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and Institut de Ciències del Cosmos (ICCUB) Facultat de F́ısica, Universitat de Barcelona,

Diagonal 647, E-08028 Barcelona, Catalonia, Spain
bDepartment of Physics, Faculty of Science, Chulalongkorn University,

Bangkok 10330, Thailand

E-mail: cardonarotger@gmail.com, gomis@ecm.ub.edu, pons@ecm.ub.edu

Abstract: We construct the canonical action of a Carroll string doing the Carroll limit of

a canonical relativistic string. We also study the Killing symmetries of the Carroll string,

which close under an infinite dimensional algebra. The tensionless limit and the Carroll

p-brane action are also discussed.

Keywords: Bosonic Strings, Space-Time Symmetries, p-branes

ArXiv ePrint: 1605.05483

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP07(2016)050

mailto:cardonarotger@gmail.com
mailto:gomis@ecm.ub.edu
mailto:pons@ecm.ub.edu
http://arxiv.org/abs/1605.05483
http://dx.doi.org/10.1007/JHEP07(2016)050


J
H
E
P
0
7
(
2
0
1
6
)
0
5
0

Contents

1 Introduction 1

2 Canonical Carroll string action 2

2.1 Carroll symmetries, Carroll string algebra and Carroll diffeomorphism 3

2.2 Dynamics 4

3 Killing symmetries of the Carroll string 5

4 Tensionless Carroll string 6

5 Carroll p-brane action 7

6 Discussion and outlook 8

1 Introduction

The extension of the holographic ideas to non-AdS situations with applications to con-

densed matter systems has produced a renewed interest in the study non-relativistic symme-

tries1 and the use of non-relativistic gravity theories in the bulk [6] like Newton-Cartan [7]

and Horava gravities [8]. Recently these theories have been constructed from the gauging of

the Bargmann algebra [9], from Lihshitz holography [10] and from the use non-relativistic

conformal methods [11].

The study of space-time holography [12–15] has lead to reconsider the role of the BMS

group [16–18]. On the other hand it has been shown that BMS symmetry is an infinite

conformal extension of the Carroll symmetry [19, 20]. Carroll symmetry was introduced

in [21–23] as the limit of the Poincaré algebra when the velocity of light tends to zero.

There is a duality between the non-relativistic symmetry and the Carroll symmetry [24].

The strong coupling limit of gravity [25] introduced many years ago was the first

example of a dynamical system possessing Carroll symmetry. More recently it has been

constructed the action of the Carroll particle [24, 26, 27] and the Carroll superparticle [28],

both exhibiting a trivial dynamics. Notice that in these cases the massless limit can be

taken at the level of the action.

The reason for the trivial dynamics of the free particle Carroll objects is due to the fact

that the light cone in the Carroll case collapses to the time vertical axis. Carroll symmetries

appear also in warped conformal field theories [32]. The construction of a Carroll gravity

by a modified gauging of the Carroll algebra has been studied recently in [33].

1The use of non-relativistic extended objects has been also studied as a soluble sector of string

theory [1–5].
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In this note we continue the study of dynamical objects with Carroll symmetry. We

construct the action of a tension-full and a tensionless2 Carroll string by taking the Car-

rollian limits3 of the canonical action of a relativistic string. We will also construct the

action of a Carroll p-brane by the same procedure. The action for these objects can be

also constructed using the method of non-linear realizations [35, 36] applied to the Carroll

algebras; for the Carroll algebra see [37], for string Carroll algebras [26]. In either of the

two limits, the Carroll string exhibits a trivial dynamics like the Carroll particle. This

result also applies to branes. We will also study the Killing symmetries of the Carroll

string, and show that these symmetries close under an infinite dimensional algebra.

The organization of the paper is as follows, in section 2 we construct canonical Carroll

string actions (at least two types of limits form the relativistic string are available). In

section 3 we study their Killing symmetries. The tensionless limit is analyzed in section 4

and section 5 is devoted to construct a Carroll p-brane action. Finally we write some

conclusions and outlook.

2 Canonical Carroll string action

Our starting point is the canonical action of a relativistic string:

SNG =

∫
d2σ

(
p · ẋ− ẽ

2
H̃ − µ̃T̃

)
=

∫
dτdσ

(
p · ẋ− ẽ

2

(
p2 + T 2

r x
′2
)
− µ̃(p · x′)

)
, (2.1)

where H̃ = p2 + T 2
r x
′2 and T̃ = p · x′ are the diffeomorphism constraints and ẽ, µ̃ are

Lagrange multipliers. In order to obtain the Carroll action for the string we take the

‘stringy’ Carrollian limit by rescaling the longitudinal coordinates xµ (µ = 0, 1) with a

dimensionless parameter ω:

xµ =
Xµ

ω
, pµ = ωPµ. (2.2)

The action is obtained by plugging these expressions in (2.1) and taking the limit ω →∞.

Then the products p·ẋ and p·x′ remain unaffected and become P ·Ẋ and P ·X ′ respectively.

All physics in the ultra-relativistic Carrollian regime arises from the constraint proportional

to e, like in the Carroll particle [27]. We must rescale the einbein field as in the case of the

Carroll particle, ẽ = e/ω2, whereas µ̃ = µ remains the same. Rescaling the string tension

as Tr = ωT and sending ω to infinity, we obtain the action of the Carroll string

SCs =

∫
dτdσ

(
P · Ẋ − µ(P ·X ′)− e

2

(
ηµνP

µP ν + T 2X ′i
2
))

. (2.3)

where X ′i
2 = δijX

i′Xj ′, i, j = 2, . . . , D− 1. The transversality constraint does not change,

whereas the mass-shell constraint becomes (E = P 0):

Ĥ = −E2 + (P 1)2 + T 2X ′i
2
. (2.4)

Notice the absence of the transverse momenta Pi.

2The situation regarding the tensionless limit is rather different here than in the case of the non-

relativistic limit [34].
3Like in the non-relativistic case, where there is not a unique limit for extended objects [1, 3, 38], the

same is true for the Carroll limit of an extended object.
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If instead we perform on the action (2.1) the Carroll limit à la particle [27], x0 = t/ω,

p0 = −ωE, we get

S̃Cs =

∫
dτdσ

(
P · Ẋ − µ(P ·X ′)− e

2

(
−E2 + T 2X ′ı̂

2
))

, (2.5)

ı̂ = 1, . . . , D − 1, thus the mass-shell constraint is now given by H̃ = −E2 + T 2X ′ı̂
2.

A physical difference between the two Carroll strings appears when we dimensionally

reduce on S1: in one case we obtain a Carroll massless particle whereas in the other a

massive Carroll particle [19, 20, 27]. Let us mention that in the non-relativistic case,

the limits à la string or à la particle lead also to two different particle Lagrangians: the

vibrating string ((‘stringy’ NR limit) [1, 3, 4] leads to the massive non-relativistic particle

Lagrangian whereas the non-vibrating string with a fixed length (à la particle limit) [38, 39]

leads to a particle Lagrangian which is just a total derivative.

2.1 Carroll symmetries, Carroll string algebra and Carroll diffeomorphism

The canonical action (2.3) is invariant under the ‘stringy’ Carroll transformations:

δXµ = ωµνX
ν + ωµiX

i + ζµ, δX i = ωijX
j + ζi,

δPµ = ω ν
µ Pν , δPi = ωi

µPµ + ωi
jPj ,

(2.6)

where (ωµν , ω
µ
i, ω

i
j , ζ

µ, ζi) are respectively the Lorentz boosts in the two longitudinal di-

rections, the time and space Carroll boosts, the spatial rotations, longitudinal translations

and the transverse translations. These transformations can all be derived from a general in-

finitesimal Poincaré transformation, δxM = ωMNx
N+ξM and δpM = ω N

M pN , by performing

the rescaling

xµ =
Xµ

λ
, ωµi →

ωµi
λ
, ξµ =

ζµ

λ
, pµ = λPµ, (2.7)

and taking the limit λ→∞.

The algebra of these transformations closes under what we call the String Carroll

algebra

[Mij , Pk] = 2δk[jPi], [Mij ,Mkl] = 2δi[kMl]j − 2δj[kMl]i,

[K,P0] = P1, [K,P1] = P0,

[K,Ki] = Bi, [K,Bi] = Ki,

[Mij ,Kk] = 2δk[jKi], [Mij , Bk] = 2δk[jBi],

[Ki, Pj ] = −δijP0, [Bi, Pj ] = −δijP1

(2.8)

where Lie algebra generators are the longitudinal Lorentz boost K, the time Carroll boosts

Ki, the space Carroll boosts Bi, the spatial rotations Mij , and the time-space translations

P0, P1, Pi. This algebra can be obtained from the Poincaré algebra

[MAB,MCD] = 2ηA[CMD]B − 2ηB[CMD]A,

[MAB, PC ] = 2ηC[BPA], [PA, PB] = 0,
(2.9)
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by the contraction

PA → (ωP0, ωP1, Pi), Ki → ωKi, Bi → ωBi (2.10)

with the identifications M01 ≡ K, Mi0 ≡ Ki, Mi1 ≡ Bi.
The action has also the gauge invariance of diffeomorphisms. These are generated by

the first class constraints Ĥ(σ) = −E2 + (P 1)2 + T 2X ′i
2, T̂ (σ) = (P ·X ′), whose algebra is

{Ĥ(σ), Ĥ(σ′)} = 0,

{Ĥ(σ), T̂ (σ′)} = Ĥ(σ)∂σδ(σ − σ′)− Ĥ(σ′)∂σ′δ(σ − σ′),
{T̂ (σ), T̂ (σ′)} = T̂ (σ)∂σδ(σ − σ′)− T̂ (σ′)∂σ′δ(σ − σ′).

(2.11)

2.2 Dynamics

The action of the Carroll string is given by (2.3). The canonical Hamiltonian is:

HD =

∫
dσ
(
µ
(
ηµνP

µXν ′ + PiX
i′
)

+
e

2

(
ηµνP

µP ν + T 2X ′i
2
))

. (2.12)

The non-vanishing Poisson brackets are given by

{XM (σ), PN (σ′)} = ηMNδ(σ − σ′),
{XM (σ), XN (σ′)} = {PM (σ), PN (σ′)} = 0,

(2.13)

the equations of motion follow:

Ẋµ = µXµ′ + ePµ, Ṗµ = (µPµ)′,

Ẋi = µX i′, Ṗ i =
(
µP i + eT 2Xi′

)′
,

(2.14)

and the constraints

ηµνP
µXν ′ + PiX

i′ = 0, ηµνP
µP ν + T 2X ′i

2
= 0. (2.15)

As we can see the dynamics of the Carroll string is trivial. In fact considering the

analogous of the conformal gauge, e = 1, µ = 0, we have

Ẋµ = Pµ, Ṗµ = 0,

Ẋi = 0, Ṗ i = T 2
(
Xi′
)′
.

(2.16)

We see that the transverse coordinates of the bosonic string are constant, therefore the free

Carroll string does not move. Notice however that the momenta are not constant. This is a

common feature of (free) Carroll particle, Carroll string or in general, Carroll p-brane (see

section 5): in Carroll space there is no connection between spatial momenta and velocities.

If we consider Carroll strings coupled to Carroll gravity the strings will have a non-

trivial dynamics like in the case of the Carroll particle coupled to Carroll gauge fields [27].

– 4 –
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3 Killing symmetries of the Carroll string

In this section we analyze the Killing symmetries of the Carroll string. As we will see the

string action is invariant under an infinite dimensional group of transformations that in-

cludes the String Carroll transformations (2.6). It turns out that the full symmetry group

includes conformal symmetries in both the transverse and the longitudinal fields. In con-

trast to higher dimensions, the conformal algebra in two dimensions is infinite dimensional,

hence longitudinal fields will have a infinite-dimensional symmetry, a common feature in

the Carrollian context [27, 28]. This is not the case for the transversal D − 2 coordinates.

Let us consider the generator of canonical symmetry transformations

G =

∫
dσ
(
ξMPM + Λπe + γπµ

)
, (3.1)

with ξM , Λ and γ arbitrary functions on the extended configuration space, which includes

e and µ as new variables. The extended phase space includes the momenta πe, πµ, which

are the new primary constraints. Conservation of G reads:

0 = Ġ =

∫
dσ

(
ePµP ν

(
2∂(µξν) −

Λ

2e
ηµν

)
+ e

(
P iPµ − T 2Xµ′Xi′

)
∂µξi

− eT 2Xi′Xj ′
(

2∂(iξj) +
Λ

2e
δij

)
− γ

(
ηµνP

µXν ′ + PiX
i′
))

.

(3.2)

The Killing equations are:

∂µξν + ∂νξµ = λ̃ηµν , ∂µξi = 0, ∂iξj + ∂jξi = −λ̃δij , γ = 0, (3.3)

with Λ determined as Λ = eλ̃ and with the conformal factor λ̃ (notice that λ̃ = λ̃(Xi))

satisfying:

λ̃ = ∂µξ
µ = − 2

D − 2
∂iξ

i. (3.4)

The second Killing equation tells us that ξi = ξi(Xj). Notice also the sign difference

in (3.3) between the conformal Killing equation for longitudinal vectors and transversal

ones. In particular when we consider a scale transformation we have Lifshitz scaling with

z = −1: δXµ = −cXµ and δX i = cX i, where c is the infinitesimal dilatation parameter.

The equation for transverse fields is the Euclidean Conformal Killing equation. For D = 3

there is only one transversal direction and hence no restriction on ξi. For D = 4 we have the

standard two-dimensional infinite conformal symmetry for the (two) transverse variables.

For D > 4, we get

λ̃(Xi) = 2
(
2bkX

k − c
)
, (3.5)

for some constants bk and c. In this case the solution is:

ξi(Xk) = ai + ωijX
j + cX i +X2

j b
i − 2(bjX

j)Xi, (3.6)

where ai, ωij , c and bi generate space translations, rotations, space dilatations and special

conformal transformations, respectively. Notice as a feature of the rescaling ω → ∞ of
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the relativistic string to obtain the Carroll string (as done in section 2) that if we dimen-

sionally reduce the Carroll string to the Carroll particle, this reduction at the level of the

Killing symmetries does not reproduce the infinite-dimensional symmetry for transverse

fields which exists in the particle case [27].

The solution to the first equation is:

ξµ(X) =
λ̃

2
Xµ + Ωµ

ν(Xi)Xν + fµ(Xi), (3.7)

where the antisymmetric tensor Ωµν and the vector fµ have arbitrary dependences on the

transverse coordinates Xi.

In case we consider the action (2.5) for the Carroll string à la particle, the Killing

equations give the following transformations

ξ0(X) =
λ̃

2
X0 + f0(Xi), (3.8)

and the same results as before for the spatial components ξi(X), but now for i =

1, 2, . . . , D − 1.

4 Tensionless Carroll string

Like in the particle case where the massless limit can be taken straightforwardly, here we

analyze the tensionless limit,4 T → 0, of the Carroll string action (2.3). In this limit the

mass-shell becomes Ĥ0 = −(P 0)2 + (P 1)2 and the Dirac’s Hamiltonian is:

HD(T → 0) =

∫
dσ
(
µ
(
ηµνP

µXν ′ + PiX
i′
)

+
e

2
ηµνP

µP ν
)
. (4.1)

The equations of motion are:

Ẋµ = µXµ′ + ePµ, Ṗµ = (µPµ)′,

Ẋi = µX i′, Ṗ i =
(
µP i

)′
.

(4.2)

Again, the dynamics is trivial. Taking the conformal gauge we see that the string does not

move. Additionally in this case the momenta are also constant.

Let us study the Killing symmetries of this system. Considering the same generator

of symmetry transformations as before (3.1), conservation of G leads to:

0 = Ġ =

∫
dσ

(
ePµP ν

(
∂(µξν) −

Λ

2e
ηµν

)
+ eP iPµ∂µξi − γ

(
ηµνP

µXν ′ + PiX
i′
))

, (4.3)

and the Killing equations are:

∂µξν + ∂νξµ = λ̃ηµν , ∂µξi = 0, γ = 0, (4.4)

with conformal factor λ̃ = Λ/e = ∂µξ
µ. Thus we obtain the standard two dimensional con-

formal symmetry -as expected because the dimensionful parameter T has been eliminated-

where the “holomorphic” and “anti-holomorphic” functions have an arbitrary dependence

on the transverse coordinates. On the other hand, the functions ξi(X
j) are arbitrary.

4The tensionless limit of the relativisic string and branes has been widely dicussed in the literature, see

for example [29–31].
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5 Carroll p-brane action

The construction of Carroll p-branes follows the same steps of the string case. The canonical

p-brane action in D-dimensional (D > p) Minkowski space is:

Sp-brane =

∫
dp+1ξ

(
p · ẋ− s̃āHā −

ṽ

2
H
)

=

∫
dτdpσ

(
p · ẋ− s̃ā (p · ∂āx)− ṽ

2

(
p2 + T 2

p det(gāb̄)
))

,

(5.1)

where H = p2 + T 2
p det(gāb̄) and Hā = p · ∂āx are the diffeomorphism constraints and s̃ā

and ṽ are the p+ 1 Lagrange multipliers. The metric gāb̄ = ∂āx
M∂b̄x

NηMN (ā, b̄ = 1, . . . , p

is the induced metric on the worldspace. Now we consider the Carrollian p-brane limit,

xµ =
Xµ

ω
, pµ = ωPµ. (5.2)

The quantities p · ẋ and p · ∂āx do not change and become P · Ẋ and P · ∂āX respectively.

But the last constraint in (5.1) changes. The rescaling on the Lagrange multipliers s̃ā, ṽ as

well as the p-brane tension are the same as in the string case. We have: s̃ā = sā, ṽ = v/ω2

and Tp = ωT . In the limit ω →∞ we obtain (i, j = p+ 1, . . . , D − 1):

ṽ

2

(
p2 + T 2

p det(gāb̄)
)

=
v

2

(
ηµνP

µP ν + T 2 γ
)
, (5.3)

with γ = det(γāb̄) = det(∂āX
i∂b̄X

jδij). The Carroll p-brane action turns out to be:

SCp =

∫
dτdpσ

(
P · Ẋ − sā (P · ∂āX)− v

2

(
ηµνP

µP ν + T 2γ
))
. (5.4)

At this point, we do not need to do a full analysis. Notice that the behaviour of

the tension in the Carroll limit does not depend on p, the number of dimensions of the

worldspace. It is the same rescaling for the point particle (in this case T = M) [27, 28],

for the string, and so on. The substantial difference between the particle and the string

is in the rescaling of X1. If we rescale the first p spatial coordinates, we can expect that

the derived action will contain the same physics as that for the string. The results in the

section above also hold if we add p spatial extra-dimensions. This behaviour differs from

the non-relativistic case, where the rescaled p-brane tension is Tp = ω1−pT [3]. Notice

that the behaviour of the tension in the Carroll limit does not depend on p, the number of

dimensions of the worldspace. It is the same rescaling for the point particle (in this case

T = M) [27, 28], for the string, and so on.

The dynamics of the Carroll p-brane, like the Carroll particle or the Carroll string, is

also trivial. In the conformal gauge, v = 1, sā = 0, the equations of motion are

Ẋµ = Pµ, Ṗµ = 0,

Ẋi = 0, Ṗ i = ∂ā

(
v T 2γ γāb̄∂b̄X

i
)
.

(5.5)

– 7 –
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6 Discussion and outlook

We have constructed the action of tension-full and tensionless Carroll extended objects by

doing the different Carrollian limits of a relativistic string or a p-brane canonical action.

The action for the tension-full objects can be also constructed using the method of non-

linear realizations applied to the Carroll algebras, for the Carroll algebra see [37], for

string Carroll algebras [26]. The dynamics of the (p-brane) string Carroll actions are

trivial independently if one considers the Carroll limit à la particle,Levy-Leblond or the

(p-brane) ’stringy’ Carroll limit, (5.2) (2.2). The reason for the trivial dynamics for these

free Carroll dynamical objects is due to the fact that the light cone in the Carroll case

collapses to the time vertical axis. In contrast, in the non-relativistic case the string and

particle limit lead to different non-relativistic models, one being the vibrating string (with

the string NR limit) [1, 3, 4] and the other a non-vibrating string with a fixed lenght

(particle limit) [38, 39].

If we consider the coupling of the Carroll extended objects to Carroll gauge fields as it

is done for the case the particle in [27], the dynamics becomes non-trivial [40] because the

interaction with the Carroll background fields opens the light cone. Extended objects with

a Carroll supersymmetry that generalize the Carroll superparticle [28] can also be studied.
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