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We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of
topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction
of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-
time experiments with simulations, we prove that these defects behave like emergent topological
monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a
completely resettable “NOR” gate, which provides guidelines for fabrication of nanoscale logic devices
based on the motion of topological magnetic monopoles.
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Geometric frustration is a complex phenomenon which
encompasses a broad range of systems, from magnetic
materials [1], to ferroelectrics [2], trapped ions [3],
confined microgel particles [4], and folding proteins [5].
It emerges when the spatial arrangement of the system
elements cannot simultaneously minimize all interaction
energies, and leads to exotic phases of matter with a
low-temperature degenerate ground state, such as spin ice
[6–8]. Artificial spin ice systems (ASI) are lattices of
interacting nanoscale ferromagnetic islands, recently intro-
duced as a versatile model to investigate geometrically
frustrated states [9,10], including the role of disorder
[11,12], thermalization [13–15], and the excitation dynam-
ics [16–20]. In opposition to bulk spin ice such as
pyrochlore compounds, ASI allow us to directly visualize
the spin textures and to tailor the spatial arrangement of the
system elements.
An intriguing aspect in ASI, which is attracting much

theoretical interest, is the dynamics of defects [21–28]. The
interactions between pairs of defects is one of the distinc-
tive features between three dimensional (3D) and two
dimensional (2D) spin ice. In a 3D pyrochlore compound,
the spins are located on a lattice of corner-sharing tetra-
hedra, and can point either towards the tetrahedra center
(spin in), or away from it (spin out). Thus the ground state
(GS) follows the “ice rules,” with two spins coming in and
two going out of each vertex in order to decrease the vertex
energy. At finite temperature, defects that behave like
“magnetic monopoles” [29,30] can emerge when a spin
flips, producing a local increase of the magnetic energy. A
way to overcome the system complexity is to use the
“dumbbell”model [31], which only considers the magnetic
charge distribution at the vertices of the lattice. Within this
formalism, it was shown that in 3D spin ice, a pair of
defects connected by strings of flipped spins only interact

through a magnetic Coulomb law at low temperature. In
contrast, numerical simulations show that for a 2D square
ASI, i.e., a projection of the 3D ice system on a plane, such
a string requires an additional energetic term in the form of
a line tension [21]. The reason is that, while in a 3D system
all spin configurations that satisfy the ice rules have
equal energy, in the 2D square ASI the distance at a vertex
between opposing spins is greater than the distance between
adjacent spins. This results in a lift of the degeneracy of
the ground state, which is now represented by a twofold
degenerate antiferromagnetic order.
String tension and the Coulombic interactions in ASI

have been calculated by Monte Carlo simulations
[22,23,27]; however, direct experimental measurements
remain elusive. The difficulty of preparing the system in
the GS and the extremely fast spin dynamics in nanoscale
ASI makes real-time observation challenging, suggesting
the use of alternative systems. Here we overcome these
limitations by realizing an artificial colloidal spin ice
system, a microscale soft matter analog of a frustrated
nanoscale ASI. In this system we investigate the real-time
dynamics of monopolelike defects via experiments and
numerical simulations, and directly measure the line
tension and Coulombic contributions. Further, we demon-
strate defect manipulation via external field, and realize a
logic operation based on magnetic current.
Our experimental system is inspired by previous theo-

retical works on electrostatically interacting colloids in
bistable optical traps [32,33]. The schematic in Fig. 1(a)
and the experimental realization in Fig. 1(b) illustrate the
main idea. By soft lithography, we realize a square lattice of
bistable topographic traps with lattice constant a ¼ 29 μm.
Each trap is composed of two wells of depth ∼3 μm,
connected by a small hill at the middle with average
elevation hhi ¼ 0.86 μm, Figs. 1(d)–1(f) [34]. These traps
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are designed to confine a colloidal particle in one of the
two sides, such that the particle can cross the hill
when subjected to an external force, but it cannot escape
from the bistable confinement. We induce repulsive inter-
actions by using paramagnetic colloids with diameter d ¼
10.3 μm and magnetic volume susceptibility χ ¼ 0.08
(Microparticles GmbH). Under an external magnetic field
perpendicular to the particle plane, B ¼ Bzẑ, the colloids
repel by a tunable pair potential, Um

ij ¼ ωða3=r3ijÞ, where
ω ¼ μ0m2=ð4πa3Þ is the coupling constant with m ¼
πd3χB=ð6μ0Þ the induced moment, rij ¼ jri − rjj, and ri
is the position of particle i. The gravitational potential for a
particle to jump a hill is Uhill

g ¼ 910kBT, and Uwall
g ¼

3740kBT to leave the bistable trap. Here kB is the
Boltzmann constant, T ¼ 293 K, and we apply the external
field such that Uhill

g < Um < Uout
g [37].

Once filled with one particle per double well, one can
assign a vector (analogous to a spin) to each particle, such
that it points from the free well to the well occupied by the
particle. As shown in Fig. 1(c), it is possible to construct a
set of ice rules for the colloidal artificial ice similar to the
nanoscale ASI [32,38]. Vertices with three (SV) or four
(SVI) colloids in are energetically unfavorable, and they are

topologically connected with low energy vertices having
three (SII) or four (SI) colloids out. Thus, the GS is
composed of SIII vertices [35], while the metastable biased
state has high energy SIV vertices. Both configurations
satisfy the ice rules. According to the dumbbell model [31],
we can associate to each spin a “magnetic charge,” which is
positive (negative) for spin in (out). The total charge at each
vertex i is given by the sum over all neighboring spins
q ¼ P

iqi, and both the GS and the biased state correspond
to q ¼ 0, while all other vertices have a net charge.
We start by analyzing the contraction of a pair of

q ¼ �2 (SII and SV) charged defects connected by a line
of six flipped spins along the diagonal in the GS, Figs. 1(b)
and 2(a) [39]. After preparing the system with the optical
tweezers, we switch the field on and measure the relaxation
toward equilibrium. As shown in Fig. 2(a) and VideoS1 in
Ref. [34], both defects approach via a stepwise flipping of
the colloids position and the system recovers the GS.
Theoretical work [22] based on the dumbbell model [31]
predicts the interaction potential between the two defects in
the 2D ASI as VðlÞ ¼ −Q=lþ κlþ c. Here, Q is the
topological Coulombic charge, κ the line tension, and c
a constant associated with the creation of the defect pairs
[25]. We confirm the validity of this assumption in our
system, by explicitly calculating the energy cost VðlÞ ¼
EexcðlÞ − EGS of a defect line of length l in the GS, which
can be obtained by subtracting the GS energy from the
energy of the excited configuration. The magnetic energy is
given by the sum of all dipole interactions as
E ¼ P

i

P
j≠i U

m
ij. In the inset of Fig. 2(b), we show the

normalized potential VðlÞ=ω. We subtract its linear part in
order to emphasize the presence of a magnetic Coulombic
term. Since VðlÞ scales with the coupling constant, it
follows that Q; κ ∼ ω ∼H2. By fitting this potential, we
obtain the ratio Q=κ ¼ 0.0290� 0.0014a2 between the
Coulombic and line tension contribution, which is 1 order
of magnitude lower than the corresponding one found for
ASI [21].
Figure 2(b) shows experiments and simulations of the

average line length hli obtained by measuring the particle
residence time within the traps [34]. We describe the
dynamics of the defect line with an overdamped equation
of motion with a friction coefficient γ:

γ
dl
dt

¼ −
∂V
∂l ¼ −

Q
l2
− κ: ð1Þ

We assume negligible the thermal fluctuations given the
large size of the employed particles, and we justify our
choice of overdamped dynamics, as opposed to the infra-
damped dynamics in nanoscale ASI [27], by checking that
the defect motion effectively shows a velocity profile linear
with the applied force [34]. By solving Eq. (1), we fit its
solution to the experimental data in Fig. 2(b) [34]. We use
the ratio Q=κ obtained from the calculation of VðrÞ [inset

FIG. 1. (a) Schematic showing the colloidal spin ice composed
by interacting colloids in a square lattice of double wells. The
red line shows a defect line separating two q ¼ �2 defects in the
GS. (b) Microscope image of an experimental defect line in a
square lattice of lithographic double wells filled with para-
magnetic colloids. Blue arrows denote spin directions, red arrows
highlight the defect line. Scale bar is 15 μm. (c) Vertex configu-
rations for the colloidal square ice. Vertex energy increases
from left to right. (d) Optical profilometer image of the litho-
graphic square lattice. (e) Cross section of a typical double well
characterized by a central hill of height h ¼ 0.73 μm. (f) Dis-
tribution of hill height h fitted with a Gaussian function
(continuous line).
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Fig. 2(b)], and reduce to Q=γ the sole unknown parameter.
Figure 2(b) shows the results of this procedure, confirming
that the observed phenomena are well captured by Eq. (1).
In all our analysis we use γ as the scaling factor for the
topological Coulomb charge Q. However, Q may be
estimated in first approximation by considering that the
defects are composed by colloidal particles approaching at
a constant speed in a liquid medium [40]. For an applied
field of Bz ¼ 30 mT, we obtain for the colloidal spin ice
QM∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjQj=μ0

p ¼5.7�1.5×10−8m=s. To further vali-
date our analysis, we complement the experimental mea-
surements with Brownian dynamics simulation, following
the scheme described in Ref. [34]. In the simulation, we use
the same experimental parameters and disorder level, and
find again very good agreement with the measured data,
Fig. 2(b).
We can clearly visualize the effect of the magnetic

Coulombic contribution by studying defect motion in the
biased system, which can be prepared by displacing all
particles towards one of the system corners with the optical
tweezers. In this state, it is possible to generate defect lines
characterized by positive or negative line tension, or single
defects with zero Coulombic contribution that propagate

along a diagonal [41]. Of these three cases, Figs. 3(a)
and 3(b) show the first and the last one; the rest is in
Ref. [34]. The first case is shown in Fig. 3(a), where two
q ¼ �2 defects approach when an external field Bz ¼
25.7 mT is applied, leaving a series of SIII vertices behind.
This situation is similar to the defect motion in the GS, with
attractive line tension and Coulombic interaction. We also
calculate the interaction potential VðlÞ (data not shown),
obtaining an almost identical plot as the inset in Fig. 2(c). In
contrast, in Fig. 3(b) a single q ¼ −2 defect propagates
along the lattice only due to line tension, since the absence
of other charges sets the Coulombic term in Eq. (1) to 0. In
the bias state we find that the defect dynamics are much
slower than in the GS, and usually in the experiments
the particles stop propagating due to disorder (Fig. 1(f)).
We thus cannot directly measure the small Coulombic
contribution in this state; however, we can resolve it by
using simulations with the same experimental conditions
as in Figs. 3(a) and 3(b) and a much larger, disorder
free system. The results of these simulations are shown in
Fig. 3(c), where we compare the motion of single (QM ¼ 0)

FIG. 2. (a) Color map showing the net vertex charges in the
experiments for a defect line connecting two q ¼ �2 defects
under a field Bz ¼ 25.7 mT (VideoS1 in Ref. [34]). The line
consists of high energy SIV vertices with a zero charge but a net
dipole, which give raise to the additional line-tension term.
(b) Average line length hli versus time for three different
magnetic fields. Closed (empty) symbols denote experiments
(numerical simulation), continuous lines are fit from Eq. (1) in the
text. Inset: normalized interaction potential VðlÞ=ω between two
topological defects minus its linear contribution (αlþ β). Red
line is a fit using the potential described in the text.

FIG. 3. (a),(b) Experimental vertex charges for a closing line
(a) and for a single q ¼ −2 propagating defect (b) in the biased
state. Black (blue) arrows are spins flipped by the motion of the
original (spontaneously emerged) defects. Corresponding movies
(VideoS2, VideoS3) are in Ref. [34]. (c) Numerical simulation of
case (a) (with one end fixed) and (b) showing the evolution of the
line length hli for an applied field Bz ¼ 18.8 mT. Continuous
lines are fits from Eq. (1). Bottom inset: difference between the
two curves in the main panel (empty squares) versus line length
plotted with Eq. (1) with κ ¼ 0 (continuous line).
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and double defects (QM > 0). Both have the same line-
tension contribution and therefore move at an identical
speed for large distances. However, the closing line speeds
up when the two defects are approaching at the end of the
process due to sole Coulombic interaction. This time
difference is shown in the inset of Fig. 3(c), and can be
well fitted by Eq. (1) with κ ¼ 0 (continuous line), resulting
in a similar value for the topological Coulomb charge as in
the GS.
A major driving interest in studying defect dynamics in

ASI lays on the possibility of realizing dissipation-free
“magnetronic” circuitry [10,42]. We demonstrate that the
colloidal spin ice system can be used to perform logic
operations based on the motion of topological monopole
defects. Figure 4 shows the realization, by numerical
simulation, of a NOR gate, which is a functionally complete
port capable of generating all logical functions [43]. The
gate is completely resettable, since it requires only external
fields or gradients to work, and not individual manipulation
via laser tweezers. It is realized in a biased system, which
could be formed and reset by an external magnetic force
F ∼ ðB ·∇BÞ applied along one diagonal direction,
F1 ¼ F1ðŷ − x̂Þ. In the preparation step [Fig. 4(a)] the
system is biased by a force F1 ¼ 2.8 pN, which displaces
all particles except for a pinned one which represents a
fixed spin, [top left corner in Fig. 4(a)]. We use a second
type of paramagnetic colloids with a higher magnetic
susceptibility, χ2 and ratio χ2=χ1 ¼ 1.15, a prerequisite
which forced us to restrict the realization only to the
numerical scheme. These particles are placed along two
parallel rows spaced by two lattice constants (magenta
arrows in Fig. 4). In the second preparation step [Fig. 4(b)]
these particles are selectively manipulated by a small
in-plane force F2 ¼ F2x̂, F2 ¼ 1.6 pN, while all other
particles (χ1) remain at rest. The two rows represent the
inputs of the logic gate: a 0 (1) is associated with a shifted
(unshifted) row. After preparation of the system, a Bz ¼
15 mT field perpendicular to the plane induces the defect
propagation, Figs. 4(c)–4(f). The output of the gate is
measured at the bottom left corner of the sample: it is 1 if

there is a magnetic current, 0 otherwise. Figures 4(c)–4(d)
describe the situation of the input (0,0) with output 1,
while Figs. 4(e)–4(f) have input (1,0) and output 0. In the
third step [Figs. 4(c) and 4(e)] a small locking force
F3 ¼ F3ðŷ − x̂Þ, F3 ¼ 0.7 pN is applied to hold the defect
in place while the input is prepared. Now let us consider the
case of the (1,0) input: an applied magnetic current causes
the upper first magenta line to flip back into the x < 0
direction. In Fig. 4(f), F3 is set to 0 and the defect starts
moving. When it reaches the flipped input row, the defect
changes its path, ending in a different place; thus the output
is 0. Since only (0,0) input gives a 1 output, our logic port
behaves like a NOR gate. A similar system could be
engineered in nanoscale ASI using islands of different size
or magnetic materials, which would give spins that behave
differently under an external field. In this context, a recent
work demonstrated the possibility to reorient the magneti-
zation of the nanoislands in ASI with an MFM tip [44].
In summary, we studied the defect dynamics in an

artificial colloidal spin ice in the GS and in the biased
state and directly measure their energetic contributions. Our
findings also confirm former theoretical assumptions and
clearly demonstrate that these defects behave like bound
magnetic monopoles. We finally demonstrate a resettable
functionally complete NOR gate. The possibility to control
topological monople defects in spin ice states may foster
the realization of novel memory and logic devices based on
magnetic current [42,45,46].
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