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Abstract

Belles-Sampera et al. (2014) GlueVaR risk measures generalize the tra-
ditional quantile-based approach to risk measurement, while a subfamily of
these risk measures has been shown to satisfy the tail-subadditivity prop-
erty. In this paper we show how GlueVaR risk measures can be imple-
mented to solve problems of proportional capital allocation. In addition,
the classical capital allocation framework suggested by Dhaene et al. (2012)
is generalized to allow the application of the Value-at-Risk (VaR) measure
in combination with a stand-alone proportional allocation criterion (i.e., to
accommodate the Haircut allocation principle). Two new proportional cap-
ital allocation principles based on GlueVaR risk measures are defined. An
example based on insurance claims data is presented, in which allocation
solutions with tail-subadditive risk measures are discussed.
Keywords: subadditivity, tails, distortion risk measure, capital allocation

1 Introduction1

A risk measure provides information about the extreme, or tail, behavior of a2

random variable associated with losses. In the fields of finance and insurance3

their application determines the amount of capital to be held to guarantee a given4

level of solvency. Capital allocation problems arise when a monetary amount5

has to be distributed across different units. Typical examples of such problems6

include the allocation of a sufficient amount of capital to cover the expected costs7

of operational losses across departments, the total solvency capital requirement8
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of a number of business lines and the total bonus pool to be shared among a9

company’s employees, among others.10

Guidelines as to how capital should be shared among a firm’s units are de-11

termined in accordance with capital allocation principles, which are defined in12

terms of two components: (1) a capital allocation criterion and (2) a risk measure.13

The choice of the specific form that each component takes is essential insofar as14

different capital allocation solutions result from the combinations selected.15

The Haircut allocation principle, for instance, combines a stand-alone pro-16

portional capital allocation criterion with the classical Value-at-Risk (VaR) mea-17

sure; however, this principle was not originally included in the general theoretical18

framework provided by Dhaene et al. (2012) in which most of the capital alloca-19

tion principles used in practice are accommodated. In this article we show how20

the Haircut allocation principle also fits in this framework.21

In addition, we also examine the application of some recently introduced risk22

measures to the context of capital allocation problems. GlueVaR risk measures,23

which were initially defined by Belles-Sampera et al. (2014), can be expressed as24

a combination of VaR and Tail Value-at-Risk (TVaR) measures at different proba-25

bility levels. These authors examined the properties of these new measures in the26

tails and showed that a subfamily of the GlueVaR family of risk measures satisfies27

the tail-subadditivity property, which means that the benefits of diversification can28

be preserved, at least in adverse scenarios.29

Two new proportional capital allocation principles based on GlueVaR risk30

measures are proposed in this article. A discussion follows on how allocation31

principles based on GlueVaR measures are applied in practice and the implica-32

tions of tail-subadditivity are described.33

The article is structured as follows. The main concepts related to risk measures34

are briefly described in Section 2 and GlueVaR risk measures are introduced. Sec-35

tion 3 is devoted to the Haircut principle. In Section 4, GlueVaR risk measures36

are applied to capital allocation processes and two new proportional capital allo-37

cation principles based on GlueVaR risk measures are defined. An illustration of38

capital allocation solutions is provided in Section 5 and some concluding remarks39

are given.40
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2 Risk assessment using GlueVaR measures41

2.1 Distortion risk measures42

A risk measure ρ is a mapping from the set of random variables X to the real43

line R, X 7→ ρ (X) ∈ R. A class of risk measures extensively used in finance44

and insurance applications because of their appealing properties are the distortion45

risk measures. First introduced by Wang (Wang, 1995, 1996), a distortion risk46

measure is associated with distortion function g, where g : [0, 1] → [0, 1] is a47

function such that g (0) = 0, g (1) = 1 and g is non-decreasing.48

Consider a random variable X and its survival function SX(x) = P (X > x).49

Function ρg defined by ρg (X) =

∫ 0

−∞
[g (SX (x))− 1] dx +

∫ +∞

0

g (SX (x)) dx50

is known as a distortion risk measure where g is the associated distortion function.51

Note that the convergence of the integrals used to define ρg is not guaranteed for52

any g and any X . Lack of convergence must be interpreted in the following way:53

random variable X is too risky from the point of view of the risk assessor that54

uses ρg as his risk measurement tool.55

56

The VaR and TVaR measures can both be expressed as distortion risk mea-
sures. VaR at level α is the α-quantile of the random variable X , i.e. VaRα (X) =
inf {x | FX (x) ≥ α} = F−1X (α), where FX is the cumulative distribution func-
tion of X and α is the confidence level 0 ≤ α ≤ 1. The associated distortion
function of the VaR measure is,

ψα (u) =

{
0 if 0 ≤ u < 1− α
1 if 1− α ≤ u ≤ 1 .

TVaR at level α is defined as TVaRα (X) =
1

1− α

∫ 1

α

V aRλ (X) dλ. For57

continuous random variables, the TVaR measure is the mathematical expectation58

of losses given that these losses are greater than the associated VaR value. The59

distortion function for the TVaR is,60

γα (u) =

{ u

1− α
if 0 ≤ u < 1− α

1 if 1− α ≤ u ≤ 1 .

Distortion risk measures satisfy a set of properties including positive homo-61
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geneity, translation invariance and monotonicity1. When the associated distortion62

function is concave, the distortion risk measure is also subadditive (Denneberg,63

1994, Wang and Dhaene, 1998, Wirch and Hardy, 2002). Unlike TVaR, VaR is64

not a subadditive risk measure (see, for instance, Denuit et al., 2005).65

2.2 GlueVaR risk measures66

GlueVaR risk measures have been defined by Belles-Sampera et al. (2014) within67

the class of distortion risk measures. Given a confidence level α, α ∈ [0, 1], the68

distortion function associated with a GlueVaR risk measure is:69

κh1,h2β,α (u) =


h1

1− β
u if 0 ≤ u < 1− β

h1 +
h2 − h1
β − α

[u− (1− β)] if 1− β ≤ u < 1− α

1 if 1− α ≤ u ≤ 1,

(1)

where parameter β is an extra confidence level such that 0 ≤ α ≤ β ≤ 1 . The70

shape of κh1,h2β,α (u) is characterized by the two distorted survival probabilities h171

and h2 at levels 1 − β and 1 − α, respectively, where 0 ≤ h1 ≤ h2 ≤ 1. Belles-72

Sampera et al. (2014) showed that a GlueVaR risk measure can be expressed as a73

linear combination of standard risk measures. Figure 1 is a graphical representa-74

tion of an example of the distortion function of a GlueVaR risk measure.75

Lemma 1 Let X be a random variable. Let α and β be two probability levels76

such that 0 ≤ α ≤ β ≤ 1, and let h1 and h2 be two survival probabilities such77

that 0 ≤ h1 ≤ h2 ≤ 1, then78

GlueVaRh1,h2
β,α (X) = ω1TVaRβ (X) + ω2TVaRα (X) + ω3VaRα (X) , (2)

where ω1 = h1 −
(h2 − h1) (1− β)

β − α
, ω2 =

h2 − h1
β − α

(1− α) and ω3 = 1 − ω1 −79

ω2 = 1− h2.80

Proof 1 The proof is straightforward and has been provided by Belles-Sampera81

et al. (2014).82

1Additional properties for distortion risk measures can be found in Jiang (2008) and Balbás
et al. (2009).

4



⊕

κh1,h2β,α

u

�����������������

oooooooooooooooooo

1−β 1−α 1

h1

h2

1

Figure 1: An example of GlueVar distortion function

As a consequence of Lemma 1, GlueVaR risk measures satisfy the subaddi-83

tivity property if the weight associated with the VaR measure is null. Belles-84

Sampera et al. (2014) define the concept of tail-subadditivity. The idea is that85

the risk of a sum is smaller than or equal to the sum of risks only when focus-86

ing on the extreme region. Given a confidence level α, the tail region of the87

random variable Z is defined as Qα,Z := {ω | Z (ω) > sα (Z)} where sα (Z)88

is the α-quantile sα (Z) = inf {z | SZ(z) ≤ 1− α}. Let X, Y be two risks de-89

fined on the same probability space. The common tail for both risks is defined90

as Qα,X,Y := Qα,X ∩ Qα,Y ∩ Qα,X+Y . This common tail is a key element to91

better understand the scope of the α tail-subadditivity, because it is the subset of92

the probability space where the subadditivity of the risk measure can be assured.93

Regarding the illustration provided in section 5, this is the common 5%−right tail94

referred to in Table 1.Belles-Sampera et al. (2014) show that a GlueVaR risk mea-95

sure is tail-subadditive if its associated with a distortion function that is concave96

in [0, 1− α).97

98
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3 Risk capital allocation following the Haircut prin-99

ciple100

An extensive literature can be found discussing solutions to capital allocation101

problems (see, among others. Denault, 2001, Kalkbrener, 2005, Tsanakas, 2009,102

Buch et al., 2011, van Gulick et al., 2012). Some recent literature focuses on103

specific probability distributions of losses (Cossette et al., 2012, 2013), risk de-104

pendence structures (Cai and Wei, 2014), asymptotics of capital allocations based105

on commonly used risk measures (Asimit et al., 2011) or modifications of the op-106

timization function to overcome limitations of allocations based on minimizing107

the loss function (Xu and Mao, 2013, Xu and Hu, 2012).108

In this section we consider the framework suggested by Dhaene et al. (2012).109

This is a unifying framework in which a capital allocation problem is represented110

by means of three elements: a non-negative function (usually a norm), a set of111

weights, and a set of auxiliary random variables. However, the Haircut alloca-112

tion principle could not be fitted into this framework, despite it being the most113

commonly used allocation criterion in practice (thanks to its simplicity).114

Here, we propose a slight modification of the framework forwarded by Dhaene115

et al. (2012) by relaxing some of the conditions so as to include the Haircut capital116

allocation principle.117

Assume that a capital K > 0 has to be allocated across n business units de-118

noted by i = 1, ..., n. Following Dhaene et al. (2012), any capital allocation119

problem can be described as the optimization problem given by120

min
K1,K2,...,Kn

n∑
j=1

vjE
[
ζjD

(
Xj −Kj

vj

)]
s.t.

n∑
j=1

Kj = K, (3)

with the following characterizing elements:121

(a) a function D : R→ R+;122

(b) a set of positive weights vi, i = 1, ..., n, such that
∑n

i=1 vi = 1; and123

(c) a set of random variables ζi, i = 1, ..., n, with E [ζi] < +∞.124

Unlike the original framework provided by Dhaene et al. (2012)), a distinction125

is made in (c) so that each ζi is now no longer forced to be positive with each E [ζi]126

equal to 1. Following this modification, the Haircut capital allocation solution can127

be obtained from the minimization problem (3). If a capital K > 0 has to be128
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allocated across n business units, the Haircut allocation principle states that the129

capital Ki to be assigned to each business unit must be130

Ki = K
F−1Xi

(α)
n∑
j=1

F−1Xj
(α)

∀i = 1, ..., n, (4)

where Xi is the random loss linked to the ith-business unit, F−1Xi
is the inverse of131

the cumulative distribution function of Xi and α ∈ (0, 1) is a given confidence132

level.133

Let us consider di = min
{
d ≥ 1 | 0 < |Md [Xi] | < +∞

}
for all i = 1, ..., n,134

where Md [Xi] = E
[
Xd
i

]
is the moment of order d > 0 of random variable Xi.135

Note that di ≥ 1 for each i to face a feasible capital allocation problem. In other136

words, if a business unit presents a random loss with no finite moments, then the137

risk taken by that business unit is not insurable.138

The approach for fitting the Haircut allocation principle in the framework139

linked to the optimization problem (3) can be summarized as follows: if a con-140

stant ri must be expressed as ri = E [ζiXi], then using ζi =
(
Xdi−1
i /Mdi [Xi]

)
ri141

the solution is reached because E [ζiXi] = E
[(
Xdi
i /M

di [Xi]
)]
ri = ri. Although142

an elegant approach is provided, the interpretation of the transformation made by143

ζi on Xi is not trivial. We recommend to follow this strategy when there is none144

available alternative involving an interpretable ζi.145

146

Proposition 1 Let us consider a confidence level α ∈ (0, 1). Then the three char-147

acterizing elements required to represent the Haircut allocation principle in the148

general framework defined by 3 are:149

(a) D(x) = x2,150

(b) vi =
E [ζiXi]
n∑
j=1

E [ζjXj]

, i = 1, ..., n; and151

(c) ζi =
Xdi−1
i

Mdi [Xi]
F−1Xi

(α), i = 1, ..., n.152
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Proof of Proposition 1. In this setting it is straightforward to show that the so-153

lution {K1, K2, ..., Kn} to the minimization problem (3) is the Haircut allocation154

solution expressed by (4). Dhaene et al. (2012) show that, if function D is fixed155

to be the Euclidean norm (D(x) = x2), then any solution to (3) can be written as156

Ki = E [ζiXi] + vi

(
K −

n∑
j=1

E [ζjXj]

)
, for all i = 1, ..., n. (5)

In this setting, vi = E [ζiXi] /
∑n

j=1 E [ζjXj] for each i, so

Ki = E [ζiXi] +K
E [ζiXi]
n∑
j=1

E [ζjXj]

− E [ζiXi] = K
E [ζiXi]
n∑
j=1

E [ζjXj]

.

And, finally, for all i it is true that E [ζiXi] = F−1Xi
(α) because of (c). Therefore,

each Ki in the solution {K1, K2, ..., Kn} is given by

Ki = K
F−1Xi

(α)
n∑
j=1

F−1Xj
(α)

.�

Some particular comments on vi weights and ζi auxiliary random variables157

are here exposed. These comments are related to expression (5), the general so-158

lution of the optimization problem (3) when the Euclidean norm is used as D159

function in the reference framework. Capital allocation principles driven by (5)160

can be thought of as two step allocation procedures: in a first step, a particular161

amount (ki = E [ζiXi]) is allocated to each business unit and, as the sum of all162

these amounts should not add up to K (i.e.,
∑n

j=1 kj 6= K), in the second step the163

difference d = K−
∑n

j=1 kj is allocated to the business units considering weights164

vi. From this perspective, ki capitals are expected values of Xi losses restricted165

to particular events of interest and, therefore, ζi auxiliary random variables are166

used to select those events of interest for each business unit. On the other hand,167

vi weights are related to the second step of the procedure, indicating how the dif-168

ference d between K and
∑n

j=1 kj must be shared among business units. For a169

deeper interpretation of vi weights and ζi auxiliary random variables in more gen-170

eral cases, the interested reader is referred to Dhaene et al. (2012).171

172
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4 Proportional risk capital allocation principles us-173

ing GlueVaR174

Most of the proportional allocation principles found in the literature can be de-175

scribed in the framework suggested by Dhaene et al. (2012), where the character-176

istic elements are the Euclidean norm, weights vi = E [ζiXi] /

(
n∑
j=1

E [ζjXj]

)
,177

and a set of appropriate ζi, for all i = 1, ..., n. Following the notation used by178

these authors, we deal with business unit driven proportional allocation principles179

when ζi depends on Xi. If ζi depends on S =
∑n

i=1Xi then we have aggre-180

gate portfolio driven proportional allocation principles. In the former case, the181

marginal risk contributions of business units to the overall risk of the portfolio are182

not taken into account; in the latter, they are.183

Here, two new proportional capital allocation principles are proposed using184

GlueVaR risk measures. Both principles share the characterizing elementsD(x) =185

x2 and vi = E [ζiXi] /

(
n∑
j=1

E [ζjXj]

)
, for all i = 1, ..., n. They only differ in186

the set of random variables ζi, i = 1, ..., n, which we present below for the case187

of continuous random variables Xi.188

189

4.1 Business unit driven proportional allocation principles us-190

ing GlueVaR191

Given two confidence levels α and β in (0, 1), α ≤ β, and two distorted survival192

probabilities h1 and h2, if ζ i is fixed as193

ζi = ω1

1
[
Xi ≥ F−1Xi

(β)
]

1− β
+ ω2

1
[
Xi ≥ F−1Xi

(α)
]

1− α

+ω3
Xdi−1
i

Mdi [Xi]
F−1Xi

(α) , for all i = 1, ..., n,

(6)

then the business unit driven proportional allocation principle using GlueVaRh1,h2
β,α

can be represented in the modified capital allocation framework. Components of
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the solution {K1, K2, ..., Kn} are expressed as

Ki = K
GlueVaRh1,h2

β,α (Xi)
n∑
j=1

GlueVaRh1,h2
β,α (Xj)

, for all i = 1, ..., n.

Note that two different approaches are used to define random variables ζi for194

this principle. In the case of the TVaRα (Xi) for a continuous random variable195

Xi, an interpretable ζi is available and used, ζi =
1
[
Xi ≥ F−1Xi

(α)
]

1− α
. On the196

other side, for VaRα (Xi) it is difficult to find random variables different than197

ζi =
(
Xdi−1
i /Mdi [Xi]

)
F−1Xi

(α) with an easier interpretation of the transforma-198

tion made by ζi on Xi.199

200

4.2 Aggregate portfolio driven proportional allocation princi-201

ples using GlueVaR202

Similarly, if there exists a confidence level α∗ ∈ (0, 1) such that F−1S (α) =203 ∑n
j=1 F

−1
Xj

(α∗), the aggregate portfolio driven proportional allocation principle204

using GlueVaRh1,h2
β,α can be fitted to the modified capital allocation framework. In205

this case, ζ i has to be equal to206

ζi = ω1

1
[
S ≥ F−1S (β)

]
1− β

+ ω2

1
[
S ≥ F−1S (α)

]
1− α

+ω3
Xdi−1
i

Mdi [Xi]
F−1Xi

(α∗) , for all i = 1, ..., n.

(7)

Each component of the solution {K1, K2, ..., Kn} is then obtained as

Ki = K
ω1E

[
Xi | S ≥ F−1S (β)

]
+ ω2E

[
Xi | S ≥ F−1S (α)

]
+ ω3F

−1
Xi

(α∗)

GlueVaRh1,h2
β,α (S)

.

Alternatively, another approach can be considered. There exists a set of confi-207

dence levels αj ∈ (0, 1) for all j = 1, ..., n such that F−1S (α) =
∑n

j=1 F
−1
Xj

(αj).208

Therefore, the aggregate portfolio driven proportional allocation principle using209

GlueVaRh1,h2
β,α can also be fitted to the modified capital allocation framework. In210

this case, ζ i has to be equal to211
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ζi = ω1

1
[
S ≥ F−1S (β)

]
1− β

+ ω2

1
[
S ≥ F−1S (α)

]
1− α

+ω3
Xdi−1
i

Mdi [Xi]
F−1Xi

(αi) , for all i = 1, ..., n.

(8)

Each component of the solution {K1, K2, ..., Kn} is then obtained as

Ki = K
ω1E

[
Xi | S ≥ F−1S (β)

]
+ ω2E

[
Xi | S ≥ F−1S (α)

]
+ ω3F

−1
Xi

(αi)

GlueVaRh1,h2
β,α (S)

.

5 Example of insurance risk capital allocation using212

GlueVaR213

An insurance database of claim costs is used to illustrate the adoption of GlueVaR214

measures in the context of risk capital allocation applications and to discuss its215

practical implications. Data were provided by a major Spanish motor insurer and216

have been previously analyzed in Bolancé et al. (2008), Guillén et al. (2011) and217

Belles-Sampera et al. (2013). The sample consists of n = 518 observations of218

the cost of individual claims involving property damages (X1), medical expenses219

(X2) and the sum of those costs (X1 +X2). Amounts are expressed in thousands220

of euros.221

Table 1 presents the risk measures when considering the empirical distribution.222

Risk measure values for X1 +X2 under the most frequently used parametric dis-223

tributions can be found in Belles-Sampera et al. (2014). Three GlueVaR measures224

are shown in Table 1, corresponding to different risk attitudes. GlueVaR11/30,2/3
99.5%,95%225

reflects a balanced attitude, weighting TVaR99.5%, TVaR95% and VaR95% equally.226

GlueVaR0,1
99.5%,95% corresponds to a scenario in which a zero weight is allocated to227

VaR95%, the TVaR95% is overweighted and the lowest feasible weight is allocated228

to TVaR99.5%. Finally, GlueVaR1/20,1/8
99.5%,95% reflects a more conservative attitude than229

that represented by using VaR95% on its own. Table 1 is divided into two blocks.230

In the first, risk was calculated for the whole data set and in the second, contribu-231

tions to the risk shown in the first block coming only from the 5%-common tail232

were computed. Recall the definition of the α-common tail provided in section233

2.2: thus, in this second block, only the observations that lie simultaneously to234

the right of the 95% quantile of X1, X2 and X1 + X2 were considered. The last235

column presents the concentration index, which is the ratio of the risk of X1+X2236
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divided by the sum of the risk of X1 plus the risk of X2. A concentration index237

smaller than one indicates subadditivity and, hence, a diversification effect.238

Table 1: Risk assessment of claim costs using GlueVaR risk measures

X1 X2 X1 +X2 Difference(∗) Concentration
index

(a) (b) (c) (a)+(b)-(c) (c)/((a)+(b))
Whole domain
VaR95% 38.8 6.4 47.6 -2.4 1.05
TVaR95% 112.5 18.4 125.5 5.4 0.96
TVaR99.5% 440.0 54.2 479.0 15.2 0.97
GlueVaR11/30,2/3

99.5%,95% 197.1 26.3 217.4 6.0 0.97
GlueVaR0,1

99.5%,95% 76.1 14.4 86.2 4.3 0.95
GlueVaR1/20,2/8

99.5%,95% 61.7 9.4 72.1 -1.0 1.01

Common 5%-right tail
VaR95% 0.0 0.0 0.0 0.0 –
TVaR95% 75.3 12.5 76.8 11.0 0.88
TVaR99.5% 411.3 46.7 426.7 31.3 0.93
GlueVaR11/30,2/3

99.5%,95% 162.2 19.7 167.8 14.1 0.92
GlueVaR0,1

99.5%,95% 37.9 8.7 37.9 8.7 0.81
GlueVaR1/20,2/8

99.5%,95% 23.4 3.0 24.2 2.2 0.92
(∗) Benefit of diversification.

In this example, VaR95% and one of the GlueVaR measures are not subadditive239

in the whole domain, because their associated distortion functions are not concave240

in the whole [0, 1] interval. However, GlueVaR11/30,2/3
99.5%,95%, GlueVaR0,1

99.5%,95% and241

GlueVaR1/20,1/8
99.5%,95% satisfy tail-subadditivity at confidence level α = 95%. Note242

that the concentration indexes smaller than one reveal that all the measures are243

subadditive in the tail.244

We next illustrate a capital allocation application where total capital has to245

be allocated between the two units of risk, X1 and X2. Table 2 shows particular246

allocation solutions for two proportional risk capital allocation principles.247
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A similar behavior is observed for the three GlueVaR risk measures. The capi-248

tal is allocated primarily to riskX1 regardless of the allocation criterion. Note that249

the percentages of capital allocated to X1 are higher when the aggregate portfolio250

driven allocation criterion is used and a confidence level α∗ = 95.37% is set such251

that F−1S (95%) = F−1X1
(95.37%) + F−1X2

(95.37%). This is an expected result,252

because the right tail of X1is fatter than that of X2.253

Let us focus on capital allocation solutions involving the aggregate portfolio254

driven criterion in which confidence levels αj , j = 1, 2 are not forced to be equal255

across the risk units. A notable fall in the risk allocated to X1 is observed if an ag-256

gregate portfolio driven criterion with no constant level α∗ and GlueVaR1/20,2/8
99.5%,95%257

is chosen.258

This result is obtained because the impact on the quantile of X1 is the oppo-259

site of that on X2 when αj , j = 1, 2, are estimated as F−1S (95%) = F−1X1
(α1) +260

F−1X2
(α2), where α1 = 94.78% and α2 = 97.49%. This particular risk mea-261

sure is not subadditive in the whole domain and is tail-subadditive for these data.262

In fact, the associated quantiles for individual variables are VaR94.78%(X1) and263

VaR97.49%(X2), so the risk contribution of X1 is underweighted compared to the264

risk of X2.265

6 Conclusions266

Managers face capital allocation problems in multiple scenarios (e.g., when dis-267

tributing total costs, aggregating reserves or assigning bonuses). Here, we have268

developed two new proportional capital allocation principles based on the Glue-269

VaR risk measures introduced by Belles-Sampera et al. (2014). We showed that270

these two capital allocation principles may be accommodated within the capi-271

tal allocation framework suggested by Dhaene et al. (2012) and, moreover, this272

framework is generalized to include the Haircut allocation principle.273

The illustration we provide is based on real insurance claims data. The ex-274

ample shows that GlueVaR risk measures can be employed for capital allocation275

applications using the two proportional capital allocation principles proposed in276

Section 4. No major differences are found in the capital allocation solutions, ex-277

cept for one GlueVaR risk measure that is subadditive in the tail, though not when278

the whole domain is considered and varying quantile levels are allowed for each279

risk source. A certain degree of caution is therefore recommended when the ag-280

gregate portfolio driven criterion involving different α-quantiles is used, given that281

the results seem to be sensitive to the impact of the quantile level on individual282
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Table 2: Proportional capital allocation solutions using GlueVaR for the claims
cost data

Proportion allo-
cated to X1

Proportion allo-
cated to X2

Business unit driven
GlueVaR11/30,2/3

99.5%,95% 88.21% 11.79%
GlueVaR0,1

99.5%,95% 84.07% 15.93%
GlueVaR1/20,1/8

99.5%,95% 86.79% 13.21%

Aggregate portfolio driven with constant(a) α∗

GlueVaR11/30,2/3
99.5%,95%

(a) 90.75% 9.25%
GlueVaR0,1

99.5%,95%
(a) 87.83% 12.17%

GlueVaR1/20,1/8
99.5%,95%

(a) 88.06% 11.94%

Aggregate portfolio driven with non constant(b) αj
GlueVaR11/30,2/3

99.5%,95%
(b) 89.93% 10.07%

GlueVaR0,1
99.5%,95%

(b) 87.83% 12.17%
GlueVaR1/20,1/8

99.5%,95%
(b) 81.55% 18.45%

(a) A confidence level α∗ such that F−1
S (95%) = F−1

X1
(α∗)+F−1

X2
(α∗). In this case

α∗ = 95.37%.
(b) Confidence levels αj ∈ (0, 1) are selected to satisfy F−1

S (95%) = F−1
X1

(α1) +

F−1
X2

(α2). In this case α1 = 94.78% and α2 = 97.49%.
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risk sources.283

Acknowledgment284

The authors thank the Spanish Ministry of Science for support ECO2012-35584.285

Montserrat Guillén thanks ICREA Academia. The authors acknowledge the valu-286

able comments and suggestions from the referees and the managing editor and,287

specially, the TEX code provided by one of the referees to draw Figure 1.288

References289

Asimit, A., Furman, E., Tang, Q., and Vernic, R. (2011). Asymptotics for risk cap-290

ital allocations based on Conditional Tail Expectation. Insurance: Mathematics291

and Economics, (49):310–324.292

Balbás, A., Garrido, J., and Mayoral, S. (2009). Properties of distortion risk293

measures. Methodology and Computing in Applied Probability, 11(3, SI):385–294

399.295

Belles-Sampera, J., Guillén, M., and Santolino, M. (2013). The use of flexible296

quantile-based measures in risk assessment. IREA Working Papers 2013, Uni-297

versity of Barcelona, Research Institute of Applied Economics.298

Belles-Sampera, J., Guillén, M., and Santolino, M. (2014). Beyond Value-at-Risk:299

GlueVaR distortion risk measures. Risk Analysis, 34(1):121–134.300
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