of the intimate organic-inorganic interface [114, 

129, 134, 135]. The first family is class I materials, which possess weak inter- actions between constituents (Van der 

Waals, electrostatic or hydrogen bonding interactions). The second is class II materials, which exhibit strong interactions 

between components (covalent or ionic bonding). Compared to traditional composites, hybrid scaffolds prepared with 

weak or strong phase interactions usually pre- sent better properties, but a clear difference in the resulting proper- ties 

of the scaffold is noted between these two classes of hybrids, however (see a summary in Table 1). 

4.1.1. Hybrids Class I 

Hybrid organic-inorganic materials of class I have been extensively investigated up to now for numerous applications. 

The interpenetration of the organic and inorganic networks constitutes the basis of these materials and explains why 

class I hybrid scaffolds exhibit improved mechanical and degradation properties when compared to traditional composites. 

In these materials, the two phases are nanoscopically separated but macroscopically uniform [136]. 

 
 

Fig. (6). Typical examples of composites that possess limited intimate interactions between their inorganic constituent (microparticles) 
and polymeric matrix. Arrows point the presence of voids between the phases (material shown on picture a: extruded and drawn material 
– material shown on picture b: extruded and compressed material). (picture a is adapted from [93] and picture b from [126] with 
permissions). 

 

Regarding bone tissue engineering, a representative example is the material developed by Martin et al. in 2004 [19]. 

Polyvinyl alcohol (PVA) was chosen for the organic part and bioactive glass for the inorganic one. They incorporated PVA 

during the synthesis of the bioactive glass, which was prepared by the sol-gel method. After gelation of this hybrid sol 

and an aging-drying process, class I hybrid monoliths were obtained. The study revealed that by control- ling the 

experimental conditions, crack-free monoliths could be produced. The degradation as well as the bioactivity of the materials 

could be also tailored by changing, for example, the content of PVA, or adding extra-compounds in the initial glass 

composition 

(P2O5 in CaO-SiO2 system). In their study no mechanical tests were performed, but another report by Landry et al. showed 

that organic- inorganic materials prepared by the in situ polymerization of silanes (tetraethylorthosilicate TEOS) in polymers 

resulted in  materials with enhanced mechanical properties [137]. This was attributed to the nature of the interactions 

between the two phases: the hydrogen bonds formed between the residual hydroxyls of the hydrolyzed TEOS molecules 

and the ones in the polymer, which acted as crosslinkers [138]. However, this kind of bonding is rather weak and is not 

stable in aqueous medium, as the water molecules may easily separate the chains [139]. For this reason, the degree of 

crosslinking and interpenetration of the phases is very important. If the nature of the precursors is not properly 

considered, and if the conditions of the hydrolysis reaction are not well controlled, the crosslinking and phase 

interpenetration may not be sufficient to tailor the degradation of the material efficiently. In the case of a fast 



degradation might not be suitable to support bioactivity, for example [19]. Another drawback for the production of these 

materials is the phase separation that might occur due to incompatibilities be- tween the phases. Once again, reaction 

conditions such as temperature and pH are of paramount importance to accomplish a homogeneous material, and this should 

be precisely controlled [137]. Al- though they do have some drawbacks, class I materials are promising considering the 

overall properties they can exhibit if their de- sign is properly tailored. 

The last example has been published recently. Similar to ormosils, ormoglasses are organic modified glasses; in other 

words, organometallic oligomer or polymer chains with no apparent order. They share some properties of pure inorganic 

compounds, such as hydrophylicity and ion release, but offer further features such as a positive charge, which improves 

interaction with some negative biodegradable polymers such as PLA, and more flexibility [140]. The calcium and phosphate 

included in their formulations are linked to the ormoglass rather than being encapsulated as a salt, suggesting that a 

more sustained release to enhance osteo- and angiogenesis can be achieved. 

4.1.2. Hybrids Class II 

An increasing effort has been made in recent years to produce class II materials to overcome the problems resulting 

from weak interactions between the material phases. The aim is to produce scaffolds with a good stability and a good 

performance under physiological conditions. Nevertheless, such materials are difficult to produce, and few involving 

biocompatible and biodegradable polymers have been reported in the bone regeneration literature. Normally, they imply 

the use of coupling agents to functionalize the polymer in order to covalently link the polymer to the inorganic part (a 

pure silica network or silica network with incorporated calcium and CaP-ormoglasses) [141-144]. Considering that there are 

only a few examples of class II hybrid materials in the literature and that they show a high promising potential for the 

field, each one is briefly presented here. 

The first family of materials (disc shape) was developed by Tian et al. in the 90s [141]. This material was a 

polycaprolactone (PCL)/silica hybrid prepared by the sol-gel method, in which PCL was intimately incorporated into a silica 

network produced by condensation of TEOS. The reaction consisted of the end-capping of hydroxyl PCL with 

isocyanatopropyltriethoxysilane (IPTES). The terminal hydroxyl groups of the polymer reacted with the isocyanate 

group of IPTES to form a urethane linkage, creating an IP- TES end-capped PCL. After the substitution of the ethoxy 

ligands of IPTES by hydroxyl groups (hydrolysis), IPTES end-capped PCL condensated and linked to hydrolyzed TEOS 

molecules. As a result, a silica network containing polymeric fragments was created, in which IPTES acted as an 

intermediate covalent linker between the two phases. The reaction extent was mainly controlled by the molecular weight 

of the PCL as the length of the PCL chains directly influenced the number of available sites for reaction [145]. 

Consequently, the shorter the chains, the higher the number of available reactive terminal groups, and the higher the 

end-capping potential. Apart from the covalent bonding, these hybrids were shown to be packed due to hydrogen bondings: 

PCL ester groups interacted with the residual hydrolyzed ethoxyl groups of the silica network [145]. These two types of 

interactions contributed to the good stability of the polymeric phase in hybrids in comparison to pure PCL [145]. In addition, 

according to preliminary tests [146], it was shown that these hybrids were also a suitable support for fibroblast cell 

cultures. 

Several years later, Rhee et al. incorporated calcium (CaCl2) in the system, with the aim of improving the hybrids’ 

bioactivity [147- 149]. This was a very interesting idea, as calcium ions (Ca2+) play an important role in the bioactivity 

efficiency of materials and the osteogenesis process. Later, Rhee published a more detailed study in which he assessed 

the bone-like apatite-forming ability of this end-capped PCL/silica/calcium material depending on the PCL content in the 

hybrids [150]. Hybrids containing the lowest PCL content exhibited the best bioactive properties. This was explained by 

the presence of a higher number of silanol groups in the silica phase for the low PCL content hybrids and a stronger 

release of Ca2+ into the simulated body fluid (SBF) solution [148, 150, 151]. Indeed, it is well reported that silanols act 

as nucleation sites for apatite crystals, and Ca2+ ions released in the surrounding medium contribute to the supersaturation 

of the fluids and the deposition of a calcium phosphate precipitate [152, 153]. The study showed that the PCL content 

also affected the mechanical properties of the materials, but all the materials possessed tensile strengths and Young’s 

moduli in the range of trabecular bone. Moreover, in vivo tests revealed that the material directly  induced bone formation 

on the surface of the scaffold without creating any fibrous tissue [151]. 

The second family of materials (porous) was  developed by Poologasundarampillai et al. in 2010 [142]. They functionalized 

a biopolymer, poly(y-glutamic acid) (yPGA), with glycidoxypropyltrimethoxysilane (GPTMS) and used TEOS to create the 

inorganic network, adding calcium into it (CaCl2). Although synthetic polymers such as PCL or PGA degrade by random chain 

scissions from the bulk and rapidly affect the mechanical properties of the material, the natural yPGA degrades 

enzymatically from the surface. This means that the bulk of the material can maintain its mechanical properties as long as 

water does not infiltrate the matrix and catalyze the inner degradation. It was thus expected that the use of yPGA 
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would slow down the loss of the scaffold’s mechanical integrity. But the degradation process is a complicated phenomenon, 

whose rate and mechanism is influenced by numerous factors (porosity, hydrophilicity, pH of surrounding fluid, etc). As no 

direct study has been performed to assess the loss of mechanical properties and the role of yPGA, it is not possible, 

however, to certify that yPGA is an effective compound for better control of the material degradation of class II hybrids.  

However, one of their complementary studies revealed the role of the degree of crosslinking in the dissolution time of 

the polymer [154]. Hybrid materials with a high degree of crosslinking exhibited a slower polymer release than ones prepared 

with a lower covalent coupling. As reported in their first synthesis study, the coupling of the two materials can be tailored 

by the amount of coupling agent used for reaction: a higher proportion of coupling agent resulted in an increase in the 

organic/inorganic interactions. On the other hand, they demonstrated that the amount of solvent used in such reactions 

impacts the reaction rate, the nanostructure and the nanoporosity of the materials. As for the end-capped 

PCL/silica/calcium material, these hybrids exhibited good bioactivity, as calcium ions have been pointed out as essential for 

the formation of the hydroxyl carbonated apatite. The incorporation of calcium in the network was there- fore required to 

promote bioactivity. Knowing that a high degree of crosslinking in the hybrids leads to more compact structures and 

consequently a relatively slow dissolution rate of calcium, the working reaction conditions should be carefully selected in 

order to reach a proper bioactivity. About mechanical properties, compresive mechanical tests demonstrated that the 

toughness of the hybrids was improved, in comparison to glass alone. Finally, cellular assays (live/dead test) showed that 

Saos-2 [155] lineage cells attached and spread on the material surface without suffering any cytotoxic effects. 

The third family of materials (foamed structure) was developed by Mahony et al. in 2010 [143]. It is also prepared 

with a bio- polymer (gelatin) and (3-Glycidoxypropyl)methyldiethoxysilane (GPTMS). TEOS was also used to form the 

silica network but the materials did not contain calcium. The main aim of this study was to demonstrate that tough 

materials could be created by preparing class II materials. As for the previous materials, the study showed that the 

percentage of gelatin and degree of crosslinking affected the mechanical properties of the scaffolds. The degree of 

porosity was influenced by the concentration of surfactant used during the material foaming. This globally impacted the 

mechanical strength of the scaffolds. All materials produced were considered stiff substrates, based on the approximate 

stiffness of various tissues. In addition, they had remarkable elastic properties and tailorable dis- solution properties. 

Finally, according to cell morphological observations (mesenchymal stem cells (MSCs)), the materials were shown to be 

biocompatible and non-cytotoxic independently of the precursor reagent content or the chemical control performed on 

the reactions (degree of crosslinking and amount of surfactant). 

The fourth family of materials (fibrous structure) was recently developed by Sachot et al. [144]. An ormoglass was 

covalently linked to a degradable polymer (polylactic acid; PLA). Based on the sol–gel method and a succession of surface 

treatments, they successfully coated hollow electrospun PLA fibers with a silicon CaP based ormoglass (Fig. 7) using 

aminopropyltriethoxysilane (AP- TES) as coupling agent. This approach allowed a direct interaction of the bioactive phase 

with cells, as well as controlled release of the ions. Rat MSCs cultured on these fibers showed good cell spreading and 

excellent interactions with the material. Moreover, the coated electrospun mat was remarkably flexible [144]. In 

addition, the protocol can be transferred to other structures and ormoglasses, thus allowing the fabrication of various 

materials with well-defined features and offering a large range of possibilities for the development of scaffolds for 

numerous applications. 

Although the hybrids described above seem to be the only class II materials found in the literature, it should be 

noted that other materials may also emerge in the next few years. Maeda et al., for example, have already achieved the 

first step of polymer functionalization with PLA and APTES as coupling agent [156]. However, they did not exploit this 

finding to create a real organic/inorganic material in which the functionalized polymer is intimately incorporated in a 

silica network; rather, the material was simply formed through the reaction of functionalized PLA chains with other 

functionalized PLA chains. No reagent such as TEOS was used to intro- duce a high content of inorganic network in the 

hybrid. 

 



                               

Fig. (7). Ormoglass coated fibers adapted from [144] with permission a) average diameters of hollow nanofibers coated with ormoglass. 

b) FE-SEM image of their surface. c) rMSCs adhered to coated fibers. d) flexibility of the tissue at the macroscale. 

 

Therefore, the inorganic content was restricted to the quantity of APTES molecules efficiently linked to the PLA chains, 

and only molecular weight was a valid variable to modulate final results. From a general point of view, this material could 

be considered as a class II hybrid because it possesses a strong covalent bond between its organic and inorganic phases. 

However, it does not exactly fit into the category, because no inorganic network was really introduced in the material (except 

the part of the APTES organosilane). For this material, classification is rather subjective and controversial [139, 157]. Some 

scientists might already consider it a class II material, while others may not. In any case, such functionalized polymers 

might be the starting point for the production of additional class II hybrids in the future, as it has been the case for the 

GPTMS functionalized gelatin prepared by Ren et al. [157, 158] in 2001 and the subsequent work described above, performed 

by Mahony et al. in 2010. 

Finally, there are several approaches involving strong mineralization of porous constructs such as hydrogels. One example 

of innovative alternatives are the scaffolds developed by Douglas et al. [159] They mineralized porous constructs by 

enzymatic routes (alkaline phosphatase (ALP)-induced enzymatic mineralization) in- stead of conventional SBF immersion. 

In this way, they achieved the deposition not only of CaP but also magnesium phosphate (MgP), a well- known CaSR agonist 

[87, 160]. The results were crystalline and amorphous calcium deficient hydroxyapatite (CDHA) mineralized gellan gum 

(GG) mimicking natural bone. 

Further efforts should be done in order to have the possibility to perform clinical studies once in vivo models and relevant 

results are trustworthy, and adapted to the nature of these types of nanostructured hybrid scaffolds. This step however, 

as far authors know, still did not arrive. 

5. COMMON SCAFFOLD PROCESSING METHODS 

5.1. Electrospinning 

Among the various fabrication methods available to produce 3D scaffolds, electrospinning is one of the most used 

techniques nowadays, in spite of its inherent difficulties to create macropores for cell migration. It is based on 

electrostatic principles and enables the deposition of micro and nano-scaled fibers. The main benefit of producing 

electrospun fibrous substrates is being able to mimic the nanofibrous structure of the collagen ECM [9, 22, 161]. It is, 

moreover, a cost-effective technique that does not require sophisticated equipment and which can be used with an impressive 

variety of compounds [161, 162]. The set-up consists of a syringe pump, a voltage source and a metallic collector (Fig. 8a). 

The principle be- hind the formation of fibers relies on the competition between the electrostatic forces formed in a 

polymeric slurry (melt [163] or solution [22]) when it is subjected to a high voltage, and its surface tension. When a 

voltage on the tip of the syringe is sufficiently increased up to a critical point, repulsive forces overcome the surface 

tension and a liquid jet rises from the drop (the appearance of a Taylor cone [164]). The further the jet travels from the 

drop, the thinner and more elongated it becomes. This occurs because of the instability of the jet, which starts to whip 

and then bend and stretch [165-167] (Fig. 8b). During this whipping process, the solvent evaporates, and solidification of 

the jet occurs. Fibers are then collected on a grounded metallic support. The flying time of the jet should thus be long 

enough to enable its complete drying out. Fibers are deposited either as random or aligned mats, by using immobile or 

rotary collectors respectively [168, 169]. 

a) b) 

 

c) d) 
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Fig. (8). a) Scheme representing the electrospinning set-up. b) Path of an electrospinning jet that undergoes bending instabilities, 

solvent evaporation and slimming. (image adapted from [167] with permission). 
 

As regards biological concerns, composite electrospun fibers are the most interesting materials. In fact, bioactive 

compounds are generally added in the polymeric solution to provide bioactivity to the organic substrate [170]. To do so, 

bioactive nanoparticles are frequently used. They are incorporated in the polymeric solution before starting the 

electrospinning. Typically, these nanoparticles are hydroxyapatite or silica xerogels [171-173]. Due to their high surface-

to-volume ratio, these composites usually show good cellular adhesion and activity [22, 162, 174]. As explained previously, 

the nanotexture (i.e nano-roughness induced by the nanosized fibers) that provides such electrospun fibers is particularly 

attractive for cells. They are also particularly interesting as they have been demonstrated to promote mineralization. 

However, this is not al- ways the case for all of the nanocomposites. Some possess limited bioactivity or cellular responses 

due to a common critical problem: the bioactive phase is embedded in the polymer. Consequently, at early stages this 

phase is not detected by cells, nor does it contribute to the supersaturation of bioactive ions at the interface of the bio- 

material and the biological environment, a mechanism necessary to induce calcium-phosphate precipitation which is also 

involved in cell signaling [77]. An interesting study by Tong et al. demonstrated that the exposition of the particles 

can be controlled by changing the size of the nanoparticles and by precisely controlling the experimental parameters of 

the electrospinning process using an in situ coupled ultrasonic probe for dispersion of the nanoparticles [92]. However, 

even though researchers seem to be aware that the encapsulation of the bioactive phase is a critical issue, very few 

studies that focus on that problem are found in the literature. To overcome this challenge, as well as the limitations 

related to conventional composites (inhomogeneous degradation rate of the com- pounds, very low or inexistent cohesion 

between them and limited strength), hybrid organic-inorganic fibers prepared by the sol-gel method have attracted 

more interest in the last five years. Song and coworkers were, for example, some of the first to introduce this concept 

in bone tissue engineering and electrospinning [175]. In 2008, they reported the development of gelatin-siloxane 

nanofibers produced with intimate interactions between their compounds (hydrogen bonding). The siloxane introduced in 

the gelatin acted as a bridging agent for the polymer chains and resulted in a crosslinking effect. The fibers exhibited a 

good stability and were able to form bone mineral, and were also able to efficiently support cell adhesion, spreading and 

proliferation, as well as enhancing osteoblastic activity. This hybrid appeared to be a promising material for bone 

regeneration. This study thus highlighted the potential of the sol-gel technology to prepare hybrid scaffolds using 

electrospinning and the necessity to produce a synergic hybrid blend. In this way, scaffolds with remarkable properties 

can be produced. However, in comparison to the nanocomposites approach, hybrid fibers have not attracted the attention 

of many research groups. 

5.2. Rapid Prototyping 

Rapid prototyping (RP), or solid freeform techniques, involves several methods for scaffold processing and have become 

very popular in bone regeneration in recent years. RP is one of the few methods that can provide similar mechanical 

properties to trabecular bone while maintaining a high level of porosity. This technique basically consists of the physical 

reproduction of a computer- generated design [176] and the depositing of a precursor slurry. The deposited wall can be 

the result of a melt or a polymer solution containing a dispersed inorganic phase, with the dispersion of an inorganic 

phase into a polymer matrix being the most common approach for RP to date. However, this strategy presents drawbacks 

similar to the slurries prepared for electrospinning, i.e. phase masking, heterogeneous dispersions, poor polymer/inorganic 

phase interaction. Nevertheless, the advantage of rapid prototyping is the fabrication of scaffolds with a higher 

mechanical resistance and macroporosity (in comparison to electrospinning). Minimum wall thicknesses are at around the 

tens of microns, which can also induced an undesired diffusion-controlled degradation. Recently, RP has been combined 



with electrospinning, which seems to give good results [177] highlighting thus the potential of associating different 

techniques together. 

5.3. Solvent Casting/Particle Leaching 

This simple technique has had good results in tissue engineering, as it combines a good interconnection between pores, 

and high porosity (around 90-95%); however, the resulting mechanical properties are far to be similar to bone. It basically 

consists of the dispersion of an inorganic phase in a polymer solution, which also has a homogeneously dispersed aqueous-

soluble porogen. Once the solvent is evaporated after casting the slurry into molds, the solid piece is immersed in water 

to dissolve the porogen and produce pores [80]. However, the wetting of the particles should be improved for optimized 

mechanical properties. Several approaches can be found in the literature, with excellent results [170, 178]. 

 

5.4. Freeze-drying 

Freeze-drying, or lyophilization, is a way of producing porous scaffolds that involves the sublimation of the solvent in 

a polymer solution through the decrease of temperature and pressure under the triple point. With this process, a high 

level of porosity is achieved [170], and this versatile process can easily be tuned. For example, unidirectional freeze-

drying allows the texture and alignment of porosity, improving pore interconnection [179]. The amount of porosity needs 

to be higher than 95% and mechanical properties are, as in some types of bone, anisotropic. In this case, to produce 

hybrid materials, a slurry solution of polymer and  an  inorganic constituent are usually uniaxially frozen using a thermal 

gradient with liquid nitrogen, and then placed in high vacuum for hours or days. Combinations are multiple, especially in 

bone regeneration [180]. 

 
5.5. Foaming 

Foaming, one of the most common methods to produce macro- porous scaffolds, uses chemical (surfactants) or physical 

porogens (H2O2, mixer, supercritical CO2 [181]) to improve cell migration. However, the problem of pore connection still 

needs to be solved, as the neck is usually not big enough for cell migration and colonization. Several examples can be 

found involving class I hybrid embedded in a polymer matrix, with uneven results [182, 183]. Another problem is the 

lack of mechanical resistance, which is inherent to the level of porosity, but this can be solved by polymer reinforcement 

[118]. 

 

Table 1. Summary of different hybrid scaffolds for bone regeneration. 

 

Inorganic Phase Organic Phase Hybrid Class Relevant Features Process Method Refs 

CaO–SiO2 

CaO–SiO2-

P2O5 

 
Polyvinyl alcohol (PVA) 

 
I 

 
Crack-free monoliths can be produced 

 
Casting 

 
[19] 

 

 
 

In situ polymerized 

silane 

poly(methyl methacrylate) 

(PMMA) poly (vinyl acetate), 

poly 

(vinyl pyrrolidone) 

poly (N,N-dimethylacrylamide) 

 

 
 

I 

 

 
Enhance mechanical properties 

and degradation 

 

 
 

Casting 

 

 
 

[137,138] 

 
 

Si-Ca-P ormoglass 

 
 

Polylactic acid (PLA) 

 
 

I 

Introduction of Ca and P in an 

organometallic network with similar 

nature as polymer ma- trix. Higher 

flexibility 

 
 

Electrospinning 

 
 

[140] 

Hydroxiapatite 

(HA) 

nanoparticles 

Polylactic acid (PLA) and 

collagen type I 

 
I 

Enhance proliferation and 

mineralitzation in human fetal 

osteoblasts (hFob) cells 

 
Electrospinning 

 
[171] 

Carbonate nano- 

hydroxyapatite 

(CHA) 

 
Polylactic acid (PLA) 

 
I 

Enhance viability and 

mineralitzation in normal human 

osteoblasts (NHOst) 

 
Electrospinning 

 
[173] 

 
Carbonate nano- 

hydroxyapatite 

(CHA) 

 
poly(hydroxybutyrate-

co- hydroxyvalerate) 

(PHBV) 

 
 

I 

Avoid nanoparticle agglomeration by 

ultra- sonic proble coupling. Enhance 

mineralitza- tion in human osteoblast 

cells (SaOS-2) 

 
 

Electrospinning 

 
 

[90] 

 

 

Siloxane and CaCl2 

 

 

gelatin 

 

 

I 

First organometallic network being 

combined with a polymer. Better 

stability than pure gelatin fibers. 

Enhance of mineralitzation in murine-

derived preosteoblast MC3T3-E1 

 

 

Electrospinning 

 

 

[175] 

 
HA nanoparticles 

 
PLA 

 
I 

91-96 % of interconnected porosity 

with a maximum compressive modulus 

of 123 kPa. 

Supercriti

cal 

foaming 

 
[181] 



. 

 

HA nanoparticles or 

B- tricalcium 

phosphate (B- TCP) 

 
 

PLA 

 
 

I 

 
No chronic inflammation on Sprague-

Dawley albino rats in vivo 

assays 

 
Supercriti

cal 

foaming 

 
 

[183] 

 
 

SiO2 and IPTES 

 
Low molecular weight 

polycaprolac- tone 

(PCL) 

 
 

II 

IPTES end-capped PCL covalently 

linked to SiO2 network; good stability 

against degrada- tion 

 
 

Casting 

 
[141,145,1 

46] 

Hydroxyapatite (HA) 

induced by a IPTES- 

SiO2 network +CaCl2 

 
Low molecular weight 

polycaprolac- tone 

(PCL) 

 
 

II 

 
Better HA precipitation induced by 

Ca2+ ion release 

 
 

Casting 

 
 

[147–151] 

glycidoxypropyl 

trimethox- ysilane 

(GPTMS) - SiO2 

network +CaCl2 

poly(y-glutamic acid) (yPGA) 

 
 

II 

yPGA enzymatically degrades from 
the surface and maintain mechanical 
properties. 

 
 

Casting 

 
[142,154,1 

55] 

glycidoxypropyl 

trimethox- ysilane 

(GPTMS) - SiO2 

network +CaCl2 

 
 

Gelatin 

 
 

II 

 
Able to integrate calcium in the 

network and tailor stiffness by the 

degree of crosslinking 

 
Foaming 

and Freeze-

Drying 

 
 

[143] 

Si-Ca-P ormoglass-

(3- Aminopro- 

pyl)triethoxysilane 

(AP- TES) 

 
 

High molecular weight Polylactic 

acid (PLA) 

 

 

II 

 
Ormoglass coated electrospun fibers. 

Able to maintain mechanical properties 

when degrade and to show bioactive 

phase directly to cells 

 

 

Electrospinning 

 

[144] 

 
Calcium deficient 

Hy- droxyapatite 

(CDHA) 

 
 

Gellan gum (GG) 

 
 

II 

Alkaline phosphatase (ALP)-induced 

enzy- matic mineralization using 

calcium phosphate and magnesium 

phosphate as precursors 

 
 

Casting 

 
 

[159] 

 

6. SOFT TISSUES 

The incorporation of hybrid materials in tissues other than bone is still at an embryonic stage (see Table 2), but skin is 

one tissue whose researchers are beginning to incorporate hybrid materials into their studies [184]. Skin is not a 

simple structure, but rather a very hierarchical distribution of several strata, which covers and protects the body; as 

with bone, skin wounds are sometimes too big for the body to repair by itself. The epidermis, formed by flattened epithelial 

cells distributed in layers, forms the outer part of the organ. The dermis, just under the epidermis, is basically composed 

of fibroblasts and dense connective tissue. Here biological entities such as receptors, hair follicles, nerves, blood 

vessels, muscles, ligaments and different glands can be found. However, the first materials used for major skin 

damage do not aspire to regenerate such a complex system. The minimum requirements for a regenerative wound dressing 

are: a proper seal to avoid the entry of bacteria, and capability to allow the diffusion of oxygen, water, nutrients and 

residues. Applications for such wound dressings include serious burns, ulcers (diabetic or pressure-derived) or traumatic 

accidents [185]. Currently, the options available are mainly salts dispersed in a polymer matrix or forming hybrid structures 

that act as crosslinkers of the same polymer matrix, such as alginates. Antibacterial agents can also be incorporated 

into the material to prevent infection; one example is alginates mixed with chitosan and silver nanoparticles acting as the 

antibacterial agent [186]. Another interesting approach is to enhance the bioavailability of thrombin, a coagulation 

agent particularly relevant in skin care as it is the result of the hemostatic response and is essential for the conversion 

of fibrinogen to fibrin, a process involved in wound regeneration, by conjugation with iron oxide nanoparticles (y-Fe2O3) 

[187]. The acceleration of the regenerative process was confirmed by analyzing the tensile resistance of wounds in vivo. 

Other materials such as nitrite-containing glassy ormosils (siloxanes) mixed with chitosan and polyethilenglycol (PEG) 

provide efficient nitric oxide (NO) release matrices. NO has been demonstrated to be an efficient anti- bacterial agent 

and vasoactivity modulator as well as angiogenic stimulator, making it a good promoter of wound healing [188]. In addition, 

and similarly to bone regeneration, collagen-supporting calcium phosphate nanoparticles have been shown to be efficient 

agents in treat wound healing thanks to their controlled release of ions [189]. 

 

 

 

Table 2. Summary of different hybrid scaffolds for soft tissue regeneration. 

 

Inorganic Phase Organic Phase Hybrid Class Relevant Features Process Method Refs. 

Skin regeneration 

Silver nanoparticles Chitosan I Antibacterial properties Freeze-drying [186] 



 
y-Fe2O3 nanoparticles 

Bovine serum albumin (BSA) 

+ Thrombin 

 
I 

Enhance the bioavailability of thrombin for 

better coagulation 

 
Mixing 

 
[187] 

 
Nitrite-containing 

siloxane 

Chitosan and 

polyethilenglyco

l (PEG) 

 
I 

Provide nitric oxide (NO) as antibacterial 

agent and vasoactivity and angiogenic 

stimulator 

 
Casting 

 
[188] 

Calcium glycerol 

phos- phate 

nanoparticles 

 
Collagen 

 
I 

Release calcium ions to the media improving 

angio- genesis and wound healing. 

 
Casting 

 
[189] 

Cartilage regeneration 

Calcium salts Alginate or hyaluronic acid I Achieving 80% new cartilage Casting [193,194] 

 
Glycerol phosphate 

 
Chitosan + blood 

 
I 

Enhance material sealing, number of cells and 

collagen production. 

 
Casting 

 
[195] 

amorphous calcium 

phos- phate (ACP) 

particles 

PLA + fibroblast growth 

factor (bFGF) 

 
I 

Successfully resurface the defect with new 

cartilage and restore the subchondral bone 

in a rabbit model 

 
freeze-drying 

 
[196] 

Nerve regeneration 

 
 

Carbon nanotubes 

(CNTs) 

 
 

Collagen 

 
 

I 

Effective in providing a global guidance for 

neuron behavior, improving differentiation 

and growth cones with appreciable 

microspikes and filopodia. 

 
 

Casting 

 
 

[201] 

Muscle regeneration 

multi-walled carbon 

nano- tubes 

(MWNTs) 

 
gelatin 

 
I 

Efficient alignment and differentiation of 

myoblasts to offer functional 

myotubes 

 
Electrospinning 

 
[202] 

 

Cartilage is considered a non-vascular tissue, as the blood sup- ply is limited, and nerve and lymphatic vessels are scarce; 

in this way it shares some similarity with the osteoid. It is also a tissue that is not easily regenerated by itself. The human 

body involves three types of cartilage: elastic, fibrous, and hyaline (articular), which is the one that has invited the most 

research to date [185, 190, 191]. It is composed by an ECM formed by mainly collagen II fibers (~60% dry weight), 

proteoglycans, and chondrocytes (1% of the total volume distributed in small colonies). It provides a high compressive 

resistance and a low coefficient of friction, and its functions are related to the smoothing of the synovial joint displacement. 

The 25- 35% dry weight component is made up of proteoglycans that include hyaluronic acid, chrondoitin sulphate, keratin 

sulfate and dermatan sulfate [185]. 

Arthroplasty is the most common way of replacing a joint, but has associated risks and side effects. The bottom area 

of the articular cartilage is calcified as protection from the bone [185]. Thus, promising hybrid materials to replace 

cartilage include those comprising a combination of alginates or hyaluronic acid with calcium salts [192]. Good results were 

obtained in subcutaneous implantation: 3D shape conservation in mice and sheep, achieving 80% of new cartilage [193, 194]. 

Chitosan hydrogels, glycerol phosphate and blood combinations are also an interesting option [195]. Successful resurfacing 

of the defect with cartilage and restoration of the subchondral bone in rabbit was also achieved by an amorphous CaP/PLA 

scaffold loaded with basic fibroblast growth factor (bFGF) [196]. 

Nerve regeneration is another area in which hybrid materials, especially conductive ones, are beginning to be used. The 

nervous system is extremely complex, and comprises the central nervous system (CNS) and peripheral nervous system 

(PNS). The functional units are neurons which have lost their ability to divide. In this case, the topography of constructs is 

focused on aligned shapes. The need for electrical stimulation makes carbon nanotubes (CNTs) and their derivatives an 

interesting option. For example, a fibrous combination of a biodegradable polymer with CNTs and graphene offer an 

alternative for the regeneration of the damaged central nervous system (CNS) [197-200], as does a combination with 

collagen [201]. 

Muscle tissue engineering needs the fabrication of packed, dense, aligned and mature myotubes [202]. Multi-wall 

nanotube (MWNT)-gelatin hybrid fibers were produced by electrospinning, and allowed the efficient alignment and 

differentiation of myoblasts to offer functional myotubes. However, a controversy still exists about the biodegradation 

of carbon nanotubes and their derivatives [203]. 

 

 
7. CONCLUSION 

Hybrid materials seem to be valuable systems for bone tissue engineering due to their biodegradable constituents, 

remarkable bioactivity, good mechanical properties and excellent effi- ciency/cost ratio. The possibility to tune the 

material structure (foams, discs, fibers or 3D constructs with different porosity) and properties (stiffness, bioactivity, 

topography) by controlling the material preparation (chemical reactions and reagents contents) is a great advantage, as  

different applications require materials with different properties, and material design could be adapted to a specific 



. 
 

application. However, only preliminary assays have been per- formed in vitro and in vivo to demonstrate the biocompatibility 

of the structures outside the field of bone regeneration. Nanostructuration of hybrid II biomaterials is the natural trend, 

and few examples are found. No extensive studies seem to have been performed to evaluate in more detail the adhesion, 

proliferation, differentiation and potential of these scaffolds to trigger specific cellular responses. To further advance 

towards clinical trials, proper in vitro and in vivo models shall effectively demonstrate that these materi- als efficiently 

promote osteogenesis (bone) and angiogenesis (bone and rest of tissues). In this way, they could definitely be confirmed 

as promising grafts, not only for bone regeneration but also for other tissues applications such as skin, nerve, cartilage 

etc, where they are still in an embryonic state, but growing. But such materials represent a relatively new concept in 

biomaterials, and their development is just beginning. Other approaches will be performed in the future using diverse 

polymers, coupling agents and inorganic phases, which will require extensive studies in the next few years to uncover the 

cellular responses induced by these materials. 
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