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CPT1, carnitine palmitoyltransferase; DES, dihydroceramide desaturase; DG, diacylglycerol; ER, 24 
endoplasmic reticulum; ETC, electron transport chain; FA, fatty acid; FFA, free fatty acid; FAO, 25 
fatty acid oxidation; IL-1β, interleukin-1β; IL-6, interleukin-6; KO, knockout; MCD, malonyl-CoA 26 
decarboxylase; SM, sphingomyelin; SPL, sphingolipid; SPT, serine palmitoyltransferase; TG, 27 
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ABSTRACT 30 
Obesity is an epidemic, complex disease that is characterized by a state of increased glucose, lipids 31 
and low-grade inflammation in circulation, among other factors. This is the perfect scenario for the 32 
production of ceramide, the building block of the sphingolipid family of lipids, which is involved 33 
in metabolic disorders such as obesity, diabetes and cardiovascular disease. In addition, obesity 34 
causes a decrease in fatty acid oxidation, which contributes to lipid accumulation within the cells, 35 
conferring more susceptibility to cell dysfunction. C16:0 ceramide, a specific ceramide species, has 36 
been identified recently as the principal mediator of obesity-derived insulin resistance, impaired 37 
fatty acid oxidation and hepatic steatosis. In this review, we aim to cover the importance of 38 
ceramide species and their metabolism, the main ceramide signaling pathways in obesity, and the 39 
link between C16:0 ceramide, fatty acid oxidation and obesity. 40 
 41 
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INTRODUCTION 51 
“Globesity” is the word that the World Health Organization (WHO) uses to refer to the global 52 
epidemic of overweight and obesity, which is currently a major public health problem in many 53 
parts of the world. Obesity is no longer a problem of high-income, developed countries. Indeed, the 54 
largest increases in obesity since 1980 have occurred in low and middle-income countries, 55 
particularly in urban settings in Oceania, Latin America, and North Africa (1).  56 
Obesity reflects an imbalance between energy intake and energy expenditure and is characterized 57 
by excessive fat accumulation in adipose tissue and other organs that has a negative impact on 58 
health. It has been established that obesity is a risk factor for other pathological conditions such as 59 
insulin resistance and type 2 diabetes mellitus (T2DM) (2), as well as non-alcoholic fatty liver 60 
disease (3), cardiovascular disease (5) and cancer (6), among others. During obesity, adipose tissue 61 
expands to cope with extra nutrients in circulation and avoid lipid deposition in other organs. 62 
Unfortunately, this expansion has its limits, and eventually adipose tissue becomes dysfunctional 63 
(6).  64 
Another mechanism that has been postulated to contribute to obesity-related metabolic disorders is 65 
defective fatty acid oxidation (FAO). Even though some controversy exists about this topic, mainly 66 
due to tissue variability and the obesity state of the subjects, there is evidence of a decrease in FAO 67 
capacity in humans and rodents during obesity that contributes to lipid accumulation and 68 
lipotoxicity (7–14). Strategies that focus on enhancing FAO have been developed to treat obesity 69 
with positive results (15–23).  70 
Among obesity-derived adipose tissue dysfunctions, there are two factors that are crucial for the 71 
generation of ceramides; key metabolites of sphingolipid (SPL) metabolism that contribute to 72 



  5

obesity-related disorders (24, 25). First, the insulin resistance of obese adipose tissue maintains 73 
adipocyte lipolysis on. As a result, FFAs are constantly pumped into circulation. One of the main 74 
pathways of ceramide synthesis, the de novo pathway, depends on the availability of saturated 75 
FFAs (26). Therefore, an increase in saturated FFAs in circulation is a perfect scenario to promote 76 
de novo ceramide synthesis. Second, adipocyte cell death and dysfunction due to an excess of 77 
nutrients generates local inflammation, which promotes immune cell infiltration in the tissue. 78 
Then, inflammation is amplified systemically to reach the rest of the body (6, 27). A second 79 
ceramide synthesis pathway, the catabolic conversion of another SPL, sphingomyelin (SM), into 80 
ceramide by the action of sphingomyelinases, can be activated by inflammatory signals such as 81 
TNFα (28). TNFα is a classical cytokine that is elevated in circulation during obesity and known to 82 
cause insulin resistance (29, 30). Thus, both elevated saturated FFAs and inflammation, which are 83 
key signatures of obesity, promote ceramide synthesis.  84 
Ceramides have been linked to obesity, insulin resistance and metabolic disorders (24, 25). 85 
However, most studies have focused on total ceramide levels, rather than the presence of a specific 86 
ceramide (31, 32). The lipidomics era has brought the attention to individual ceramide molecular 87 
species that are produced via specific pathways and perform distinct functions. Therefore, it is not 88 
only a matter of the quantity, but also the quality of ceramide that is modulated in pathological 89 
states (33).  90 
Two studies have demonstrated an increase in specific ceramide species (palmitoyl ceramide or 91 
C16:0 ceramide) in obese humans and mice that inhibits FAO and negatively regulates insulin 92 
signaling and energy expenditure (34, 35). These two independent studies provide a link between 93 
obesity, insulin resistance and impaired FAO through ceramide action. In this review, we will 94 
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cover the relevance of specific ceramide species, their metabolism, and common obese-related 95 
ceramide signaling that leads to insulin resistance. In addition, given recent studies that identify 96 
C16:0 ceramide as the species responsible for the metabolic phenotype of obesity through 97 
modulation of FAO (34, 35), we will discuss recent findings that link C16:0 ceramide, FAO and 98 
obesity. 99 
 100 
CERAMIDE METABOLISM 101 
Ceramides are members of the sphingolipid family and are composed of a long-chain sphingoid 102 
base, sphingosine, in N-linkage to a variety of acyl groups. There are three well-characterized 103 
pathways of ceramide production: 1) the de novo pathway, which takes place in the endoplasmic 104 
reticulum (ER), 2) the sphingomyelinase pathway that converts SM into ceramides in several 105 
cellular compartments such as the plasma membrane, lysosomes, Golgi and mitochondria, and 3) 106 
the salvage pathway that occurs in lysosomes and endosomes and converts complex sphingolipids 107 
into sphingosine, which is reused through reacylation to produce ceramides. In this review, we will 108 
focus on de novo synthesis (Fig. 1). 109 
 110 
Key enzymes of de novo ceramide synthesis in an obese state 111 
In the last decade, there have been great advances in knowledge of the key enzymes involved in the 112 
de novo ceramide biosynthetic pathway. More of the regulatory proteins and enzymes involved in 113 
this pathway have been cloned, and the generation of knockout mice showed the physiological 114 
functions of these enzymes. Furthermore, new spectroscopic techniques allow researchers to 115 
analyze and quantify multiple ceramide species, which yields insights into which species are the 116 
most relevant in pathological conditions such as obesity and related diseases. 117 
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De novo synthesis starts in the ER by the action of the serine palmitoyltransferase (SPT), the rate-118 
limiting enzyme of sphingolipid synthesis (Fig. 1). This enzyme catalyzes the condensation of 119 
serine and palmitoyl-CoA to produce 3-ketosphinganine (36). The product of SPT, 3-120 
ketosphinganine, is reduced by 3-ketosphinganine reductase (37) to generate sphinganine, the 121 
substrate for ceramide synthases (CerS). CerS attach acyl-CoAs of different chain lengths to 122 
sphinganine to form dihydroceramides, which are converted to ceramides by dihydroceramide 123 
desaturase (DES).  124 
We will next analyze the enzymes involved in de novo synthesis in an obese state. The main 125 
enzymes involved in de novo synthesis are: 126 
- SPTs: the hypothesis that high de novo ceramide biosynthesis contributes to the pathogenesis of 127 
obesity and metabolic syndrome has been tested by several authors (31, 32, 38). They showed that 128 
treatment of genetically obese (ob/ob) and high-fat diet-induced obese (DIO) rodent models with 129 
myriocin, a specific inhibitor of SPT, decreased circulating ceramides, hepatic steatosis and body 130 
weight, and improved insulin resistance. Although blocking ceramide synthesis at the SPTs level 131 
seems a promising strategy to ameliorate metabolic syndrome pathogenesis, the complete 132 
inhibition of ceramide synthesis may have deleterious effects in the cell, due to the crucial role of 133 
ceramides in the formation of other sphingolipid derivatives that are essential to cell membrane 134 
function and for diverse intracellular signaling pathways.  135 
- CerS: the discovery of dramatic increases in individual ceramide chain-length species present in 136 
the serum of obese mice has increased the interest in this enzyme family (39). Six mammalian 137 
CerS (CerS1-CerS6) have been identified. They are codified by six genes, also named lass 138 
(longevity assurance) due to their homology to the yeast longevity assurance gene LAG1 (40). Lass 139 
1-6 gens are located in different chromosomes and their protein products are integral membrane 140 
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proteins located in the ER. Interesting recent reviews (41–43) revealed that CerS differ in their: 1) 141 
amino acid composition, protein structure and transmembrane topologies, 2) long-chain acyl-CoA 142 
specificities and sphingoid base stereospecificity, 3) tissue distribution, 4) transcriptional, post-143 
translational and activity regulation, and 5) biological function (Table 1). These enzymes have 144 
emerged as a critical node in phospholipid metabolism. Interestingly, some data suggest that 145 
ceramide with a different acyl-chain-length might be associated with cell dysfunction in lipotoxic 146 
conditions. C16:0 and C18:0 ceramides are associated with insulin resistance in mice liver (44) and 147 
in myotubes from the skeletal muscle of type 2 diabetic patients (45). The identification of putative 148 
ceramides at the onset of insulin resistance and in lipotoxicity pushed the research community to 149 
carry out many new studies, to discern which CerS is responsible for these events. Recent data 150 
obtained from different CerS knockdown showed a high degree of redundancy and inter-regulation 151 
between different CerSs (46). Furthermore, knockout mice from CerS1, CerS2, CerS3, CerS4 and 152 
CerS5 (47–51) highlight that these enzymes are not only modulators of chain-length in ceramide 153 
production, but also control the levels of other bioactive sphingolipids that have different roles 154 
depending on the tissue. Data from these studies indicate that CerS5 and CerS6 may be the main 155 
CerSs involved in obesity development. New studies are necessary to understand the precise role 156 
of each CerS, to discern which ceramide species are toxic in pathological processes such as obesity 157 
or insulin resistance, and to develop pharmacological inhibitors of specific CerS to counteract 158 
ceramide negative actions.   159 
- DES: recently, dihydroceramides have also been considered bioactive lipid species. In obesity 160 
there is an imbalance between dihydroceramide/ceramide, and it has been reported that plasma 161 
dihydroceramide levels correlate better than ceramides with body mass index (BMI) in cohorts of 162 
obese subjects (52, 53). There are two DES1 and 2 enzymes localized in the cytosolic face of ER. 163 
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They show different tissue distribution and substrate preferences (37, 54). Studies derived from 164 
pharmacological DES1 inhibitors such as Fenretinide indicate that inhibition of this enzyme could 165 
be a new strategy to prevent and reduce insulin resistance and obesity (55, 56).  166 
 167 
CERAMIDE SIGNALING IN OBESITY 168 
Increasing evidence supports a role for ceramides in the pathogenesis of obesity-induced metabolic 169 
disorders. Ceramides have been shown to participate through several mechanisms such as 170 
inflammation, apoptosis, ROS, ER stress and autophagy.  171 
Ceramide, together with other stimuli such as fatty acids (FAs), various PKC isoforms, 172 
proinflammatory cytokines and oxidative and ER stresses, activate JNK, NF-κB, RAGE and TLR 173 
pathways that trigger inflammation and insulin resistance in obesity (57–59). Increases in hepatic 174 
and muscle ceramide content have been associated with insulin resistance in obese Zucker rats 175 
(66). Ceramide can activate phosphatase 2A that dephosphorylates Akt, and protein kinase C-ζ that 176 
prevents Akt phosphorylation. Consequently, the Akt/PKB pathway is blocked, leading to insulin 177 
resistance (68–74). In contrast, the insulin-sensitizing hormone adiponectin stimulates ceramidase 178 
activity, which enhances ceramide catabolism resulting in increased susceptibility of tissues to 179 
insulin, and reduced inflammation and apoptosis (68).  180 
Ceramides have also been shown to alter membrane permeability, inhibit electron transport chain 181 
(ETC) intermediates, and promote oxidative stress (25, 69). High levels of ceramides are 182 
responsible for pancreatic beta-cell apoptosis mediated by reactive oxygen species (ROS) 183 
production and mitochondrial dysfunction (70). Both short and long-chain ceramides were shown 184 
to increase ROS production in rat heart and liver mitochondria (71–73). Moreover, studies in beta-185 
cell lines implicate ceramide as both a cause (75) and an effector (76) of ER stress. Inflammation 186 
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and ER stress have also been found in the hypothalamus of rats administered on the lateral 187 
ventricle of the hypothalamus with exogenous ceramide, which led to obesity caused by impaired 188 
energy homeostasis (76). Ceramide is known to be a downstream mediator of ghrelin and leptin 189 
signaling in hypothalamus, and increased levels of ceramide promote feeding and body weight gain 190 
(77, 78).  191 
Finally, several reports have shown that macroautophagy is induced by ceramides through the 192 
participation of CerS1 (79–81). This implicates C18:0 ceramide in targeting mitochondria for 193 
autophagic clearance. The depletion of mitochondria by mitophagy leads to a lower FAO capacity, 194 
and beyond a certain threshold it can drive the cell to irreversible cellular atrophy (lethal 195 
mitophagy) (82). 196 
 197 
FATTY ACID OXIDATION AND OBESITY 198 
Obese individuals and those with T2DM are known to have lower FAO rates and lower ETC 199 
activity in muscle  (7, 12, 13), together with higher glycolytic capacities and increased cellular FA 200 
uptake compared to non-obese and non-diabetic individuals (83). This indicates that any strategy 201 
that can burn off the excess lipids could potentially be a good approach to treat obesity-induced 202 
metabolic disorders.  203 
Several studies have demonstrated the effectiveness of increased FAO to fight against obesity and 204 
insulin resistance (15, 16, 18–23, 84–86). While some have focused on indirect enhancement of 205 
FAO through acetyl-coA carboxylase (ACC) suppression or malonyl-CoA decarboxylase (MCD) 206 
overexpression, a large body of evidence is pointing towards a direct increase in FAO through 207 
carnitine palmitoyltransferase (CPT) 1 overexpression as a potential target to improve the obese 208 
metabolic phenotype. Malonyl-CoA, which is usually derived from glucose metabolism and is an 209 
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intermediate in the FA biosynthetic pathway, regulates FAO by inhibiting CPT1. This makes CPT1 210 
the gatekeeper in mitochondrial FA β-oxidation. Thus, in a situation of energy excess, malonyl-211 
CoA inhibits oxidation and diverts FAs fate into its storage as TG. To date, there are three known 212 
CPT1 isoforms, with differential kinetics, malonyl-CoA sensitivity and tissue expression: CPT1A 213 
(liver, kidney, intestine, pancreas, ovary and mouse and human WAT), CPT1B (brown adipose 214 
tissue, skeletal muscle, heart and rat and human WAT), and CPT1C (brain and testis) (83, 84). The 215 
fact that CPT1 regulates FAO makes it a very attractive target to decrease lipid levels and fight 216 
against obesity-induced metabolic disorders. It has been shown that obese individuals have 217 
decreased visceral WAT CPT1 mRNA and protein levels (85). Interestingly, our group and others 218 
have demonstrated that CPT1 overexpression in liver (18, 19, 84), muscle (16, 85, 86), and white 219 
adipocytes (20–22) can reduce TG accumulation and improve insulin sensitivity. 220 
 221 
ROLE OF CERAMIDES IN MITOCHONDRIAL FAO AND OBESITY 222 
Ceramides are known to promote metabolic disorders, but it was not until recently that two studies 223 
identified a specific ceramide, C16:0, as a key negative regulator of insulin sensitivity and FAO in 224 
obesity (34, 35). Even though no mechanism of action of C16:0 ceramide was available until now, 225 
evidence of its increase during obesity and diabetes can be found in human studies. Increased 226 
C16:0 ceramide in human subcutaneous adipose tissue was found and, in female subjects only, it 227 
negatively correlated with adiponectin (90). In addition, a subcutaneous and epicardial fat lipid 228 
analysis of non-obese, non-diabetic and obese diabetic patients also showed changes in C16:0 229 
ceramide. In subcutaneous fat, C16:0 ceramide was higher in obese diabetic subjects than their 230 
non-diabetic counterparts, which indicates that C16:0 ceramide increases significantly with the 231 
diabetic but not the obese phenotype. In epicardial fat, C16:0 ceramide is significantly higher in 232 
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both non-diabetic and obese diabetic patients than in non-obese subjects. However, among all lipid 233 
changes in these tissues, only C16:0 ceramide in subcutaneous fat positively correlated with 234 
HOMA-IR (91). These studies strongly suggest a role of C16:0 in obesity and diabetes. 235 
Novel link between C16:0 ceramide and FAO in obesity 236 
Turpin et al. and Raichur et al. identified C16:0 ceramide as a key ceramide that negatively 237 
regulates insulin sensitivity, FAO and energy expenditure in obesity  (34, 35). C16:0 ceramide is 238 
de novo synthetized by CerS6 in the ER. Turpin et al. identified increased CerS6 expression in 239 
obese human adipose tissue that positively correlated with body mass index (BMI), body fat 240 
content, hyperglycemia and insulin resistance. The same pattern was observed in white adipose 241 
tissue of HFD-fed mice. Accordingly, acyl-chain ceramide profiles in both obese humans and mice 242 
showed increased C16:0 and C18:0 ceramide. Conversely, CerS6-/- mice, which have reduced 243 
hepatic and adipose tissue C16:0 ceramide content, are protected from HFD-induced obesity and 244 
glucose intolerance, due to increased lipid utilization in brown adipose tissue and liver, which 245 
increases whole body energy expenditure (34). At the same time, Raichur et al. published a 246 
CerS2+/- mouse model, which is more susceptible to steatohepatitis and insulin resistance. CerS2 is 247 
the dominant hepatic CerS isoform and preferentially makes very long-chain ceramides (C22:0, 248 
C24:0, C24:1). CerS2+/- upregulates CerS5 and CerS6 expression, increases hepatic C16:0 and 249 
C18:0 ceramide, and decreases C24:0 and C24:1 ceramide (35). Moreover, overexpression of 250 
CerS6 in primary hepatocytes can reproduce the CerS2+/- phenotype that increases C16:0 ceramide, 251 
decreases insulin signaling and promotes oleic acid-induced steatosis (35). Thus, the CerS2+/- 252 
model displays a similar phenotype to the obese human and mouse characteristics described by 253 
Turpin et al., and the opposite phenotype to the CerS6-/- mouse model. These results indicate that 254 
upregulation of CerS6 expression and subsequent increases in specific acyl-chain ceramides are an 255 
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important mechanism that contributes to obesity. CerS6 emerges as a new target to treat this 256 
problem. However, a recently published article by Gosejacob et al. (48) demonstrates that CerS5 257 
also contributes to C16:0 ceramide synthesis in WAT, skeletal muscle, liver and spleen. In fact, 258 
CerS5-deficient mice show reduced weight gain, improved glucose tolerance and reduced WAT 259 
inflammation after an HFD challenge. However, this protection was not related to changes in beta 260 
oxidation. This approach confirms the role of C16:0 ceramide as a weight-gain promoter lipid and 261 
obesity-sensing lipid.  262 
Interestingly, the studies by Turpin et al. and Raichur et al. agree that C16:0 ceramide negatively 263 
regulates FAO. However, while Raichur et al. and previous studies by this group demonstrate that 264 
C16:0 ceramide impairs β-oxidation through inactivation of complex II and IV of the ETC in the 265 
CerS2+/- model (35, 92), Turpin et al. claim that the observed increase in lipid utilization in their 266 
CerS6-/- mouse is due to enhanced FAO capacity, regardless of respiratory chain capacity (34). 267 
Ceramide action on ETC was previously described (93). However, most of the studies were 268 
conducted with short-chain soluble ceramide (71, 73), which is not the most abundant ceramide 269 
species in tissues and can exert different actions to the more physiological ceramide species. 270 
Nonetheless, some studies focused on the effects of C16:0 ceramide on ETC and demonstrated that 271 
C16:0 ceramide inhibits complex IV, which contributes to ROS formation with no effects on 272 
mitochondrial membrane potential  (72, 92). Oxidative stress is a hallmark of obesity that can 273 
inactivate a large number of enzymes. A metabolomics study on HeLa cells revealed that CPT1 is 274 
one of the enzymes inhibited by oxidative stress. In this study, they looked at pairs of substrate-275 
product altered by H2O2 and other ROS. Among all metabolite changes, the most significant 276 
indicated that CPT1 was a major target for oxidative inactivation. Furthermore, CPT1 activity can 277 
be recovered by adding catalase to cells. Thus, ROS mediates reversible CPT1 inhibition (94). In 278 
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summary, this study provides a unique link between oxidative stress and CPT1 inactivation. These 279 
are two scenarios present during obesity that can explain decreased FAO.  280 
With all this information in mind, we can outline a model in which obesity increases saturated FAs 281 
and CerS6, leading to C16:0 accumulation. This can cause ETC dysfunction and generate ROS. 282 
The ROS can then inactivate CPT1, decreasing FAO, and as a result promote lipid accumulation 283 
within the cells (Fig. 2). Some human data can be found in the literature supporting this model. A 284 
study of endurance training in obese humans showed a decrease in C16:0 ceramide after training, 285 
coupled with an increase in CPT1 activity and FAO in muscle, all of which lead to improved 286 
glucose tolerance (95). Exercise training decreases C16:0 ceramide and increases CPT1 activity. 287 
Overall, it rescues FAO in human obese skeletal muscle and whole body glucose metabolism.  288 
Unfortunately, it is widely known that lifestyle interventions fail as a treatment for obesity, since 289 
they entails patients’ long-term commitment. One strategy that could mimic exercise training is 290 
enhancing FAO through CPT1 overexpression. Several animal and cellular models have been 291 
developed to increase FAO to treat obesity successfully, and some of them showed lower total 292 
ceramide content as part of the improved phenotype (16, 18, 85). However, no specific data on 293 
ceramide species were available in most of the studies. Only a few studies showed changes in 294 
ceramide species after FAO modulation. In an in vitro study, enhanced FAO in skeletal muscle 295 
cells protected them from palmitate-induced lipotoxicity and insulin resistance, which correlated 296 
with a decrease in total ceramide and specifically C16:0 ceramide (17). This study supports the 297 
idea that enhancing FAO through CPT1 overexpression might be a good strategy to decrease C16:0 298 
ceramide and avoid its deleterious effects on metabolism in obese states. Although enhancing FAO 299 
is a good strategy to rescue C16:0 ceramide actions during obesity, we are aware that C16:0 300 
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ceramide has FAO-independent functions in metabolic diseases. Obesity is associated with an 301 
increase in endocannabinoid system signaling, which triggers insulin resistance. It has been 302 
demonstrated in mice that inhibition of cannabinoid-1 receptor reduces de novo ceramide synthesis 303 
through a decrease in expression and activity of SPT, CerS1 and CerS6. This leads to a reduction 304 
of C16:0 ceramide, among others. These events protect animals from diet-induced body weight 305 
gain, hepatic steatosis, glucose and insulin intolerance (44). This study again implicates C16:0 306 
ceramide in metabolic diseases. 307 
 308 
CONCLUDING REMARKS 309 
Given the recent findings, research on metabolic diseases should include the role of C16:0 310 
ceramide in these pathologies. Obesity increases C16:0 ceramide (34), and circulating levels of 311 
C16:0 ceramide might become a metabolic marker of obesity and associated metabolic 312 
dysfunctions. An example can be found in human studies with obese subjects who underwent 313 
gastric bypasses. After surgery, obese patients had lower body weight and decreased plasma C16:0 314 
ceramide levels (96, 97). In addition, a decrease in plasma C16:0 ceramide positively correlates 315 
with a reduction in plasma TNFα, an inflammatory cytokine that is involved in insulin resistance 316 
(97). In animal models, genetic obese ob/ob mice display increased levels of plasma ceramide. 317 
Specifically, C16:0 and C18:0 ceramide are higher than in lean mice (98). Altogether, these data 318 
suggest that C16:0 ceramide could be used as a metabolic marker of obesity and associated 319 
pathologies. 320 
Obesity dysfunctions depend on individual susceptibility. Genetic background differs from 321 
individual to individual, predisposing to or protecting from pathologies. C16:0 ceramide could 322 
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mediate the transition from the obese to the insulin-resistant phenotype, and gene variants of 323 
CerS2, CerS5 or CerS6 could have an impact on C16:0 ceramide levels. We could only find one 324 
article on CerS gene variants and metabolic diseases. In this study, a human gene variant of CerS2 325 
was associated with an increase in albuminuria in patients with diabetes, a common condition that 326 
indicates progression of the disease (99). No data were provided on the activity of this CerS2 327 
variant or on levels of C16:0 ceramide, but it would be interesting to investigate how many gene 328 
variants of CerS2, CerS5 and CerS6 exist in humans, their effects on enzyme activity, and whether 329 
they can modulate C16:0 levels and have an impact on metabolic diseases. 330 
As it is known that C16:0 ceramide has a negative impact on metabolism it is crucial to develop 331 
specific CerS5 and CerS6 inhibitors to treat obesity and associated comorbidities. This is a difficult 332 
task, due to the high homology between ceramide synthases. To the best of our knowledge, only 333 
one study attempted to develop specific CerS competitive inhibitors derived from the 334 
immunosuppressant Fingolimod (FTY720). Compound ST1072 can inhibit CerS4 and CerS6  335 
(100), but there are no data yet on in vivo effects under a HFD challenge. Importantly, the new data 336 
on regulation of CerS activity by phosphorylation or deacetylation (101, 102) open up new 337 
therapeutic options to control C16:0 ceramide production and its negative effects on health.  338 
The strategy that we, and other labs, have to treat obesity is to enhance FAO. Enhancing FAO 339 
through CPT overexpression forces FFAs to enter into mitochondria for oxidation. Ceramide de 340 
novo synthesis relies on saturated FFA availability. In obesity in particular, palmitic acid is 341 
essential for C16:0 ceramide formation. By enhancing FAO, it is possible to 1) reduce overall 342 
ceramide formation and 2) kidnap the palmitoyl-coA necessary for C16:0 ceramide generation. 343 
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This could reduce the deleterious effects associated with this obesity-related ceramide species. 344 
More studies on enhancing FAO with lipidomic data will be needed to prove this concept. 345 
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FIGURE LEGENDS 689 
Figure 1. Sphingolipid/ceramide biosynthetic and remodeling pathways. There are three main 690 
pathways of ceramide generation. 1. The de novo pathway takes place in endoplasmic reticulum 691 
(ER). Palmitoyl-CoA and serine are condensed by serine palmitoyltransferase (SPT) to form 3-692 
ketodihydrosphingosine. In turn, 3-keto-dihydrosphingosine is reduced to dihydrosphingosine by 693 
3-ketosphinganine reductase (3-KR) to generate sphinganine, the substrate for ceramide synthases 694 
(CerS). CerS attach acyl-CoAs with different chain lengths to sphinganine to form 695 
dihydroceramides, which are converted to ceramides by DES. 2) The sphingomyelinase pathway 696 
takes place in the plasma membrane, lysosomes, Golgi and mitochondria and converts 697 
sphingomyelin into ceramides bidirectionally. 3) The salvage pathway occurs in the late 698 
endosomes and the lysosomes and converts long-chain sphingoid bases into ceramides through the 699 
action of CerS. SMase: sphingomyelinase; SMS: sphingomyelin synthase; CDase: ceramidase; 700 
SPPase: sphingosine phosphate phosphatase; SphK: sphingosine kinase. 701 
 702 
Figure 2. C16:0 ceramide regulates FAO, steatosis and insulin resistance during obesity. Obesity 703 
increase levels of saturated fatty acids (FAs) such as palmitic acid, the limiting substrate of de novo 704 
ceramide synthesis in the endoplasmic reticulum (ER). Obesity also increases ceramide synthase 6 705 
(CerS6) that is responsible for C16:0 ceramide (C16:0 ceramide) formation, which also depends on 706 
palmitic acid availability. C16:0 ceramide can inhibit FA oxidation (FAO) in an electron transport 707 
chain (ETC) in an independent or dependent manner, leading to cellular steatosis. ETC dysfunction 708 
generates ROS, which can inhibit CPT1 activity and decrease the entry of FA into mitochondria for 709 
oxidation. Again, this leads to cellular steatosis. Finally, C16:0 ceramide can inhibit the insulin-710 
signaling pathway, which contributes to obesity-derived insulin resistance. 711 
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Table 1. CerS characteristics and functions. Data extracted from  (34, 35, 41–43, 103). 713 



 

Table 1. CerS characteristics and functions. Data extracted from (34, 35, 41–43, 103). 

Name Protein size 
(Da) 

(human) 

Tissue 
distribution  

(mouse/human) 

Acyl chain-
length 

specificity 

Implication in 
cellular processes 

Mouse models  Alterations

CerS1 39,536 Brain, skeletal 
muscle, testis 

C18 Cerebellar 
development, 
Neuronal function  

KO mice Neurodegeneration 

CerS2 44,876 Kidney, liver C22-26 FAO 
ER stress 
Autophagy 

KO mice  Liver and nervous system 
dysfunction, obesity, 
insulin resistance 

CerS3 46,217 Testis, skin C22-26 Spermatogenesis 
Keratinocyte -
differentiation  

KO mice  Skin barrier permeability 
alteration  

CerS4 46,399 Skin, heart, liver,
leucocytes 

C18-20 Hypoxia
Apoptosis 
Stem cell activation 

KO mice 
 

Hair loss

CerS5 45,752 WAT, lung, 
thymus 
Ubiquitous 

C14-16 Hypoxia
Apoptosis 
Autophagy 

KO mice
Knockdown 

Diet-induced obesity

CerS6 44,890 Intestine 
Ubiquitous 

C14-16 FAO 
ER stress 
Apoptosis 

KO mice 
Knockdown 
 

Obesity  
Reduced tumor growth 
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