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1. Introduction

A co-investment problem is described as the one where agents are endowed with

some amount of input (resources, labor, capital,...) so that they can pool them and

obtain some amount of output through a technology with increasing average returns.

The problem is then how to share this output. This is a simple but interesting model

of a one input-one output system, already quoted in some papers like Lemaire (1984,

1991), who studies insurance problems, Shubik (1962) or Mas-Colell et al. (1995), where

a production problem is analyzed, Izquierdo and Rafels (2001), who propose a financial

problem, and Moulin (1990) or Roemer and Silvestre (1993).

The increasing average returns assumed in this model provide incentives to cooperate

and the core of this situation turns out to be always a nonempty set. That is, we can

find a feasible and efficient allocation of the total output such that no subcoalition of

agents can block it upon. The proportional allocation with respect to the amount of

input contributed arises as a natural distribution within the core.

In this paper we mainly address the study of the behavior of the core of this model

when an agent or some agents vary their contributions of the amount of input, namely

resource-monotonicity1.

By its importance, the monotonicity of the core has been already studied in a game

theory framework by Young (1985) and Housman and Clark (1998), among others.

This author shows the incompatibility between core selection and the fact that the

solution increases the payoff to the members of some coalition whenever the worth of

this coalition increases, remaining the worth of other coalitions the same (coalitional

1Resource-monotonicity has already been analyzed in the context of allocation problems: Chun

and Thomson (1988) study monotonicity properties of bargaining problems; Thomson (1994) analyzes

resource-monotonicity in the context of fair division when preferences are single-peaked.
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monotonicity). Meggido (1974) and Calleja et al. (2009) have studied monotonicity

properties with respect to the worth of the grand coalition. Other authors has ex-

amined monotonicity in restricted domains like convex games (Hokari, 2000) or veto

balanced games (Arin and Feltkamp, 2005) reaching compatibility results between this

two properties.

After some preliminaries (Section 2), we first concentrate in Section 3 on the mono-

tonicity of the core and we show (see Proposition 1) that if only one agent increases his

or her contribution, the whole core behaves monotonically, that is, any core allocation

of the initial problem can be represented in the core of the new problem so that the

payoff to this agent increases. Surprisingly, this property does not hold when two or

more agents increase their contributions at the same time (see Example 1 ). In Section

4 we study a necessary and sufficient condition that must fulfill an initial allocation to

guarantee that not only the payoff of the agents that have eventually increased their

contribution increases, but also to avoid the payoff of the rest of agents to be low-

ered (see Theorem 1). In Section 5, we analyze the set of allocations that satisfies

the condition of Theorem 1 for any eventual increasing of resources; we call this set

as the incentive core and we prove that the proportional distribution is one of these

allocations (see Proposition 2). In Example 4 we show that this set of allocations may

contain more than the proportional one by cutting the core properly.

In Theorem 2 we state necessary and sufficient conditions for the coincidence of

the incentive core and the core of a game. On the opposite extreme, Proposition 3

gives a sufficient condition that makes the incentive core shrink into the proportional

allocation.
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2. Preliminaries

A co-investment problem is represented by a triplet (N,ω, f) whereN = {1, 2, . . . , n}

is the set of agents, ω = (ω1, ω2, . . . , ωn) ∈ RN
++ is the vector2 of individual resource

endowments, where ωi is the amount of resource owned by agent i ∈ N , and the function

f : R+ → R+ represents the technology that transforms x units of input into f(x) units

of output, with the following assumptions:

(a) f(0) = 0 and f(
∑n

i=1wi) > 0

(b) for any 0 < z1 ≤ z2 then
f(z1)

z1
≤ f(z2)

z2
.

(1)

Condition (a) states that no output can be produced with no input contribution and

some output is produced if all agents contribute. Condition (b) formalizes the classical

idea of increasing average returns.

The problem at issue is how to distribute the output f(
∑

i∈N ωi) among the members

of N . An allocation of f(
∑

i∈N ωi) is denoted by a vector x = (x1, x2, . . . , xn), where

xi is the allocation to agent i ∈ N . We write x(S) =
∑

i∈S xi, for all ∅ 6= S ⊆ N ,

x(∅) = 0 and xS denotes the restriction of x ∈ RN to the members of S ⊆ N , S 6= ∅.

The core of a co-investment problem (N,ω, f) is the most outstanding set-solution

defined as

C(N,ω, f) := {x ∈ RN | x(S) ≥ f(ω(S)),∀ S ⊆ N, and x(N) = f(ω(N))}.

It is easy to check from condition (1) that the proportional allocation with respect

to ω, P (N,ω, f), is always a core element where

2Given a set N = {1, 2, . . . , n}, RN
+ (RN

++) stands for the n-dimensional space of non-negative

(positive) vectors whose components are indexed by N .
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Pi(N,ω, f) := ωi ·
f(
∑

i∈N ωi)∑
i∈N ωi

, for all i ∈ N.

At the proportional allocation, the return per unit contributed is constant and so dif-

ferent amounts of contributed input receive the same average return. However, the core

of a co-investment problem is in general wider and other core-selections can be addressed

in order to consider different average rewards depending on different contributions. For

instance, we can consider the average proportional distribution, AP (N,ω, f) that mixes

the idea of marginal output contribution of agents, f(ω(N))− f(ω(N \ {i})), and the

idea of proportionality. It is defined as follows:

AP (N,ω, f) :=
1

n

∑
j∈N

xj(N,ω, f),

where xj(N,ω, f) = (xj1, x
j
2, . . . , x

j
n) ∈ RN is defined as

xji := f(ω(N))− f(ω(N \ {j})), if i = j

xji := ωi ·
f(ω(N \ {j}))
ω(N \ {j})

, if i ∈ N, i 6= j.
(2)

It can be shown that AP (N,ω, f) is a core selection just by checking that each

vector xj(N,ω, f), j ∈ N , is also a core selection. To this aim, it is easy to see that,

for any j ∈ N , xj(N) = f(ω(N)). Moreover, by (1), we have that for any S ⊆ N ,

j 6∈ S, xj(S) = ω(S) · f(ω(N \ {j}))
ω(N \ {j})

≥ ω(S) · f(ω(S))

ω(S)
= f(ω(S)). On the other hand,

if j ∈ S we have
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xj(S) = xjj + xj(S \ {j})

= f(ω(N))− f(ω(N \ {j})) + ω(S \ {j}) · f(ω(N \ {j}))
ω(N \ {j})

= f(ω(N))− ω(N \ {j}) · f(ω(N \ {j}))
ω(N \ {j})
+ ω(S \ {j}) · f(ω(N \ {j}))

ω(N \ {j})
= f(ω(N))− ω(N \ S) · f(ω(N \ {j}))

ω(N \ {j})
= ω(N) · f(ω(N))

ω(N)
− ω(N \ S) · f(ω(N \ {j}))

ω(N \ {j})
≥ ω(N) · f(ω(N))

ω(N)
− ω(N \ S) · f(ω(N))

ω(N)

= ω(S) · f(ω(N))

ω(N)
≥ f(ω(S)).

Notice that both the proportional and the average proportional collapse if f(ω(N))
ω(N)

=

f(ω(N\{i}))
ω(N\{i}) , for all i ∈ N , but in general they are different core selections. Moreover, the

fact that each vector xj(N,ω, f) is indeed a core element also proves that the marginal

contribution of any player i ∈ N , f(ω(N)) − f(ω(N \ {i})), is attainable within the

core of any co-investment problem (N,ω, f).

3. Resource-monotonicity and the core

In the previous section we have defined two rules that both propose core allocations.

Furthermore, if some agent increases their initial contribution, it is easy to check that

each of these rules also selects an allocation that increases the payoff to this agent.

In this section we aim to analyze whether for any core allocation, and when an agent

increases his contribution, there exists an allocation in the core that gives a larger

reward to this agent. This is an important fact since a positive result will tell that an

agent can increase his contribution without expecting that any subcoalition of agents
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might block this initiative. The increasing average returns nature inherent to the model

suggests that this should be always possible, as the next proposition states.

Proposition 1. Let (N,ω, f) and (N,ω′, f) be two co-investment problems with |N | ≥

2 such that, for some i∗ ∈ N , ω′i∗ > ωi∗ and ω′j = ωj, for all j ∈ N \ {i∗}. Then, for

any x ∈ C(N,ω, f) there exists x′ ∈ C(N,ω′, f) such that x′i∗ > xi∗.

Proof Since x ∈ C(N,ω, f) it holds xi∗ ≤ f(ω(N)) − f(ω(N \ {i∗})). Taking this fact

into account, we take x′ = xi
∗
(N,ω′, f) as it is defined in (2). This is,

x′i∗ = f(ω′(N))− f(ω′(N \ {i∗}))

x′i = ω′i ·
f(ω′(N \ {i∗}))
ω′(N \ {i∗})

for i 6= i∗.

It is straightforward that x′(N) = f(ω′(N)) and f(ω′(N)) > f(ω(N)), since ω′(N) >

ω(N) > 0 and
f(ω′(N))

ω′(N)
≥ f(ω(N))

ω(N)
> 0. Hence, it follows

x′i∗ = f(ω′(N))− f(ω′(N \ {i∗})) > f(ω(N))− f(ω(N \ {i∗})) ≥ xi∗ ,

since ω(N \ {i∗}) = ω′(N \ {i∗}).

Since we know that x′ = xi
∗
(N,ω′, f) ∈ C(N,ω′, f), this ends the proof. �

Unfortunately, this result cannot be generalized to the case where two or more agents

increase their initial contribution. Next example shows that, if two agents increase their

contribution at the same time, not every initial core allocation can be adapted to the

new problem, that is, both players cannot benefit simultaneously from increasing their

initial contribution.

Example 1. Let ω = (1, 2, 3) be the vector of initial endowments for a three-agent

co-investment problem where f(x) = x, for 0 ≤ x < 5, and f(x) = 1.5 · x, for 5 ≤ x.

The allocation x = (1, 5, 3) is in the core of the problem, C(N,ω, f). Let us suppose
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that players 1 and 2 increase their initial contribution by 1 unit, that is ω′ = (1 +

1, 2 + 1, 3) = (2, 3, 3). Notice that for any core element x′ ∈ C(N,ω′, f) it holds

x′2 ≤ f(ω′(N))−f(ω′({1, 3})) = 4.5. Therefore, it is not possible to find a core element

x′ ∈ C(N,ω′, f) such that x′1 > x1 and x′2 > x2 = 5.

And what is more disappointing, even in the case of only one agent raising its

contribution, the increased payoff to this agent (guaranteed in Proposition 1) can be at

a cost of diminishing the payoff to some of the rest of players. We illustrate this point

by an example.

Example 2. Consider the same problem than in Example 1 but now ω = (1, 3, 3) and

take the core element x = (1.25, 5, 4.25). If agent 1 increases his contribution up to

ω′1 = 3, then ω′ = (3, 3, 3) and the core shrinks into a single allocation, C(N,ω′, f) =

{x′} = {(4.5, 4.5, 4.5)}. Notice x′2 < x2.

The question of which are the conditions that guarantee strictly better payoffs to

those agents who increase the contribution and give at least the same payoff to other

agents is addressed in the next section.

4. Strong resource-monotonicity and the core: main results

In a dynamic framework, if a set of agents aims to increase their contribution, the

allocation of profits should be revised accordingly. In this case, the previous (old)

allocation acts as a starting point (or status quo) for revising the sharing of profits.

Then, the resource-monotonicity requirement should address not only to improve the

payoff to agents with increasing contributions, but not to harm the rest of the agents.

Next theorem states a necessary and sufficient condition for a particular core element

to fulfill this kind of strong resource- monotonicity requirement.
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Theorem 1. Let (N,ω, f) and (N,ω′, f) be two co-investment problems with |N | ≥ 2

where for some nonempty S ⊆ N we have ω′i > ωi, for all i ∈ S, while ω′i = ωi, for

all i ∈ N \ S. For any core allocation x ∈ C(N,ω, f), the following statements are

equivalent:

1. There exists x′ ∈ C(N,ω′, f) such that

x′i > xi, for all i ∈ S,

x′j ≥ xj, for all j ∈ N \ S.

2. For all ∅ 6= R ⊆ N we have

x(R) ≤ f(ω′(N))− f(ω′(N \R)), if R ⊆ N \ S and

x(R) < f(ω′(N))− f(ω′(N \R)), if R ∩ S 6= ∅.

Proof 1.→ 2.) LetR∩S 6= ∅. Notice x′(R) > x(R), since x′i > xi for all i ∈ S. Moreover,

as x′ ∈ C(N,ω′, f), x′(N) = f(ω′(N)) and x′(N\R) ≥ f(ω′(N\R)). If we subtract both

expressions we obtain x′(R) = x′(N)−x′(N \R) ≤ f(ω′(N))− f(ω′(N \R)). But then

x(R) = x(R∩S)+x(R\S) < x′(R∩S)+x′(R\S) = x′(R) ≤ f(ω′(N))−f(ω′(N \R)).

The proof of the case R∩S = ∅ follows the same argument but we obtain a non-strict

inequality and we are done.

2.→ 1.) To prove this implication define the cooperative game3 (N, v′) where

v′(T ) = f(ω′(T )), for all T ⊆ N, (3)

with v(∅) = 0. By (1), this game satisfies average monotonicity with respect to ω′ ∈ RN

3The function v′ is called the characteristic function and assigns to every subcoalition of agents

S ⊆ N , its worth v′(S) ∈ R, with v′(∅) = 0. The problem at issue is then to find allocations of the

total worth v′(N).
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(see Izquierdo and Rafels, 2001), i.e.

∅ 6= T1 ⊆ T2 ⊆ N ⇒ v′(T1)

ω′(T1)
≤ v′(T2)

ω′(T2)
. (4)

Given a game (N, v), a vector x ∈ RN and a coalition ∅ 6= T ⊆ N the reduced

game4 on T at x, (T, rTx (v)) is defined as

rTx (v)(S) = max
Q⊆N\T

{v(S ∪Q)− x(Q)},

for all ∅ 6= S ⊆ T , with rTx (v)(∅) = 0. Notice, the reduction of a game is transitive.

This is, for all ∅ 6= T ⊆ T ′ ⊆ N ,

rTx (v) = rTxT ′
(rT

′

x (v)).

It is easy to check, and we leave it to the reader, that if (T, v) is an average monotonic

game with respect to some vector ω ∈ RT
++, then the reduced game (T \ {i}, rT\{i}x (v))

turns out to be an average monotonic game5 with respect to ωT\{i}, whenever xi ≥

ωi · v(T )
ω(T )

.

After this preliminaries, take x ∈ C(N,ω, f) and suppose item 2 of the theorem

holds. Then, let us define vector z ∈ RN as follows:

zi = xi + ε
|S| for all i ∈ S,

zi = xi for all i ∈ N \ S,

4 This definition of reduced game only differs from the one given by Davis ans Maschler (1965) in

the worth of the grand coalition. In Davis and Maschler’s definition the worth of the grand coalition

is v(N)− x(N \ T ) while in our definition is max
Q⊆N\T

{v(T ∪Q)− x(Q)}.
5A proof of this fact can be checked in Izquierdo and Rafels (2001).
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where 0 < ε < min
R⊆N,R∩S 6=∅

{v′(N)− v′(N \R)− x(R)}.

Notice, ε is well-defined since we are assuming item 2. It is easy to check that

z(R) < v′(N)− v′(N \R), for all R ⊆ N, R ∩ S 6= ∅. (5)

Moreover, it also holds

z(N) = x(N) + ε < x(N) + v′(N)− x(N) = v′(N). (6)

Next, let us define6

D =



∅ 6= R ⊆ N : ∃ θ = (i1, . . . , ir) ∈ ΘR such that

zi1 ≥ ω′i1 ·
v′(N)

ω′(N)
,

zi2 ≥ ω′i2 ·
r
N\{i1}
z (v′)(N \ {i1})
ω′(N \ {i1})

,

...

zir ≥ ω′ir ·
r
N\{i1,...,ir−1}
z (v′)(N \ {i1, . . . , ir−1})

ω′(N \ {i1, . . . , ir−1})


.

If D = ∅, then just define x′i = ω′i ·
v′(N)
ω′(N)

, for all i ∈ N . Notice zi < ω′i ·
v′(N)

ω′(N)
, for

all i ∈ N , as in other case there would exist j ∈ N such that zj ≥ ω′j ·
v′(N)

ω′(N)
and

so, at least, R = {j} ∈ D, reaching a contradiction. Hence, the proof is done since

x′i > zi ≥ xi for all i ∈ N .

If D 6= ∅, let R∗ be a maximal coalition in D with respect to the inclusion. Since

R∗ ∈ D there exists an ordering of agents in R∗, θ∗ = (i1, i2, . . . , ir∗) ∈ ΘR∗ , that

6Given R ⊆ N , we denote by ΘR the set of all permutations of the elements of R.
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satisfies the conditions in the definition of D. Notice R∗ 6= N , since otherwise R∗ =

N = {i1, i2, . . . , in} and

zin ≥ ω′in ·
r
{in}
z (v′)({in})
ω′({in})

= r{in}z (v′)({in}) ≥ v′(N)− z(N \ {in}),

and so z(N) ≥ v′(N) which contradicts (6). Next, we define x′ ∈ RN as follows:

x′i = zi = xi + ε
|S| for all i ∈ R∗ ∩ S,

x′i = zi = xi for all i ∈ R∗ \ S,

x′i = ω′i ·
r
N\R∗
z (v′)(N \R∗)
ω′(N \R∗)

for all i ∈ N \R∗.

We claim x′ is an efficient payoff vector. Notice

x′(N) = z(R∗) + ω′(N \R∗) · r
N\R∗
z (v′)(N \R∗)
ω′(N \R∗)

= z(R∗) + r
N\R∗
z (v′)(N \R∗)

= z(R∗) + max
Q⊆R∗

{v′((N \R∗) ∪Q)− z(Q)}

= z(R∗) + v′(N)− z(R∗) = v′(N),

where the penultimate equality follows by the fact that maxQ⊆R∗{v′((N \ R) ∪ Q) −

z(Q)} = v′(N) − z(R∗), i.e. the maximum is attained at Q = R∗. To prove it, let us

check that for all Q ⊆ R∗, Q 6= R∗, it holds that v′((N \R)∪Q)−z(Q) ≤ v′(N)−z(R∗).

To this aim consider two cases: (1) if (R∗ \ Q) ∩ S 6= ∅, then the desired inequality

holds just by taking R = R∗ \Q in (5); (2) if (R∗ \Q) ∩ S = ∅, just take R = R∗ \Q

in item 2 of the theorem and recall that in this case zi = xi and thus

z(R∗ \Q) < v′(N)− v′(N \ (R∗ \Q))

= v′(N)− v′((N \R∗) ∪Q) + z(R∗)− z(R∗),

from where we deduce that v′((N \R∗) ∪Q)− z(Q) < v′(N)− z(R∗).
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By definition, x′i = zi = xi + ε
|S| > xi, for all i ∈ R∗ ∩ S, and if i ∈ S \ R∗, we have

x′i = ω′i ·
r
N\R∗
z (v′)(N \R∗)
ω′(N \R∗)

> zi > xi, for all i ∈ S \R∗ where the first strict inequality

follows from the maximality of R∗ in (D,⊆). Hence, we conclude x′i > xi, for all i ∈ S,

On the other hand, for all i ∈ R∗ \S we have x′i = xi. Moreover, for all i ∈ N \(S∪R∗),

again by the maximality of R∗, we get

x′i = ω′i ·
r
N\R∗
z (v′)(N \R∗)
ω′(N \R∗)

> zi ≥ xi,

for all i ∈ N \ (S ∪R∗).

Finally, we have to check that x′ is a core element, x′ ∈ C(N,ω′, f). Let us first

recall R∗ = {i1, . . . , ir∗} where θ∗ = (i1, . . . , ir∗) is an ordering of the members of R∗

that fulfills the condition expressed in D. Then, take a nonempty T ⊆ N and consider

first the case T ⊆ R∗. If T = {i1} it trivially holds that

x′i1 = zi1 ≥ ω′i1 ·
v′(N)

ω′(N)
≥ v′({i1}),

since the game satisfies (4). Take now T ⊆ R∗, T 6= {i1} and select the unique player

ik ∈ T such that

T \ {ik} ⊆ {i1, i2 . . . , ik−1}. (7)

Notice ik is the last player in T according to the ordering θ∗. Then, by definition of

the set D we have

x′ik = zik ≥ ω′ik ·
r
N\{i1,...,ik−1}
z (v′)(N \ {i1, . . . , ik−1})

ω′(N \ {i1, . . . , ik−1})

≥ ω′ik ·
r
N\{i1,...,ik−1}
z (v′)({ik})

ω′({ik})
≥ r

N\{i1,...,ik−1}
z (v′)({ik})

= max
Q⊆{i1,...,ik−1}

{v′({ik} ∪Q)− z(Q)}

≥ v′(T )− z(T \ {ik}) = v′(T )− x′(T \ {ik}),
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where the second inequality follows since r
N\{i1,...,ik−1}
z (v′) also satisfies (4) by the def-

inition of the set D, and the last inequality by taking Q = T \ {ik}. Hence, it follows

x′(T ) ≥ v′(T ).

Let now T ⊆ N be such that T ∩ (N \R∗) 6= ∅. Then, we have

x′(T ∩ (N \R∗)) = ·ω′(T ∩ (N \R∗)) · r
N\R∗
z (v′)(N \R∗)
ω′(N \R∗)

≥ ω′(T ∩ (N \R∗)) · r
N\R∗
z (v′)(T ∩ (N \R∗))
ω′(T ∩ (N \R∗))

= r
N\R∗
z (v′)(T ∩ (N \R∗))

= max
Q⊆R∗

{v′((T ∩ (N \R∗)) ∪Q)− z(Q)}

≥ v′(T )− z(T ∩R∗) = v′(T )− x′(T ∩R∗),

where the first inequality follows again since r
N\R∗
z (v′) satisfies (4), and the last one

taking Q = T ∩R∗. We conclude, x′(T ) ≥ v′(T ), for all T ⊆ N and so x′ ∈ C(N,ω′, f).

�

Next example shows that the result of Theorem 1 cannot be improved. It proposes

a co-investment problem where the unique core allocation compatible with the strong

resource-monotonicity property gives an strictly higher payoff to the unique agent that

increases her initial contribution, while for the rest of players it is compulsory to receive

exactly the same payoff. That is, we cannot in general guarantee strictly better payoffs

to all agents when only a proper subcoalition of them raise their contributions.

Example 3. Let ω = (1, 2, 3) and f(x) = x, for 0 ≤ x < 5, and f(x) = 1.5 · x, for

5 ≤ x. The allocation x = (1.5, 3, 4.5) is in the core C(N,ω, f). Let us suppose that

player 1 increases his initial contribution up to 4 units, that is ω′ = (1 + 4, 2, 3) =

(5, 2, 3). Notice the core of the new problem shrinks into the point (7.5, 3, 4.5). This

vector assigns an strictly better payoff to agent 1, but the same payoff to agents 2 and
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3, and it is the unique possibility

For a particular core allocation and for some modification in the initial contributions

of the agents, the above result provides the tool to check whether it is possible to make

compatible the core requirements with the resource-monotonicity property. However,

it is also interesting to check which core allocations of a co-investment problem satisfy

the strong resource-monotonicity requirement. This point will be addressed in the next

section.

5. Incentive core allocations

If some agreement is reached about how to share profits, but some agents aims to

contribute more and want to revise this agreement, this must be with the consent of the

rest of agents. To pick up a core element is a sensible requirement for the stability of the

new agreement; requiring strong resource-monotonicity favors the support of all agents.

The incentive core are formed by those core allocations meeting these two properties.

Definition 1. Given a co-investment problem (N,ω, f), the Incentive Core is the set7

IC(N,ω, f) =


x ∈ C(N,ω, f)

∣∣∣∣∣∣∣∣∣∣∣∣

∀ω′ ∈ RN
++, ω

′ ≥ ω,∃x′ ∈ C(N,ω′, f)

such that, for all i ∈ N,

(1) x′i > xi if ω′i > ωi, and

(2) x′i ≥ xi if ω′i = ωi


.

The first issue to be addressed is the non-emptiness of the incentive core. Next

proposition solves this question by showing that the proportional allocation is a vector

7We denote by ≥ the usual order on Rn.

16



within the incentive core, and thus proving the compatibility between core selection

and strong resource-monotonicity. As a consequence, this result also highlights new

normative properties of the proportional solution.

Proposition 2. For any co-investment problem, the proportional allocation is an ele-

ment of the incentive core. That is,

P (N,ω, f) ∈ IC(N,ω, f).

Proof First recall that P (N,ω, f) ∈ C(N,ω, f). Then take ω′ ≥ ω, ω′ 6= ω. As

ω′(N) > ω(N) > 0 then
f(ω′(N))

ω′(N)
≥ f(ω(N))

ω(N)
> 0 and thus the proportional alloca-

tions P (N,ω, f) and P (N,ω′, f) satisfy, for all i ∈ N ,

(1) if ω′i > ωi then Pi(N,ω
′, f) > Pi(N,ω, f)

(2) if ω′i = ωi then Pi(N,ω
′, f) ≥ Pi(N,ω, f),

which implies P (N,ω, f) ∈ IC(N,ω, f). �

By definition, the IC(N,ω, f) is a subset of the core. The following example shows

that not all core allocations are in the incentive core.

Example 4. Let ω = (1, 2, 3) be the vector of initial endowments of the agents N =

{1, 2, 3} and

f(x) =



x 0 ≤ x ≤ 3,

2x 3 < x ≤ 4,

3x 4 < x ≤ 6,

4x 6 < x

be the co-investment function. The output of coalitions are

17
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10

x3 = 15 (1, 2, 15)

(13, 2, 3) (1, 14, 3)

C(N,ω, f)

P (N,ω, f)

Figure 1: The core and the proportional allocation.

f(ω1) = 1, f(ω1 + ω2) = 3,

f(ω2) = 2, f(ω1 + ω3) = 8, f(ω1 + ω2 + ω3) = 18.

f(ω3) = 3, f(ω2 + ω3) = 15,

The core of this game can be described as

C(N,ω, f) =

(x1, x2, x3) ∈ R3

∣∣∣∣∣∣ x1 + x2 + x3 = 18, 1 ≤ x1 ≤ 3,

2 ≤ x2 ≤ 10 and 3 ≤ x3 ≤ 15

 ,

and the proportional allocation is P (N,ω, f) = (3, 6, 9). In Figure 1, we depict the

core ( ) and the proportional allocation ( ) . It is interesting to point out that the

proportional allocation assigns the first agent the maximum payoff within the core of

the game; graphically, the proportional allocation is located on the left border of the core

where agent 1 receives the largest possible reward within the core. This example shows

one of the potential drawbacks of the proportional solution.

Now we claim that the incentive core is given by

18



IC(N,ω, f) = {x ∈ C(N,ω, f) | x1 ≤ 4, x2 ≤ 8, x3 ≤ 12} .

To see this, let (x1, x2, x3) ∈ C(N,ω, f) be a core allocation such that x1 ≤ 4,

x2 ≤ 8 and x3 ≤ 12 and take ω′ ∈ R3
++, ω′ ≥ ω = (1, 2, 3) and ω′ 6= ω. We can describe

ω′ = (1 + ε1, 2 + ε2, 3 + ε3) where ε1, ε2, ε3 ≥ 0 and ε1 + ε2 + ε3 > 0.

Since ω′1 + ω′2 + ω′3 = 6 + ε, where ε = ε1 + ε2 + ε3 > 0, we have f(ω′(N)) =

4 · ω′(N) = 24 + 4ε.

Now take the proportional allocation w.r.t. ω′, that is, P (N,ω′, f) = (4 + 4ε1, 8 +

4ε2, 12 + 4ε3). As the allocation x = (x1, x2, x3) satisfies x1 ≤ 4, x2 ≤ 8 and x3 ≤ 12 it

follows

x1 ≤ P1(N,ω
′, f),

x2 ≤ P2(N,ω
′, f),

x3 ≤ P3(N,ω
′, f).

Moreover, for any i = 1, 2, 3, if εi > 0 we also have xi < Pi(N,ω
′, f) and P (N,ω′, f) ∈

C(N,ω′, f) which implies (x1, x2, x3) ∈ IC(N,ω, f).

To justify the other inclusion, let x = (x1, x2, x3) ∈ IC(N,ω, f). We just take ω′ =

(1, 6, 6) that satisfies ω′ ≥ ω and ω′ 6= ω. Therefore as C(N,ω′, f) = {P (N,ω′, f)} =

{(4, 24, 24)}, we obtain x1 ≤ 4. Repeating the same argument but taking ω′′ = (5, 2, 5)

and ω′′′ = (4, 4, 3) we deduce x2 ≤ 8 and x3 ≤ 12, respectively.

In Figure 2, you can check that the incentive core it is larger than the proportional

allocation, but strictly smaller than the core. Indeed, it is the convex hull of its four

extreme points, A = (3, 3, 12), B = (1, 5, 12), C = (1, 8, 9) and D = (3, 8, 7). In this

numerical example, and in order to solve the drawbacks of the proportional allocation,

it seems appropriate to take the average of these four extreme points I = 1
4
(A + B +

C +D) = (2, 6, 10) obtaining a central element within the incentive core.

19



x
1
=

4

x 2
=

8

x3 = 12

x
1
=

1

x 2
=

2

x3 = 3

x
1
=

3

x 2
=

10

x3 = 15 (1, 2, 15)

(13, 2, 3) (1, 14, 3)

A B

C

D

C(N,ω, f)

IC(N,ω, f)

P (N,ω, f)

Figure 2: The incentive core

Now we characterize a larger subclass of co-investment problems where the incentive

core coincides with the core. This means that any core allocation can be adapted

monotonically as a reaction to any increasing of the resources invested.

Theorem 2. Let (N,ω, f) be a co-investment problem with |N | ≥ 2. Then, the follow-

ing statements are equivalent:

1. f is ultramodular8 on R+, i.e. for all 0 < x < y and z > 0,

f(y)− f(x) ≤ f(y + z)− f(x+ z). (8)

2. The incentive core coincides with the core, i.e.

IC(N,ω, f) = C(N,ω, f), for any ω ∈ RN
++.

8See Marinacci and Montrucchio, 2005. Convex functions from R+ to R with f(0) = 0 and f(x) > 0,

for all x > 0, satisfy (1) and (8).
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Proof 1. → 2.) Let (N,ω, f) be a co-investment problem and take a coalition S ⊆ N ,

S 6= ∅. Let us consider ω′ ∈ RN such that ω′i > ωi for all i ∈ S and ω′i = ωi, for all

i ∈ N \ S, and x ∈ C(N,ω, f).

We must first prove that item 2 of Theorem 1 holds, for any x ∈ C(N,ω, f). To

this aim we consider three cases depending on an arbitrary coalition ∅ 6= R ⊆ N :

(a) If R ⊆ N \S, let us suppose to the contrary that x(R) > f(ω′(N))−f(ω′(N \R)).

Then

x(R) > f(ω′(N))− f(ω′(N \R))

≥ f(ω(N))− f(ω(N \R)),

where the second inequality holds since R ⊆ N \S and taking in (8) y = ω(N) >

x = ω(N \ R) > 0 and z = ω′(S) − ω(S) > 0. Now, taking the above inequality

into account and x ∈ C(N,ω, f) we obtain

x(R) > f(ω(N))− f(ω(N \R))

≥ x(N)− x(N \R) = x(R),

getting a contradiction. We conclude x(R) ≤ f(ω′(N))− f(ω′(N \R)).

(b) If R∩S 6= ∅ and S \R 6= ∅, let suppose x(R) ≥ f(ω′(N))− f(ω′(N \R)). Then,

x(R) ≥ f(ω′(N))− f(ω′(N \R))

≥ f(ω′(N)− (ω′(S \R)− ω(S \R)))

−f(ω′(N \R)− (ω′(S \R)− ω(S \R)))

= f(ω′(N)− (ω′(S \R)− ω(S \R)))

−f(ω(N \R))

> f(ω(N))− f(ω(N \R))

≥ x(N)− x(N \R) = x(R),
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where the second inequality comes from (8) taking y = ω′(N)− [ω′(S \R)−ω(S \

R)] > x = ω′(N \R)− [ω′(S\R)−ω(S\R)] > 0 and z = ω′(S\R)−ω(S\R)] > 0.

Moreover, the strict inequality holds since ω′(N)− (ω′(S \R)−ω(S \R)) > ω(N)

and f(ω(N))
ω(N)

> 0, and the last equality, since x ∈ C(N,ω, f). Hence, we reach a

contradiction. We conclude x(R) < f(ω′(N))− f(ω′(N \R)).

(c) If R ∩ S 6= ∅ and S \R = ∅, or equivalently S ⊆ R, then

x(R) ≤ f(ω(N))− f(ω(N \R))

< f(ω′(N))− f(ω′(N \R)),

where the first inequality comes from x ∈ C(N,ω, f) and the last one since

ω′(N) > ω(N) and ω′(N \R) = ω(N \R).

2. → 1.) Let 0 < x < y and 0 < z. Then, select an arbitrary agent k ∈ N and take

a vector ω ∈ RN
++ such that ω(N) = y, and ω(N \ {k}) = x. On the other hand, as

|N | ≥ 2, select an arbitrary agent k1 ∈ N , k1 6= k and take another vector ω′ ∈ RN
++

such that ω′j = ωj, for all j 6= k1 and ω′k1 = ωk1 + z. Let u ∈ C(N,ω, f) such that

uk = f(ω(N))− f(ω(N \ {k})) and ui = ωi · f(ω(N\{k}))ω(N\{k}) , for all i 6= k (see (2)).

By hypothesis we know IC(N,ω, f) = C(N,ω, f). Then, by Theorem 1 we know the

existence of u′ ∈ C(N,ω′, f) satisfying (i) u′k1 > uk1 and (ii) u′j ≥ uj, for all j ∈ N \{k1}.

Using these inequalities we get

f(y)− f(x) = f(ω(N))− f(ω(N \ {k})) = uk ≤ u′k

≤ f(ω′(N))− f(ω′(N \ {k}) = f(y + z)− f(x+ z),

where the second inequality comes from the fact that u′ ∈ C(N,ω′, f). hence, we

conclude f is ultramodular.

�
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There is an interesting case where the incentive core shrinks to the proportional

allocation. The condition that supports this case requires that the average worth of

the investment function
f(x)

x
remains constant beyond the level of total investment

x = ω(N).

Proposition 3. Let (N,ω, f) be a co-investment problem with |N | ≥ 2 where
f(x)

x
=

f(ω(N))

ω(N)
, for all x ≥ ω(N). Then

IC(N,ω, f) = {P (N,ω, f)}.

Proof Since P (N,ω, f) ∈ IC(N,ω, f), it only remains to prove that IC(N,ω, f) ⊆

{P (N,ω, f)}. Let x ∈ IC(N,ω, f). Then, select an arbitrary agent i ∈ N and define

ω′ ∈ RN
++ as ω′i = ω(N) and ω′j = ωj, for all j ∈ N \ {i}. By Theorem 1 part 2. we

know that, for any k ∈ N , k 6= i,

xk ≤ f(ω′(N))− f(ω′(N \ {k})) = ωk ·
f(ω(N))

ω(N)
,

where the last equality comes from
f(ω(N))

ω(N)
=
f(x)

x
, for all x ≥ ω(N). Since agent

has been selected arbitrarily we get, by effciency, x = P (N,ω, f).

�

Remark 1. Given a co-investment problem (N,ω, f), and just by looking the proof of

Proposition 3, we can realize that if, by increasing the contribution of some agents, it

turns out that the average return of the grand coalition of agents and the average return

of the coalitions of all but one agent become the same, then the incentive core reduces to

the proportional distribution, i.e. if there exists ω′ ≥ ω, ω′ 6= ω, such that
f(ω(N))

ω(N)
=

f(ω′(N))

ω′(N)
=
f(ω′(N \ {i}))
ω′(N \ {i})

, for all i ∈ N , then IC(N,ω, f) = {P (N,ω, f)}.
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6. Conclusions

The model we discuss in the paper reflects a very sensitive requirement when some

agents aim to cooperate. If we increase our contribution, if we put more effort, it is

natural to expect a larger reward. Furthermore, if we need the consent of other agents,

we must take care not to harm them. It is evident that the new and interesting positive

results we get in the paper mainly relies on the increasing average returns assumption

of the model. However, in our opinion, the revealed negative results are also surprising.

In spite of its simplicity, some interesting lines of research remains still open. The

first one is to relax the requirement on other agents: what about if we just require

other agents (the ones that do not increase the contribution) to receive a joint payoff

not smaller than the initial one. Assuming this, a second natural question is to review

whether well known solutions as the nucleolus, the per capita nucleolus and other

core selections satisfy resource-monotonicity requirements. The third one might be to

study the more complex problem of adding several interrelated co-investment problems

and the strategic analysis that arises when agents must decide where to invest their

resources. And finally, it is interesting, but not easy to deal with, the problem of

considering multi-dimensional input contributions.
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