Validation of optical codes based on 3D nanostructures
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ABSTRACT

Image information encoding using random phase mpsiéduce speckle-like noise distributions when shenple is
propagated in the Fresnel domain. As a resultrinédion cannot be accessed by simple visual insped®hase masks
can be easily implemented in practice by attaclogltp-tape to the plain-text message. Conventi@iaphase masks
can be generalized to 3D by combining glass arfds#ifs resulting in a more complex, physical unalde function. In
this communication, we model the behavior of a 3ilage mask using a simple approach: light is prdpdgaough
glass using the angular spectrum of plane wavesealethe diffusor is described as a random phask @muad a
blurring effect on the amplitude of the propagatel/e. Using different designs for the 3D phase nmeask multiple
samples, we demonstrate that classification isiplessising the k-nearest neighbors and random t®reschine
learning algorithms.
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1. INTRODUCTION

In the last 20 years, a large number of light-basetiniques for security and encryption problemseHzeen suggested
[1-4]. Very recently, nanostructured devices hagerbproposed for producing physical unclonable tfans. Among
other techniques, the information is encoded byhgiginetal nanoparticles or thin layer structures.phactical
applications, random phase masks attached to thgeirto be secured make the information inaccessiiite the light
interacting with the sample is propagated. Thesécde display a distinctive behavior under polatidight and
consequently, the use of illuminating sources wlifferent polarizations increase the degrees adoen of the crypto-
system resulting in gadget which is more compleX difficult to attack [5-8].

3D optical random phase masks were proposed soarse ggo [9]. These ensembles are produced by carghihass
and diffuser materials. They are simple to prodand very difficult to copy. As in nanoparticle-bdsedevices, the
coded information is not accessible once the lightracting with the sample is propagated. Thedieace of the
propagated signal is usually a speckle-like nois&idution and consequently, statistical analysethe recorded light
can be performed. Note that small differences erthise pattern enable to distinguish the samedeacmessage but
attached to a different random code. For this kifidoroblems, classification methods based on machéarning
techniques can be used [10]. In this way, it issfide to discriminate among messages with the coeecoding (true
class) and counterfeit information (false class).

In this communication we present a simplified nugarmodel that approximately describes the behrasi®D optical
random phase codes. In particular, we show thabdet messages can be distinguished using machamneirlg
algorithms under certain propagation conditions.

2. ANUMERICAL MODEL FOR 3D RANDOM PHASE CODES

In this section we present a computer simulatioméalel the behavior of 3D random phase masks [@i Talculation
provides more insight on the results presentedefarence [11]. In that paper, we used 3D phase sn@slkencode
information in such a way that it cannot be reagrapropagation. Despite the speckle noise embedshales the
original data, these signals are statistically llebdeso they can be successfully classified usirechime learning
algorithms. In [11], Random Forests Classificati{d2] was used for discriminating among samples sglasusing
experimentally obtained data.

" artur.carnicer@ub.edu




In order to produce a correct model of such deyiligst propagation through a diffuser should bleetainto account.
However, the analysis of the transmitted light gfloan inhomogeneous system is very complex. Heeepnopose a
simplified model based on combining phase maskassgklides and blurring, that can be considered fast-order
approximation.

Fig. 1(a) depicts the three 3D random codes desigad as numerical tests. The image used (a QR ®dkown in

Fig. 1(b). Code 1 is generated by attaching a pbaBerandom maskg to Q,y). For convenience, the complementary

image of the QR was used. Code 2 was been simulgtedmbining random phase massand g and glass: light is

propagated through a 2 mm-wide microscope slidé witlex of refractiom=1.5195, corresponding to a BK7 glass

illuminated at1=532 nm. Code 3 is calculated in an equivalent a@ording to the corresponding diagram in Fig).1(a

According to the Fresnel Laws, the amplitude tragsian of the ensemble is
t= 4nairnBK7

(nair + nBK7)2 ,

and therefore, the transmittance for codes 2 aiglt;3-0.9575 and; =0.9168 respectively. Blurring produced by the
diffuser is simulated by convolving the modulustibé propagated beam by an NxN constant kernel.a@ain is
calculated by means of the scalar plane wave pep&strum formula [13],

E(xy.2)= FT*[ FT[E(x.y.Q]H (v 2)]

H(u,v,z)= exp(i 27”2\/ 1—/12u2—/12v2j .

where FT stands for the Fourier transform operatandv are the spatial frequenciesxf§(0) is the scalar electric field
at the reference plane,(z) is the propagated beam andip(z) is the transference function. Note that the waiveth
is Mn when the beam is propagated in a medium with ¢cBf@indexn. Table 1 displays a summary of variables and

values used in the simulation.
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Figure 1. (a) Sketch of the three 3D codes maséd imsthe simulation; (b) test image: the QR ensdte message
0034934021143.

Table 1: Propagation variables

Wavelengtti 520 nm
Size of the code 15x 15 mm
refractive indexggy 15195
Slide width 2mm
Propagated distance 250, 400 mm
Number of pixels 290 x 290 pixels
Blurring kernel 21 x 21 pixels
Camera depth 256 gray levels
Number of generated codes per class 30




Calculations are performed as follows: light progiag through one of the three encoding devices [Ka)]. Then, the

beams are propagated a distame@50 mm and the light irradiance is recorded by reeafan 8-bit camera. The
generated distributions are shown in Figs 2(a-@teNhat the irradiance displays a speckle noigeempaand the

information encoded in the QR is no accessibleimple visual inspection [see Fig2. 2(d-f)]. Figu&g-i) show the

amplitude histograms (the square root of the ieace). In order to provide enough cases, 30 diffecedes for each
class have been calculated. Note that histogramsept subtle differences that can be used to digssh among the
three classes.
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Figure 2. First row: Encoded light distributionsugh (a) Code 1, (b) Code 2, (c) Code 3. Second Poapagated light
distributions az = 250 mm (d) Code 1, (e) Code 2, (f) Code 3. Thind: Histograms of the propagated amplitudes: (g)
Code 1, (h) Code 2, (i) Code 3.

Using a different propagation distan@400 mm), a second set of calculations have beamedavut. The recorded
distributions and the corresponding histogramssamvn in Figs. 3(a-c) and 3(d-f), respectively. &titat in this case,
the profile of the histograms clearly follows a Gamprobability distribution [14-16], i.e.



n, |1 exp(=1n, (1))
° (3)
Wherel,(l)anda are the intensity data points, its average andctireesponding standard deviation respectively;

Parametenyis defined as, = ((I )/cr)2 and I'() stands for the Gamma special function.
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Figure 3. First row: Propagated light distributiars 400 mm (a) Code 1, (b) Code 2, (c) Code 3. Scow: Histograms
of the propagated amplitudes (d) Code 1, (e) Co¢® Zode 3.

3. CLASSIFICATION

Using the information provided by the histogranss possible to distinguish among the three difif¢iclasses of codes.
As explained above, 30 different codes for eachscl€ode 1, 2, and 3) have been produced. Aftgrageation, the
corresponding amplitude histograms are used to deedchine learning classification system. In thesent work two
algorithms have been considered: k-Nearest NeighfddN) with k=1 [17] and Random Forest (RF) with 100 trees
[12]. Classification is performed by splitting tbataset into training and test subsets. Validasararried out 10 times.
In each trial, the samples used in the trainintest sets are randomly selected. Classificationracy is calculated by
means of the ratio of the number of correctly dfees samples, divided by the total number of tsamples.
Calculations were carried out using the scikitseidsrary [18].

Table 2 summarizes the results obtained:zfer 250 mm, both kNN and RF produce very good resiiit particular
kNN is able to produce an error-free classificatidevertheless, classification accuracy is very fonz = 400 mm. An
alternative approach for classification has beemsiciered. Instead of using the 256 values of tlsegiam, several
statistical parameters have been obtained fromhtetogram distribution: mean, standard deviationrtdsis and
skewness. On top of that, the entropy of the imack has also been considered. These five statest used to train a
system using kNNkE1) and RF (100 trees). As in the previous caseh elass is composed of 30 samples. Validation is
performed 10 times using a hold-out strategy. Ia tiase, RF provides almost error-free classificaforz = 250 mm.
When irradiance is recordedzt 400 mm, both kNN and RF fails and a bad classifbn accuracy is obtained.



At first sight, it seems that histograms for #ve 250 mm case are somewhat different whereasisheghams generated
for thez = 400 mm case are almost undistinguishable.

Table 2: Classification results

Data Distance Nearest neighbolRandom Forests
Histograms 250 mm 1.000 0.964]
400 mm 0.780 0.760)
Statistics 250 mm 0.749 0.989
400 mm 0.487 0.733
# members of each class 30
# trials for validation 10

4. CONCLUDING REMARKS

In this communication, we proposed a simplified euicel model for understanding the behavior of @g@tBD codes

based on diffusers. These structures encode thgeiimaa unique way and after propagation, the iaragk presents a
speckle-like noise pattern. As a result, the orfimformation is no longer accessible. The stasstof these

distributions is analyzed and the data providagdsid to feed machine learning classification meth@de demonstrated
that using kNN and RF is possible to distinguisltoagthe signals produced by different classes deésoWe found

that classification is possible for a certain ranfdistances.
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