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Abstract

Background: Immune-mediated inflammatory diseases (IMIDs) are a group of complex and prevalent diseases
where disease diagnostic and activity monitoring is highly challenging. The determination of the metabolite profiles
of biological samples is becoming a powerful approach to identify new biomarkers of clinical utility. In order to
identify new metabolite biomarkers of diagnosis and disease activity, we have performed the first large-scale
profiling of the urine metabolome of the six most prevalent IMIDs: rheumatoid arthritis, psoriatic arthritis, psoriasis,
systemic lupus erythematosus, Crohn’s disease, and ulcerative colitis.

Methods: Using nuclear magnetic resonance, we analyzed the urine metabolome in a discovery cohort of 1210
patients and 100 controls. Within each IMID, two patient subgroups were recruited representing extreme disease
activity (very high vs. very low). Metabolite association analysis with disease diagnosis and disease activity was
performed using multivariate linear regression in order to control for the effects of clinical, epidemiological, or
technical variability. After multiple test correction, the most significant metabolite biomarkers were validated in an
independent cohort of 1200 patients and 200 controls.

Results: In the discovery cohort, we identified 28 significant associations between urine metabolite levels and
disease diagnosis and three significant metabolite associations with disease activity (PFDR < 0.05). Using the
validation cohort, we validated 26 of the diagnostic associations and all three metabolite associations with disease
activity (PFDR < 0.05). Combining all diagnostic biomarkers using multivariate classifiers we obtained a good disease
prediction accuracy in all IMIDs and particularly high in inflammatory bowel diseases. Several of the associated
metabolites were found to be commonly altered in multiple IMIDs, some of which can be considered as hub
biomarkers. The analysis of the metabolic reactions connecting the IMID-associated metabolites showed an over-
representation of citric acid cycle, phenylalanine, and glycine-serine metabolism pathways.

Conclusions: This study shows that urine is a source of biomarkers of clinical utility in IMIDs. We have found that
IMIDs show similar metabolic changes, particularly between clinically similar diseases and we have found, for the
first time, the presence of hub metabolites. These findings represent an important step in the development of
more efficient and less invasive diagnostic and disease monitoring methods in IMIDs.
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Background
Rheumatoid arthritis (RA), psoriasis (Ps), psoriatic arth-
ritis (PsA), systemic lupus erythematosus (SLE), Crohn’s
disease (CD), and ulcerative colitis (UC) are prevalent
immune-mediated inflammatory diseases (IMIDs) [1–4].
This group of diseases is characterized by the aberrant
and chronic activation of the immune system, affecting
one or more tissues. IMIDs have a high socioeconomic
impact [1, 4, 5] and are among the main causes of mor-
bidity, disability, and mortality in developed countries
[6–8]. Although each IMID targets different tissues and
organs, they all share common molecular mechanisms
like the activation of the Tumor Necrosis Factor cyto-
kine pathway [9]. Recently, genome-wide association
studies have demonstrated that IMIDs also share many
genetic risk loci [10]. Consequently, the combined ana-
lysis of multiple IMIDs has the ability to leverage the
identification of more relevant molecular features.
Improvements in the diagnosis of IMIDs would be of

great benefit to the patient and would significantly re-
duce the socioeconomic burden of these diseases. There
is increasing evidence that the administration of therap-
ies, particularly biological treatments, at earlier stages of
the disease results in a more effective control of the in-
flammatory process [11, 12]. In RA, for example, early
diagnosis and treatment have been shown to increase
the probability of entering disease remission [13–16], an
accomplishment that was unthinkable only a decade ago.
Similarly, the diagnosis of inflammatory bowel diseases
CD and UC is often established too late, when severe
complications have already occurred [17]. The identifica-
tion of more accurate diagnostic biomarkers would
therefore have a high impact on the improvement of dis-
ease outcomes in IMIDs.
Measuring disease activity is also a challenging prob-

lem in IMIDs. The lack of objective and highly inform-
ative markers of disease activity has a negative impact in
key aspects of patient management, like the decision to
initiate or terminate a specific therapy. Currently, differ-
ent scores are available to measure disease activity in
each IMID. These scores are based on clinical, labora-
tory, and/or imaging measures, and although they are
frequently used in clinical practice, they have important
limitations [18]. Disease activity scores are often based
on unspecific and sometimes subjective variables that
significantly increase their inter- and intra-observer vari-
ability, clearly reducing their accuracy and, consequently,
affecting disease monitoring [19]. The dynamic nature
and highly informative properties of biological molecules
(i.e., biomarkers) could provide the level of objectivity
and accuracy necessary for a better management of dis-
ease activity in IMIDs.
High-throughput analysis technologies are able to

generate comprehensive profiles of different molecular

species from multiple biological samples. Recent devel-
opments in these technologies could provide the level of
precision that is required to improve disease manage-
ment [20–22]. However, one limitation in the use of
these approaches to study IMIDs is that the target tissue
or organ cannot be easily sampled, resulting in a highly
invasive procedure. Instead, the use of more accessible
surrogate tissues or biofluids like blood, saliva and urine
could help to circumvent this limitation. Urine, in par-
ticular, is a highly interesting sample source since its col-
lection is very simple and is clearly non-invasive for the
patient. The direct relationship with blood composition
strongly supports the hypothesis that different molecular
species that are present in both biological fluids like me-
tabolites, nucleic acids, or proteins and whose variation
is associated with pathological features could be highly
informative biomarkers in IMIDs [23, 24].
The profiling of the metabolite composition of bio-

logical samples, metabolomics, is one of the most rapidly
evolving high-throughput analysis approaches [25]. Me-
tabolites could potentially serve as biomarkers in many
diseases since they represent the biochemical end prod-
ucts of the genetic pathways, providing an accurate rep-
resentation of the physiological state of an individual
[26]. Nuclear magnetic resonance (NMR), together with
mass spectrometry, is one of the most widely used meta-
bolomic technologies [27]. NMR has been used in the
determination of the metabolite profiles of tissue and
biofluid samples of multiple diseases [28, 29]. To date,
however, very few studies have analyzed the metabolo-
mic profiles of IMIDs and most lack independent valid-
ation cohorts. Further, there is a lack of studies
comparing the metabolomes of this group of inflamma-
tory diseases in parallel.
In the present work, we have performed a large-scale

high-throughput analysis of the urine metabolome of six
of the most prevalent IMIDs (RA, PsA, Ps, SLE, CD, and
UC) and a cohort of healthy control individuals in order
to identify new biomarkers associated with disease diag-
nosis and disease activity. For this objective, we have
used a two-stage study design consisting of a discovery
stage where the urine metabolomes of 1210 IMID pa-
tients and 100 healthy controls were analyzed, and a val-
idation stage where the most significant candidate
metabolite biomarkers from the discovery stage were con-
firmed using an independent cohort of 1200 IMID pa-
tients and 200 healthy controls. To our knowledge, this
study provides the first comprehensive characterization of
urine metabolites associated with IMIDs.

Methods
Study design
A two-stage approach was used to characterize the urine
metabolite profile associated with IMIDs. In the first
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stage (discovery stage), candidate biomarkers for diagno-
sis and disease activity monitoring were identified using
a cohort of 1310 individuals (n = 1210 IMID patients
and n = 100 healthy controls). In the second stage (valid-
ation stage), the most significant candidate biomarkers
where validated using a cohort of 1400 individuals (n =
1200 IMID patients and n = 200 healthy controls). In
order to identify urine metabolites associated with dis-
ease activity, two similarly sized subgroups of patients
showing extreme disease activity (i.e., very high and very
low disease activity) were selected within each IMID dis-
ease (Table 1, Additional file 1: Figure S1). Previous
metabolomic studies have shown that several epidemio-
logical and technical variables can act as confounders
and, therefore, particular care must be taken to avoid or
minimize their effects. In the present study, two different
measures were taken to reduce the impact of potential
confounders. First, the patients and controls from the
discovery and validation stages were selected so that
they had similar distributions of epidemiological (gender,
age and body mass index) and sample collection vari-
ables (fasting time of the individual before sample collec-
tion and the time of the day of sample collection).
Second, in order to adjust for any additional confound-
ing effect, all potential confounder variables were also
included as covariates in the multivariate linear regres-
sion models testing for association with disease and with
disease activity.

Ethics
The study was conducted according to the Declaration
of Helsinki. Patients and controls included in the ana-
lysis were recruited by the Immune-Mediated Disease
Consortium [29–32]. Informed consent was obtained
from all participants, and protocols were reviewed and
approved by local institutional review boards. All the pa-
tients included in the study met the corresponding con-
sensus diagnostic criteria of each IMID (Additional file
1: Supplementary Methods).

Metabolomic analysis
Urine samples were collected, processed, and analyzed
using 1H-NMR as described in the Supplementary
Methods (Additional file 1). Spectral processing of the
urine NMR profiles was performed using FOCUS software
[33], and reference metabolite databases [34] were used to
identify the molecules corresponding to each spectral res-
onance. In order to confirm the identity of specific metabo-
lites, two-dimensional 1H-13CHSQC (heteronuclear single
quantum correlation) and 1H-1H COSY (correlation spec-
troscopy) was used in a selected group of samples.

Statistical analysis
Multivariate linear regression was carried out to test the
association between metabolite levels and disease diag-
nosis as well as disease activity [35–37]. In each linear
regression analysis, different epidemiological (i.e., sex,
age, smoking habit, body mass index, lifestyle, and diet-
ary habits) and technical variables (i.e., time at sample
collection and fasting time) were included as covariates
in order to control for confounding. To avoid the pres-
ence of false positives associated to drug treatment, we
also tested the association between all metabolite levels
and drug treatment at the time of sample collection. The
drug treatments tested for association included antibody
to tumor necrosis factor (anti-TNFα) therapy (i.e., inflixi-
mab and etanercept), disease-modifying drugs (i.e., metho-
trexate and leflunomide), corticoids, and non-steroidal
anti-inflammatory drugs (i.e., ibuprofen). After removing
known drug-specific metabolites (i.e., ibuprofen, acet-
aminophen, and 5-aminosalicylic acid) we found no sig-
nificant association between urine metabolite levels and
the presence of any particular therapy.
In the discovery phase, three types of analyses were

performed: (1) diagnostic, comparing the metabolite
levels between each IMID disease against the healthy
control cohort, (2) differential, comparing the metabolite
levels between IMIDs that have more similar clinical fea-
tures, and (3) activity-related, comparing the metabolite

Table 1 Distribution of sample size and disease activity scores in the low and high activity groups of each immune-mediated
inflammatory disease (IMID) after quality control

IMID Disease activity score Discovery cohort Validation cohort

Low activitya High activitya Low activitya High activitya

CD Harvey-Bradshaw Index [71] 154 (0.0) 45 (7.0) 100 (0.0) 100 (9.0)

UC Lichtiger Score [72] 124 (0.0) 81 (6.0) 99 (0.0) 98 (5.0)

RA Disease Activity Score 28 [73] 114 (1.7) 127 (5.5) 98 (1.6) 95 (5.6)

PsA Disease Activity Score 28 [73] 97 (1.5) 89 (3.9) 96 (1.5) 96 (4.2)

Ps Psoriasis Area Severity Index [74] 101 (0.0) 84 (14.1) 100 (0.0) 92 (17.5)

SLE Selena-Sledai [75] and BILAG [76] 123 (1.0b) 41 (11.0b) 90 (1.0b) 88 (7.5b)

Description of the sample sizes and median disease activity values in the discovery and validation stages for each IMID (CD, Crohn’s disease; UC, ulcerative colitis;
RA, rheumatoid arthritis; PsA, psoriatic arthritis; Ps, psoriasis; SLE, systemic lupus erythematosus)
aNumber of samples (median disease activity values)
bMaximum of Selena-Sledai and BILAG indices of each patient
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concentrations between patients with high and low dis-
ease activity within each IMID. Multiple test correction
of the significance P values was performed using the dis-
covery rate method (false discovery rate (FDR) < 0.05)
both in the discovery and validation stages. The hier-
archical clustering of urine IMID profiles was performed
using the combined association (–log10P values) for each
disease obtained in the case-control analysis.
In order to evaluate the power of the urine metabo-

lome for disease diagnosis, we built a classifier for each
IMID using the partial least squares discriminant ana-
lysis method in the discovery dataset as described previ-
ously [38]. Once the optimal classifier was identified, it
was subsequently tested using the independent valid-
ation dataset. The performance of the different disease
classifiers was determined using the receiver operating
characteristic (ROC) curve analysis as described previ-
ously [23, 38]. From each ROC, the area under the curve
(AUC) statistic was estimated as a measure of the classi-
fier’s diagnostic performance.
In order to gain further biological insight of the associ-

ated metabolites, we used the MetaboNetworks software
[39]. This method uses a set of predefined metabolic re-
actions in a single or multiple organisms to identify
and define the shortest metabolic reaction chains link-
ing a set of input metabolites. Here, we applied this
network analysis approach to identify the shortest
metabolic reaction chains linking all metabolites signifi-
cantly associated with one or more IMIDs. For this
analysis we used the set of KEGG reactions (Kyoto
Encyclopedia of Genes and Genomes [40]) described
for humans as well as the pathways associated with the
most abundant endosymbionts from the gut microbiota
(Firmicutes, Bacteroidetes, Alphaproteobacteria, Beta-
proteobacteria, Deltaproteobacteria, Gammaproteobac-
teria, and Actinobacteria phyla [41]).

Results
Sample characteristics and quality control
In the discovery dataset, 1210 IMID patients (203 CD,
213 UC, 250 RA, 167 SLE, 190 PsA, and 187 Ps) and
100 healthy subjects were included in the study. After
quality control analysis of the resulting NMR urine
spectra, the final discovery dataset consisted of 1180
IMID patient samples and 93 healthy control samples
(Additional file 1: Supplementary Methods, Table S1).
The validation dataset used consisted of 1200 IMID

patients (n = 200 patients per disease) and 200 healthy
control subjects. After the quality control analysis of the
urine NMR spectra, the final validation dataset consisted
of 1152 patient and 196 control samples (Additional file
1: Table S1).
Within each IMID, patients were selected to represent

two similarly sized groups of extreme disease activity

(i.e., very low and very high disease activity). The average
disease activity values for each subgroup are shown in
Table 1 and Figure S1 (Additional file 1). The main clin-
ical and epidemiological characteristics of the two co-
horts as well as technical variables associated with the
sample collection process are presented in Figure S2
(Additional file 1).

Metabolite panel
A total of 143 spectral peaks were identified in the urine
NMR spectra from the discovery dataset. After quality
control analysis and filtering of redundant peaks (i.e. peaks
quantifying thee same metabolite), a final set of n = 37
unique metabolites was identified. To improve this metab-
olite identification stage, two-dimensional 1H-13CHSQC
and 1H-1H COSY were performed to validate and resolve
unclear metabolite assignments. From these, 37 metabo-
lites identified, of which four metabolites (ibuprofen, acet-
aminophen, 5-aminosalicylic acid, and ethanol) were found
to be either exogenous or drug-related molecules and were
excluded from downstream analyses. From the final set of
33 urine metabolites, 25 could be confidently assigned to a
known molecule, while the remaining 8 metabolites could
not be associated to a known small molecule and therefore
were defined using the prefix Uknown (Additional file 1:
Table S2). According to the Human Metabolome Database
[34] all the known metabolites are expected to be found in
human urine, and most of them (n = 23, > 90 %) have been
previously measured in human urine using NMR [42–44].

Assessment of urine diagnostic biomarkers for IMIDs
In the discovery stage, the comparison between the urine
metabolite profiles between patients and controls identi-
fied a total of 28 significant associations (FDR < 0.05). In
the validation stage, n = 26 of these metabolite associa-
tions (93 %) were significantly replicated (FDR < 0.05,
Table 2). In a secondary analysis, we found n = 13 me-
tabolite associations to be significant at the nominal
level in both stages of study (P < 0.05, same direction of
change, Table 2). Using MetaboNetworks to analyze the
associated metabolite profiles [39] we found a overrepre-
sentation of metabolites from the citric acid cycle,
phenylalanine metabolism and glycine-serine metabol-
ism pathways (Fig. 1).
Among the validated metabolites, six were found to be

associated to three or more IMIDs (Fig. 2a). Since their
patterns were very similar between diseases (i.e., signifi-
cance of association and direction of change), they were
considered as hub metabolites in IMIDs. From these, cit-
rate showed the strongest hub properties, showing a sig-
nificantly lower concentration in the urine of most IMIDs
compared to controls (Fig. 2, PCD = 6.2 × 10–16, PSLE =
2.3 × 10–10, PPs = 2.9 × 10–8, PRA = 4.3 × 10–7, PPsA = 3.5 ×
10–5). In UC, citrate levels were also lower than in
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Table 2 Metabolites associated with each immune-mediated inflammatory disease (IMID) in the discovery and validation cohorts

IMID/Metabolite log2(IMID/Ctrl)DIS
b PDIS log2(IMID/Ctrl)VAL

b PVAL PCOMB

CD/Citrate –0.94 (–1.21 to –0.68) 1.4 × 10–8 –0.80 (–1.01 to –0.59) 1.1 × 10–9 6.2 × 10–16

SLE/Citrate –0.68 (–0.96 to –0.41) 6.1 × 10–5 –0.85 (–1.11 to –0.59) 1.4 × 10–7 2.3 × 10–10

Ps/Citrate –0.60 (–0.82 to –0.38) 1.0 × 10–5 –0.45 (–0.64 to –0.26) 1.3 × 10–4 2.9 × 10–8

RA/Citrate –0.49 (–0.72 to –0.26) 5.4 × 10–4 –0.55 (–0.77 to –0.33) 4.3 × 10–5 4.3 × 10–7

PsA/Citrate –0.39 (–0.63 to –0.16) 6.7 × 10–3 –0.44 (–0.64 to –0.24) 3.7 × 10–4 3.5 × 10–5

UC/Citratea –0.34 (–0.57 to –0.11) 1.6 × 10–2 –0.39 (–0.59 to –0.19) 1.6 × 10–3 3.0 × 10–4

UC/N-acetyl AAs –0.57 (–0.85 to –0.30) 7.6 × 10–4 –0.64 (–0.87 to –0.42) 2.4 × 10–6 3.8 × 10–8

RA/N-acetyl AAsa –0.32 (–0.53 to –0.10) 1.7 × 10–2 –0.61 (–0.86 to –0.37) 4.3 × 10–5 1.1 × 10–5

CD/N-acetyl AAs –0.63 (–0.90 to –0.36) 1.4 × 10–4 –0.26 (–0.47 to –0.06) 3.7 × 10–2 6.7 × 10–5

Ps/N-acetyl AAs –0.27 (–0.43 to –0.11) 6.9 × 10–3 –0.35 (–0.54 to –0.15) 3.3 × 10–3 2.6 × 10–4

PsA/N-acetyl AAs –0.43 (–0.67 to –0.19) 3.9 × 10–3 –0.28 (–0.46 to –0.10) 9.1 × 10–3 3.9 × 10–4

Ps/Trigonelline –0.70 (–0.99 to –0.40) 1.0 × 10–4 –0.73 (–0.94 to –0.51) 7.3 × 10–8 2.0 × 10–10

UC/Trigonelline –0.56 (–0.88 to –0.25) 3.3 × 10–3 –0.72 (–0.95 to –0.48) 7.3 × 10–7 5.0 × 10–8

CD/Trigonelline –0.71 (–1.01 to –0.41) 1.3 × 10–4 –0.54 (–0.75 to –0.32) 3.8 × 10–5 1.0 × 10–7

PsA/Trigonellinea –0.46 (–0.74 to –0.18) 7.5 × 10–3 –0.42 (–0.63 to –0.21) 1.1 × 10–3 1.0 × 10–4

SLE/Alanine –0.29 (–0.44 to –0.14) 1.5 × 10–3 –0.62 (–0.75 to –0.49) 4.8 × 10–14 2.7 × 10–15

Ps/Alanine –0.31 (–0.45 to –0.16) 4.2 × 10–4 –0.35 (–0.46 to –0.25) 6.5 × 10–8 7.0 × 10–10

PsA/Alaninea –0.17 (–0.31 to –0.04) 4.0 × 10–2 –0.37 (–0.47 to –0.26) 4.0 × 10–8 3.4 × 10–8

RA/Alanine –0.24 (–0.38 to –0.10) 5.3 × 10–3 –0.35 (–0.46 to –0.24) 4.4 × 10–7 4.9 × 10–8

CD/Alaninea –0.23 (–0.38 to –0.08) 1.2 × 10–2 –0.21 (–0.32 to –0.11) 6.7 × 10–4 1.1 × 10–4

SLE/Methylsuccinatea –0.72 (–1.25 to –0.19) 2.5 × 10–2 –2.10 (–2.61 to –1.59) 5.0 × 10–11 3.6 × 10–11

UC/Methylsuccinate –1.09 (–1.58 to –0.60) 2.9 × 10–4 –0.61 (–1.01 to –0.22) 1.1 × 10–2 4.5 × 10–5

CD/Methylsuccinate –1.05 (–1.56 to –0.54) 7.4 × 10–4 –0.67 (–1.08 to –0.26) 7.6 × 10–3 7.4 × 10–5

PsA/Methylsuccinatea –0.74 (–1.25 to –0.23) 1.6 × 10–2 –0.91 (–1.35 to –0.47) 6.7 × 10–4 1.4 × 10–4

Ps/Methylsuccinate –0.95 (–1.49 to –0.40) 4.7 × 10–3 –0.63 (–1.07 to –0.20) 1.7 × 10–2 8.3 × 10–4

UC/Unknown 7 5.49 (4.72 to 6.26) 2.2 × 10–26 5.30 (4.68 to 5.93) 1.5 × 10–36 4.7 × 10–60

CD/Unknown 7 2.40 (1.61 to 3.20) 1.0 × 10–6 2.75 (2.14 to 3.36) 5.1 × 10–13 2.3 × 10–17

RA/Unknown 7 1.68 (0.99 to 2.37) 7.6 × 10–5 1.48 (0.94 to 2.02) 8.2 × 10–6 1.4 × 10–8

SLE/Unknown 7a 0.81 (0.18 to 1.44) 3.4 × 10–2 1.33 (0.80 to 1.86) 4.8 × 10–5 2.3 × 10–5

CD/Hippurate –1.74 (–2.08 to –1.40) 1.5 × 10–15 –1.54 (–1.80 to –1.28) 4.5 × 10–20 5.5 × 10–33

UC/Hippurate –1.03 (–1.32 to –0.73) 3.3 × 10–8 –0.92 (–1.16 to –0.69) 3.8 × 10–10 4.9 × 10–16

Ps/Hippuratea –0.40 (–0.66 to –0.13) 1.6 × 10–2 –0.33 (–0.54 to –0.11) 1.4 × 10–2 2.0 × 10–3

RA/Carnitinea –0.68 (–1.11 to –0.25) 9.2 × 10–3 –1.05 (–1.35 to –0.75) 2.1 × 10–8 4.4 × 10–9

PsA/Carnitinea –0.55 (–0.98 to –0.11) 3.9 × 10–2 –0.80 (–1.11 to –0.50) 2.0 × 10–5 1.2 × 10–5

CD/3-Hydroxyisovalerate –1.02 (–1.51 to –0.53) 6.7 × 10–4 –1.88 (–2.27 to –1.48) 4.2 × 10–14 1.1 × 10–15

UC/Phenylacetylglycine 0.42 (0.19 to 0.65) 2.5 × 10–3 0.48 (0.31 to 0.65) 5.5 × 10–6 2.7 × 10–7

CD/Free acetatea –0.46 (–0.80 to –0.11) 3.0 × 10–2 –0.51 (–0.71 to –0.30) 6.5 × 10–5 2.8 × 10–5

RA/Tyrosine 1.25 (0.60 to 1.90) 1.7 × 10–3 0.57 (0.14 to 1.00) 3.0 × 10–2 5.7 × 10–4

CD/N,N-dimethylglycinea –0.27 (–0.46 to –0.07) 2.3 × 10–2 –0.25 (–0.44 to –0.06) 2.8 × 10–2 5.5 × 10–3

Association statistics for the discovery (DIS), the validation (VAL) and the combined (COMB) cohorts.
aNominal association
bLogarithmic concentration ratios (median, 95 % CI) of the corresponding IMID cohort versus the control cohort
CD, Crohn’s disease; N-acetyl AAs, N-acetyl amino acids; Ps, psoriasis; PsA, psoriatic arthritis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; UC,
ulcerative colitis
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Fig. 1 Metabolic reaction network illustrating metabolic signatures associated to IMIDs. Red-shaded metabolites have been associated to IMIDs in
the current study. The associated IMIDs are displayed in a text box next to the corresponding metabolite. Disease associations meeting multiple
test correction (FDR < 0.05) at the discovery and validation stages are displayed in green letters. Nominal disease associations (P < 0.05) at the
discovery and validation stages are displayed in red letters. The metabolite reaction linking hippurate and glycine is only conducted through
the activity of the gut microbiota

Fig. 2 Urine diagnostic biomarkers in IMID diseases. a Shows the distribution of the concentrations in logarithmic scale of the metabolites associated
to multiple IMID diseases (i.e., hub metabolites). The concentrations have been previously normalized to the median concentration of the control
cohort. b Shows the clustering graph of both diseases and metabolites according to their corresponding disease-metabolite associations
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controls both in the discovery and validation cohorts, al-
though the difference was only significant at the nominal
(P < 0.05) level.
Similarly, five other hub metabolites were found to be

significantly associated to multiple IMIDs. N-acetyl amino
acids (N-acetyl AAs), alanine, methylsuccinate, and trigo-
nelline showed lower concentrations in the urine of sev-
eral different IMIDs compared to healthy normal controls
(Table 2). From these, trigonelline has been previously
shown to be associated to the consumption of coffee and
tea. Our analysis shows that this metabolite remains sig-
nificantly associated with different IMIDs even after
adjusting for the daily consumption of coffee and/or tea,
thereby discarding the possibility of a diet-based con-
founding (P = 4.2 × 10–6 and r2 = 0.47 in the discovery co-
hort; Additional file 1: Figures S3 and S4). In addition to
these metabolites, urine metabolite Unknown 7 was found
to be present at high levels in the urine metabolome of
CD, UC, and RA patients compared to controls (Table 2).
A group of metabolites were found to have differential

levels in urine only in IMIDs, with a more similar clin-
ical phenotype. Hippurate levels were found to be sig-
nificantly lower in the two inflammatory bowel diseases
CD and UC compared to controls (Table 2). In the two
chronic arthritis diseases, RA and PsA, low levels of car-
nitine were identified in the discovery stage and repli-
cated in the validation stage (Table 2).
Finally, five metabolites were found to have a differen-

tial urine concentration in only one IMID. These
disease-specific metabolites include phenylacetylglycine
in UC (PUC = 2.7 × 10–7), tyrosine in RA (PRA = 5.7 × 10–4),
and 3-hydroxyisovaleric (PCD = 1.1 × 10–15), free acetate
(PCD = 2.8 × 10–5), and N,N-dimethylglycine in CD (PCD =
5.5 × 10–3) (Table 2).
In order to assess the similarities between the urine

metabolic profiles of the different IMIDs, we performed
a clustering analysis (Fig. 2b). This analysis showed that
the urine metabolite profiles of IMIDs aggregate into

three main clusters: (1) Ps and PsA (sharing n = 5 metab-
olite associations), (2) CD and UC (sharing n = 6 metab-
olite associations), and (3) RA and SLE (sharing n = 3
metabolite associations).

Urine metabolomic classifier for IMID diagnosis
In order to evaluate the power of the urine metabolome
for disease diagnosis, a multivariate classification model
was built for each IMID disease using the discovery co-
hort. In order to obtain an independent and non-biased
assessment of the diagnostic accuracy of the metabolo-
mic classifiers, these were tested in the validation cohort.
Using this approach, the prediction accuracy was found
to be high for SLE (AUCSLE = 0.73, 95 % CI, 0.68–0.78),
RA (AUCRA = 0.70, 95 % CI, 0.65–0.75), Ps (AUCPS =
0.70, 95 % CI, 0.64–0.75), and PsA (AUCPSA = 0.69, 95 %
CI, 0.63–0.74). The metabolomic classifiers from the two
bowel inflammatory diseases, CD and UC, showed the
strongest diagnostic performance (Fig. 3, Additional file
1: Figure S5). Using the metabolite levels in urine, both
CD and UC could be predicted with an AUC higher
than 0.80 (AUCUC = 0.87, 95 % CI, 0.83–0.91 and
AUCCD = 0.81, 95 % CI, 0.76–0.86).

Urine biomarkers for differential diagnosis in IMIDs
The metabolite profiles of IMIDs showing a more simi-
lar clinical phenotype were directly compared, i.e., CD
versus UC, RA versus PsA, Ps versus PsA, and RA versus
SLE. In the discovery dataset, a total of 11 metabolites
were found to be significantly different between similar
IMIDs (FDR < 0.05, Additional file 1: Table S3). From
these, three metabolite associations were replicated in
the validation cohort (FDR < 0.05, Additional file 1:
Table S3). These three validated differential diagnostic
metabolites were all found when comparing the profiles
of the two inflammatory bowel diseases UC and CD:
hippurate (P = 9.2 × 10–8), citrate (P = 1.6 × 10–8), and
Unknown 7 (P = 6.7 × 10–18). All three metabolites

Fig. 3 Performance of diagnostic classification models for inflammatory bowel diseases. Distribution of the partial least squares discriminant
analysis response variable in the discovery and validation datasets using the same model. The red line shows the optimal classification threshold
computed within the discovery cohort
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showed lower concentrations in the urine of CD patients
compared to the urine of UC patients. At the nominal
level, tyrosine amino acid (P = 1.8 × 10–4) and Unknown
7 metabolite (P = 7.9 × 10–5) were also found to be lower
in the urine of PsA patients compared to RA patients.

Urine biomarkers of disease activity in IMIDs
In the discovery cohort, three metabolites – citrate,
hippurate, and 3-hydroxyisovalerate – were found to
be significantly associated with disease activity in CD
after multiple-test correction (Fig. 4, Additional file 1:
Table S4). In particular, CD patients with high levels of
disease activity were found to have much lower levels
of these three metabolites compared to patients with
low disease activity. Using the validation cohort, the
association between the low levels of these three me-
tabolites in urine and high disease activity in CD was
replicated (Pcitrate = 4.4 × 10–10, Phippurate = 6.0 × 10–7,
and P3-hydroxyisovalerate = 1.30 × 10–5).
After multiple test correction, no other urine metabol-

ite was significantly associated with disease activity. At
the nominal level, however, five additional urine metabo-
lites were associated with disease activity in both the dis-
covery and validation cohorts (P < 0.05, Additional file 1:
Table S4). The direction of the association was the same
in both discovery and validation cohorts, which strongly
supports the association of these biomarkers as candi-
dates for disease activity monitoring. In UC, high disease
activity was associated with low levels of urine hippurate
and 3-hydroxyisovaleric acid (P = 8.0 × 10–5 and P =

1.4 × 10–3, respectively). In PsA and SLE, patients with
higher disease activity had lower levels of citrate (P =
1.8 × 10–5 and P = 1.3 × 10–3, respectively). Finally, low
levels of N,N-dimethylglycine were also found to be as-
sociated with high disease activity in CD (P = 9.0 × 10–4).

Discussion
The metabolome represents the collection of small mol-
ecules produced by cells and, therefore, its analysis is
providing a unique opportunity to identify biological
perturbations associated with diseases [29, 45–47]. New
technological advances are allowing the characterization
of such biochemical variations, revealing unexpected
metabolic changes associated with different human path-
ologies. From a translational perspective, the analysis of
the metabolome is beginning to provide new and power-
ful biomarkers that are highly informative of specific dis-
ease processes and, therefore, could lead to more precise
and efficient patient management. Despite their preva-
lence, there remain few studies analyzing the metabo-
lome of IMIDs. In the present study, we report, for the
first time, the results of a parallel analysis of the urine
metabolome of six of the most prevalent IMIDs – RA,
PsA, Ps, SLE, CD, and UC – for the search of clinically
relevant biomarkers. Using a two-stage approach we
have identified and validated multiple urine metabolites
associated with disease diagnosis as well as disease activ-
ity. These results provide the most comprehensive ana-
lysis of the urine metabolome in IMIDs performed to
date, leading to the identification of new biomarker

Fig. 4 Distribution of metabolite concentrations associated to disease activity. This figure shows the logarithmic concentrations of the metabolites
associated to CD disease activity normalized to the median concentration of the control cohort. White and grey bars refer to low and high activity
patients, respectively
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metabolites, as well as providing strong evidence of
shared metabolic pathways in this group of diseases.
The present large-scale profiling of the urine metabo-

lome study has found unexpected strong similarities be-
tween IMIDs. Some of these metabolite variations were
common across all or almost all diseases and, therefore,
were considered as hub metabolites. To our knowledge,
it is the first time that hub metabolites have been de-
scribed in IMIDs. Among these metabolites, citrate, a
central metabolite of the Krebs oxidative phosphoryl-
ation cycle, showed the strongest association to all
IMIDs. Despite its essential role in cell energy produc-
tion, citrate has been recently shown to have important
immunologic properties [48], modulating, for example,
the production of proinflammatory factors in macro-
phages or being a critical factor for dendritic cell antigen
presentation. Previous studies have found that citrate is
present at lower concentrations in the urine of inflam-
matory bowel disease (IBD) patients compared to con-
trols [49, 50]. In RA and SLE, citrate has also been
found to be in lower levels in the serum of patients com-
pared to controls [51, 52]. Here, we show that the previ-
ously observed citrate variation in RA and SLE is also
detected in urine, a much less invasive sample source
than whole blood. Finally, we also demonstrate, for the
first time, that Ps and PsA patients also have low con-
centrations of urine citrate compared to healthy con-
trols. Together, the results of this study provide strong
evidence of the presence of hub metabolites that could
become “pan-IMID” biomarkers that could be easily
measured in routine clinical settings.
The parallel analysis of this group of diseases has led

to unique findings. The unsupervised analysis of the
urine metabolite associations showed three strong and
reproducible clusters of clinically similar IMIDs: (1)
IMIDs involving skin affection (i.e., Ps and PsA), (2) in-
flammatory bowel diseases (i.e., CD and UC), and (3)
RA and SLE, two diseases characterized by having a
higher prevalence in women. These results correlate
with the observed shared genetic risk components ob-
served between different IMIDs using genome-wide as-
sociation studies [53–56]. For example, CD and UC have
shown to share more than 163 disease risk loci [57], Ps
an PsA share up to 30 risk loci [58, 59], and SLE and RA
have more than 80 common risk variants [60]. To our
knowledge, it is the first time that metabolite patterns
in urine have shown to etiologically group more similar
IMIDs. This result confirms the validity of the urine
metabolome in the characterization of biochemical
pathways that are specifically associated with this group
of diseases.
When assessing the metabolic context of the disease-

associated metabolites by integrating the metabolic reac-
tions that link them, the resulting network showed a

high degree of overlap of three main metabolic pathways
(Fig. 1). From these, the citric acid cycle is the predom-
inant pathway identified, with citrate showing a common
association to all the IMIDs. Previous studies have
already shown that alterations within this metabolic
pathway are related to immunity and inflammation, al-
though the functional implications of the alterations of
this pathway are still being investigated [61]. The second
major metabolic pathway was the phenylalanine metab-
olism pathway. The metabolites included in this pathway
have shown relevant and specific associations to IBDs in
this study. This finding agrees with previous metabolo-
mic studies that have shown the importance of this
pathway in the etiology of IBDs [62]. Finally, network
analysis also showed an important role for the glycine
and serine metabolism pathway in IMIDs. Metabolites
within this pathway act as major connectors between the
two previous pathways and have been previously related
with inflammatory processes. Glycine, the most con-
nected metabolite in the resulting network, has been
previously proposed to be an anti-inflammatory and im-
munomodulatory agent [63]. Although not directly de-
tected by the NMR approach used in this study, our
results strongly suggest that glycine could be a highly in-
formative biomarker to the inflammatory processes that
characterize IMIDs. Future studies using alternative ana-
lysis technologies like mass-spectrometry will help to de-
termine the utility of this metabolite as a clinical
biomarker of autoimmune diseases.
In this study, we also demonstrate that the urine me-

tabolome has great potential for assessing disease activ-
ity. Citrate, the strongest hub metabolite for IMID
diagnosis, was found to correlate with high disease activ-
ity in CD, PsA, and SLE. In IBDs, we also demonstrate
that hippurate has a very strong correlation with disease
activity. Therefore, this urine metabolite could be used
not only for early disease diagnosis but also to monitor
the level of disease activity in IBDs. This result further
strengthens previously reported results that show how
changes in the microbiome correlate with the level of
inflammation in the gut and disease activity in IBD pa-
tients [64–67]. Future studies, aimed at characterizing
the interrelation between bacterial species in the gut,
tissue inflammation and the urine metabolites identified
herein could therefore help to develop more objective
and reproducible systems to monitor disease progres-
sion in IBDs.
The disease diagnostic models built in this study using

the urine metabolites were found to have good perform-
ance in all IMIDs. In IBDs in particular, the classifiers
were found to predict the disease with very high accur-
acy. These results are in agreement with previous studies
[50, 68, 69] that suggested the use of urine metabolites for
the diagnosis of IBDs. Compared to previous studies, we
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here provide, for the first time, a validation analysis of the
diagnostic predictor using an independent and large pa-
tient and control cohort. Providing an independent con-
firmatory analysis is an essential step for any new
molecular diagnostic tool [70]. These findings support the
analysis of the urine metabolome as a simple, cost-effective
and non-invasive approach for the diagnosis of IBDs.
To our knowledge, there is no evidence that the me-

tabolite patterns associated with IMIDs in this study
have been previously associated to other diseases. While
variations in single metabolites like citrate have been as-
sociated with other disease etiologies, the diagnostic
ability generated by the combination of multiple metab-
olites clearly holds a much higher potential to be the ap-
proach finally used in the clinical setting. As shown in
this study, it is the integration of variation in multiple
metabolites that gives the best disease prediction accur-
acies. In order to further consolidate these diagnostic
metabolite patterns as clinically useful tools, the next
steps will include the study of the urine metabolome in
individuals with pre-diagnostic symptoms as well as lon-
gitudinal studies to assess biomarker variability and cor-
relation with specific features of disease progression.
Further, future developments of the disease predictors
could evaluate the inclusion of other molecular features
like the presence of autoantibodies in sera or, even, the
identification of additional metabolites in urine using
mass-spectrometry approaches. For this latter objective,
the results of this study will clearly be a highly valuable
starting point.

Conclusion
We have performed, for the first time, a large-scale
high-throughput profiling of the urine metabolome of
six of the most prevalent IMIDs. Using a discovery and
an independent validation cohort we have identified
multiple urine metabolites associated with the diagnosis
and the monitoring of disease activity. The parallel
evaluation of all six IMIDs has allowed the identification
of hub metabolites as well as the characterization of
clusters of clinically similar diseases based exclusively on
urine metabolite profiles. These common molecular fea-
tures are in agreement with the shared genetic risk in
IMIDs recently identified through genome-wide associ-
ation studies [54]. Taken together, these results demon-
strate the utility of urine metabolomics as a new source
for clinically useful biomarkers for this prevalent group
of chronic inflammatory diseases.
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