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Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization
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In this work we revisit the nonmonotonic behavior (NMB) of synchronization time with velocity reported for
systems of mobile pulse-coupled oscillators (PCOs). We devise a control parameter that allows us to predict in
which range of velocities NMB may occur, also uncovering the conditions allowing us to establish the emergence
of NMB based on specific features of the connectivity rule. Specifically, our results show that if the connectivity
rule is such that the interaction patterns are sparse and, more importantly, include a large fraction of nonreciprocal
interactions, then the system will display NMB. We furthermore provide a microscopic explanation relating the
presence of such features of the connectivity patterns to the existence of local clusters unable to synchronize,
termed frustrated clusters, for which we also give a precise definition in terms of simple graph concepts. We
conclude that, if the probability of finding a frustrated cluster in a system of moving PCOs is high enough, NMB
occurs in a predictable range of velocities.
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I. INTRODUCTION

Complex systems are characterized by emergent properties
that cannot be immediately inferred from the properties of
the units forming it. Among these properties, synchronization
has become one of the most paradigmatic examples, because
synchronization processes are ubiquitous in nature and play a
very important role in many different contexts such as biol-
ogy, ecology, climatology, sociology, and technology [1–3].
Periodic interactions between the system units lead to a
common rate of entrainment, which can be characterized either
by a common phase or by a common frequency. Similarity
between the periods of the units is crucial to achieve such a
synchronized state but there is another ingredient that plays
also a very significant role: the pattern of interactions between
the units [4–6]. It is important not only for determining the
time scale to reach a stationary state but in some cases—as
in the situation under study in the present work–it can even
prevent the synchronization of identical units [7,8].

In the past few years, renewed interest has emerged
in the study of systems of coupled oscillators that move
in space, forming complex time-dependent networks. Such
setups can be used as simplified representations of real (more
complex) systems to study the efficiency and feasibility of
communication protocols among its units.

These models, despite their apparent simplicity, display a
variety of properties that cannot be explained based on an
aggregation of the characteristics of the elements forming the
system, but emerge from the interaction patterns themselves
and their rules of change.

Prominent examples where this modeling can be useful
range from technological applications (groups of autonomous
self-propelled vehicles) [9,10] to the study of synchronization
in ethology (anurans, bush crickets, and fireflies) [11–14].
Also, mapping the mobility of the units to a certain change
in their environment (who or what you see, follow, or interact
with at a given moment) can be used to study social phenomena
and even unexpected financial behaviors [15].

While the emergence of such behaviors is by no means
restricted to systems with moving units, recently, interesting

and intriguing phenomena triggered by the motion of its
constituents have been studied. In particular, studies have
been performed to describe how the ability of a system of
coupled oscillators to achieve a synchronized state is affected
by the speed of their motion under different experimental
conditions and settings. Generally speaking, moving faster
usually makes the time the system needs to reach a coherent
state shorter [16–18].

Nevertheless, more recent studies have shown how this
is not always the case. When the coupling is highly non-
linear [i.e., for pulse-coupled oscillators (PCOs), also called
integrate-and-fire oscillators (IFOs)], it may happen that
increasing the velocity is not beneficial for the achievement
of a synchronized state. It has been suggested [7] that two
ingredients are necessary for this behavior to be displayed: the
interaction pattern has to be (a) sparse and (b) nonreciprocal.

The first condition means that each oscillator is limited
to interact with just very few units at the same time. Thus,
without motion the system is disconnected—below the static
percolation threshold [19]—and hence unable to synchronize
globally because no signal can propagate through the entire
system. Therefore, mobility is necessary to achieve synchro-
nization. The second condition refers directly to the details
of the interaction rule. It must include a certain degree of
asymmetry. In summary, if moving pulse-coupled oscillators
are (a) allowed to receive and send a signal only to a few
other nearby elements that (b) may or may not correspond to
them depending on a nonsymmetric interaction rule, then the
synchronization time has a nonmonotonous dependency on the
velocity of motion. That is, a velocity increase does not always
correspond to a decrease in the system’s synchronization time.

For these setups, broadly three possible scenarios have
been identified: (1) for slow speeds, moving a little faster
promotes synchrony in a shorter time; (2) for fast enough
velocities, the synchronization time approaches a minimum
constant value which becomes independent of the speed of
motion; and (3) for intermediate values, when the velocity
is increased, counterintuitively, the system takes longer on
average to reach a coherent state, sometimes being completely
unable to synchronize.
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The underlying hypothesis to explain this phenomenology
is that different synchronization mechanisms are at work for
the two extreme regimes. In case 1, synchrony is achieved
at the level of small groups of units that are able to
transmit information among themselves. These small groups
synchronize internally and then break and recombine into new
groups with increasingly less diverse phases. This iterative
process leads the system to synchronize at a global scale
through a sort of coalescent process. In case 2, every oscillator
has the chance to interact with many others in a short time
span, so global synchrony emerges directly through individual
interactions rather than by repeated cluster recombination.

This description is very general and holds for any kind
of coupling. For instance, it has been proven correct for
moving Kuramoto oscillators [16]. However, if the coupling is
highly nonlinear as in PCOs, difficulties arise for intermediate
velocities when the typical time between two consecutive
changes in the interaction pattern is comparable with the time
that local groups take to synchronize. Then, some clusters
are broken before they synchronize but at the same time the
interactions are not rewired fast enough. In this case, the two
typical time scales of the system, that of the motion of its units
and that of the synchronization of local clusters, may interfere
in a very ineffective way.

This hypothesis has been demonstrated for a particular
minimal model with particularly simple interaction rules [7]
where a semianalytic estimation of the value of the limiting
velocities that separate the three regimes has been proposed.

However, nonmonotonic behavior has been observed in
other settings. In particular, more recent works [8,20] have
confirmed that a sparse and nonreciprocal interaction pattern
is a necessary condition for such behavior to be observed, yet
the validity of the general interpretation based on the two time
scales has not been verified.

In this paper, we analyze the model proposed in [8,20],
showing how it fits the interpretation proposed in [7]. Addition-
ally, we introduce a general explanation of what the unfruitful
interplay between time scales is and how and why it is related
to features (a) and (b) of the interaction pattern.

In Sec. II, we roughly describe the model under study.
We then determine for this specific model the velocity at
which the expected time between two consecutive changes
in the interaction pattern is the same as the average time local
clusters need to synchronize. We show how, starting from
just above this precise value of the speed, the dependency
of the synchronization time on the velocity of the oscillators
may change depending on whether conditions (a) and (b) are
satisfied. We thus validate the hypothesis about the ineffective
interplay between the two time scales for an additional,
more realistic (suitable to be implemented with real robots)
experimental setting than the one studied in [7].

In the second part, Sec. III, we focus on studying the
relationship between conditions (a) and (b) and the appearance
of the nonmonotonic behavior through the analysis of the
oscillators’ interaction pattern. In particular, we show how
the existence of local configurations that are not able to reach
a synchronized local state is what makes the interplay between
the time scale fruitless.

To conclude, we present a complete explanation of the
necessary and sufficient conditions for this peculiar and

unexpected phenomenon to occur in terms of the microscopic
topological and dynamical characterization of the system.

II. THE INEFFECTIVE INTERPLAY OF
TWO TIME SCALES

The model considered in this paper was introduced in [8,20]
and can be regarded as a modified version of the minimal
model originally proposed in [7]. It consists of a population of
N moving oscillators with velocity V and random orientation
on a square of side length L with finite boundary conditions.
When a unit reaches a border, its motion is reoriented randomly
inside the box.

The internal phases of the agents φ ∈ (0,1) increase
uniformly with frequency τ−1,

dφi

dt
= 1

τ
∀ i = 1, . . . ,N, (1)

until they reach a maximum value of 1, when a firing event
occurs and the phase is reset.

The interaction rule of this particular model is based on
cones of vision (COV), which are circular sectors centered in
the oscillators and oriented in the direction of their motion
(parallel to V ). The COV are characterized by a radius R and
an angle α that are the same for all the units in the system (see
Fig. 1). Whenever a firing event is triggered, all units that have
the emitting oscillator inside their COV are affected. Upon a
firing by oscillator i at time t , all such oscillators n—which
we call neighbors of unit i from now onward—receive a signal
and update their phases {φi

n} by a factor ε:

φi(t
−) = 1 ⇒

{
φi(t+) = 0,

φi
n(t+) = (1 + ε)φi

n(t−).
(2)

The phase update is performed at frozen time until the
phases of all oscillators have been updated (some agents
may reach their threshold and fire upon receiving a phase
update from a firing neighbor). Then the phases evolve again
uniformly in time (we take τ = 1 to fix the time scale) until
another firing is triggered. We consider that the system is

FIG. 1. Illustration of the interaction rule. The arrows indicate the
neighbors of each oscillator and the cones of vision are the shaded
green areas determined by α and R. Upon firing by an oscillator, its
neighbors are affected by a phase update.
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synchronized when a succession of N firing events takes place,
or equivalently when all the oscillators have exactly the same
internal phase.

Following [7], in order to verify the hypothesis that the
nonmonotonic behavior (NMB) is caused by an ineffective
interplay between the two time scales that characterize the
system, we must determine both the average time between two
sequential changes in the interaction pattern, TC , and the av-
erage local synchronization time TL. By local synchronization
time we mean the time that a subset of interacting oscillators
takes to reach equal phases. Such a subset is defined as follows:
taking one unit as a starting point, the cluster includes all its
neighbors (those that receive its signal) and the oscillators
whose neighbor is this unit (that send their signal to it); then
the same is done for every newly included unit until no new
oscillator is added to the group. We call such subsets of
oscillators local clusters and their definition corresponds to
what in graph theory is called a weakly connected component
of a direct graph. In Fig. 1, oscillators 1, 2, 3, and 4 form a
local cluster, while oscillator 5 belongs to another one whose
only element is oscillator 5 itself.

If our hypothesis is correct, then a change in the dependency
of the synchronization time on the velocity should be observed
when these two characteristic times approach each other if
conditions (a) and (b) of the interaction pattern are satisfied. In
other words, there should exist a typical velocity—depending
on the parameters of the system—such that TC is equal to TL.
Above this velocity, the system may exit the slow regime and
the synchronization time will display a NMB.

Besides the usual parameters that characterize every model
of this type—the number of oscillators in the system, N ,
the coupling constant ε, and the size of the box, L—the
model under study is defined by two additional parameters
that determine the spatial details of the interaction rule:
the reach (radius R) and shape (angle α) of the COV. By
varying these parameters it is possible to tune the average
number of neighbors (through the area) and the proportion of
nonreciprocal interactions (through the angle), thus directly
affecting the properties of sparseness (a) and asymmetry (b)
of the interaction pattern.

In Fig. 2(a) we show the average synchronization time
〈Tsync〉 as a function of the ratio ν = TL/TC for several
values of α and a fixed area of the COV, fixing N , L,
and ε too. In order to keep everything but the fraction of
nonreciprocal interactions fixed, the radius has been adjusted to
force the average number of neighbors per oscillator to k̄ = 1.
The appropriated value of R for each α can be computed
analytically under periodic boundary conditions, yet, due to
finite boundary effects, a correction needs to be applied on the
simulations (see Appendix A).

The empirical value of TL for each set of parameters has
been calculated numerically under static conditions, that is, for
V = 0. Initiating the system with random initial conditions
(phases and orientation of the COV) several times, TL has
been computed as the average time a reference oscillator takes
to synchronize with the rest of the units in its local cluster.
The cases in which it is not possible to achieve a coherent state
after a fixed maximum number of cycles Tmax � 〈Tsync〉 have
been discarded assuming that they do not contribute to the
general enhancement of coherency. Thus, TL is the average
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FIG. 2. 〈Tsync〉 vs ν. (a) We fix k̄ = 1. NMB is obtained by
decreasing α, or equivalently by enforcing the asymmetry of the
interaction pattern. (b) We fix α = π , so we consider partially
asymmetric interactions. For this value of α, the NMB is no longer
observed if we increase the connectivity. In such cases where NMB
is displayed, ν = 1 (-or equivalently TL = TC) characterizes the
velocity from which the monotonic decreasing of 〈Tsync〉 is broken.
〈Tsync〉 is averaged over 75 realizations in a setting of N = 20
oscillators in a box of side L = 200, with coupling constant ε = 0.1.
Hereafter, this same setting is implemented in all the figures.

time synchronizable local clusters of oscillators of any size
need to synchronize.

Concerning TC—the average time between two sequential
changes in the connectivity pattern—notice that in principle it
can be determined via semianalytic calculations. Following the
line of reasoning exposed in [7], we can estimate TC as the time
a unit needs to exit the COV of one of its neighbors, averaging
over all the possible initial positions and orientations, divided
by the total number of oscillators in the system. However,
obtaining an explicit expression of this quantity as a function of
V , α, and R is a tedious task that does not deserve the effort in
this context. Hence, its value has been estimated numerically.
In Appendix B we show an example of how such calculation
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can be performed in the particular case of α = π to obtain the
explicit dependency TC(V,R).

Figure 2(a) shows that, if α is small enough, starting from
ν = 1 (that is, when TL = TC), the decreasing of 〈Tsync〉 slows
down and then the appearance of NMB is patent for larger
values of ν (see Appendix C for further numerical evidences).
The smaller the value of α, the greater the deviation from
the monotonous behavior. For larger values of the angle, the
connectivity pattern gets increasingly symmetric and condition
(b) is no longer satisfied, so the monotonic behavior is
recovered. In particular, when α = 2π we recover the fully
symmetric model studied in [21] for which no deviation from
the monotonous behavior has ever been observed, for any
choice of the parameters.

In Fig. 2(b) we plot again 〈Tsync〉 as a function of ν but
this time for a fixed value of the COV angle, α = π , with
increasing radius of the cone in order to vary the average
number of neighbors per oscillator. As expected, NMB can
be observed for ν > 1 if k̄ is small enough, while the non-
monotonicity fades for larger k̄, in accordance with the results
found in [8].

We are thus able to confirm that ν is indeed a suitable control
parameter for this class of models, and not only for the partic-
ular example proposed in [7]. For all the sets of parameters for
which the system displays NMB, we observe a change in the
dependency of the synchronization time above ν = 1. It then
reaches a local minimum around ν = 2 and a peak roughly
around ν = 20, which is when TL is comparable with NTC

and almost no local cluster lasts long enough to be able to
synchronize completely. These observations corroborate the
hypothesis that it is actually the ineffective interplay of the
two time scales that complicates the synchronization process.
Moreover, it confirms that such phenomenology will be surely
observed whenever two conditions are satisfied, that is, when
both α and k̄ are small enough.

Notice also that changing the coupling parameter ε or the
number of oscillators, N , does not affect the validity of our
arguments (see Appendix D).

Let us introduce a metric able to capture in a quantitative
way the degree of nonmonotonicity of the system behavior.
For every pair (α, R), we can compute the estimator ρMm =
T MAX

sync − T min
sync, that is, the difference between the largest and

the smallest value of 〈Tsync〉. More precisely, T min
sync is the

first minimum of 〈Tsync〉 starting from ν = 0:, hence, it may
correspond either to a local minimum or to the asymptotic
value for ν → ∞ (fast switching regime), depending on
whether the system does or does not display NMB. Likewise,
T MAX

sync is the maximum value of the average synchronization
time for ν > νmin, that is, for a value of ν larger than that
corresponding to T min

sync.
When the system behavior is monotonic, besides small

fluctuations, there is no difference between T MAX
sync and T min

sync, so
ρMm ≈ 0. On the contrary, if the system displays a high degree
of nonmonotonicity, the difference between the minimum
and the maximum of 〈Tsync〉 is not negligible and ρMm takes
increasingly larger values.

In the heat map in Fig. 3(a), ρMm is plotted against the
average number of neighbors k̄ and the expected fraction of
nonreciprocal interactions pA = 1 − α/2π . Below pA � 0.4
the system behaves monotonically (dark blue). Above pA �

FIG. 3. ρMm and ρNMB vs pA, k̄ with superimposed isolines. The
boundary line represents the smoothed interpolation of points for
which ρNMB ∈ [−150,150], which marks the appearance of NMB.
Figures are averaged over 150 realizations with N = 20 and ε = 0.1
and interpolated using a multiquadratic radial basis function (RBF).
For visualization purposes, in the upper panel, values for which
ρMm < 1 have been saturated at ρMm = 1. In the lower panel, values
are displayed using a symlog scale, which is shown as − log |ρNMB| if
ρNMB < 0 with linear interpolation in the range ρNMB ∈ [0.01,−0.01].

0.4, depending on the value of k̄, it may display NMB. The
transition between the monotonic and nonmonotonic regions
is quite smooth, especially for relatively large k̄. According
to the definition of ρMm, when ρMm > 1, the system displays
nonmonotonicity. However, if ρMm � T min

sync, the behavior can
be classified as just slightly nonmonotonic: 〈Tsync(ν)〉 displays
a plateau for intermediate ν, with a small bulge after ν = 1.
For larger ρMm, we find stronger NMB, ranging from the ultra-
NMB of the top left corner, where the synchronization time
diverges for intermediate velocity, to the nondiverging NMB
displayed when the system is more densely connected but
most of these connections are asymmetric (top-right part). In
the lower ρMm region the behavior of the system is perfectly
uniform: increasing the velocity makes the synchronization
time decrease monotonically.

Although this description captures all the relevant features
of the system behavior, it does not provide a clear border
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between what is proper NMB and behaviors barely deviating
from monotonicity, which do not suppose any relevant vio-
lation of the general rule that states that mobility enhances
synchronization.

With the aim of differentiating properly nonmonotonicity
from other trends, we propose a different estimator that takes
positive values when the behavior is strongly nonmonotonic
and negative ones otherwise. Such an estimator is defined as the
difference between the expected synchronization time near the
local minimum and to the local maximum: ρNMB = 〈Tsync(ν =
20)〉 − 〈Tsync(ν = 2)〉. In this way, we are regarding as NMB
only those cases such that increasing the velocity by a factor
of 10 does not benefit the ability of the system to synchronize
in a shorter time.

The choice of the reference values of ν is, to some extent,
arbitrary. Nonetheless, we have already shown that ν is a
good control parameter for this class of systems and the
average synchronization time as a function of ν in the NMB
region displays common features, one of the most relevant
being a common localized range of values at which the
synchronization time slows down its decreasing, reaches a
minimum, and subsequently starts to increase up to a maximum
or a divergence. Hence, a slight change of the chosen values of
ν does not modify the result shown in Fig. 3(b): the existence
of two clearly separated regions corresponds to the presence
(blue) or absence (orange) of strong NMB, respectively.

In the figure, the border is highlighted by a red line. Above
this line, the system displays a degree of nonmonotonicity
that ranges from the ultra-NMB of the top left corner, where
the synchronization time diverges for intermediate velocities,
to the nondiverging NMB displayed when the system is
more densely connected but most of these connections are
asymmetric (top right part). In all these circumstances, it
is correct to affirm that there exists a range of velocities
such that increasing the mobility of the oscillators makes the
synchronization process considerably slower.

More specifically, we observe that the deviation from the
monotonic behavior is maximal (ρNMB > 104, dark blue) when
k̄ is very small, namely, k̄ < 1.8, and pA is larger than 0.6, that
is, when conditions (a) and (b) are both satisfied. It is also worth
noticing that when the fraction of asymmetric interactions is
large enough (pA > 0.6), the strong NMB does not disappear
completely by merely increasing the connectivity (102 <

ρNMB < 104). In other words, it is not possible to affirm that
a minimal connectivity is still a necessary condition for NMB
when almost all the interactions are nonreciprocal.

Summarizing, it is possible to draw a well-defined boundary
that separates the region of the parameter space where the
system displays strong NMB. The simultaneous satisfaction
of conditions (a) and (b) leads to ultra-NMB, but condition
(b) alone is able to grant a relevant degree of nonmonotonicity
even when the sparsity of the connections is violated.

III. A MICROSCOPIC TOPOLOGICAL EXPLANATION
FOR THE EMERGENCE OF NMB

In this section we analyze in detail what happens at the local
clusters when the parameters k̄ and pA are varied. Our goal is
to explain why and how some combinations of features (a) and
(b) make the interplay between the mobility time scale and the

time scale of local synchronization critically ineffective. To
this end, the model under study is a very useful tool, different
from the nearest-neighbors setting where pA depends on the
number k of neighbors with whom the units are allowed to
interact. Indeed, through the parameters R and α, it is possible
to tune both the density and the asymmetry of the interactions,
respectively, while keeping the other constant.

Consider a static local cluster of nonsynchronized oscil-
lators, firing at their out-neighbors (units having them inside
their COV) and receiving from their in-neighbors (units inside
their COV). We may ask ourselves what is needed for such
a configuration to synchronize in finite time. Due to the
asymmetry of the interactions, even if each unit is receiving or
sending signals to at least one other oscillator, it might be the
case that some pathological configurations do not allow signal
to flow throughout the entire cluster thus preventing it from
synchronizing. We call such interaction patterns “frustrated
configurations”: a setup that is not able to synchronize because
of structure-related reasons.

Consider, for instance, the case of two pairs of reciprocal
neighbors firing at each other plus another oscillator that is not
firing at anyone but is receiving from one element of each
pair. These five units form a local cluster, but the signals
interchanged between one pair do not affect the other in
any way. Thus, they cannot synchronize. Every oscillator is
receiving or sending signals to some units in the group, but
still it is not possible for them to communicate at the cluster
level.

In topological terms, a configuration is frustrated if there
does not exist an oscillator from which there is a (directed) path
to every pair of oscillators which do not have a path between
them. Examples of this situation are depicted in Fig. 4.

In order to understand the impact of these configurations,
imagine a cluster of oscillators laid out into a nonfrustrated
configuration that is about to reach a synchronized state. If

FIG. 4. Illustration of frustrated conditions. Cluster A is nonfrus-
trated because there is a path between all pairs of oscillators. Cluster
B is nonfrustrated because there is an oscillator (3) from which there
is a path to each oscillator of every pair without a path between them
(pairs 1-4, 1-5, 2-4, and 2-5). Cluster C is frustrated because there is
not an oscillator from which there is a path to each oscillator of a pair
without a path between them (e.g., pair 2-4).
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some change takes place in the internal interactions as a
consequence of the motion (e.g., an oscillator exits any COV
of the cluster), frustration may occur. Then, the phases that
were converging towards a common value will move apart and
the time they have spent together can be regarded as “wasted”
in terms of the synchronization process. The worst scenario
corresponds to the cluster having almost reached a coherent
state when it changes into a frustrated configuration. Because
of the peculiar characteristics of the pulse coupling (with small
enough refractory period, otherwise NMB does not appear [8]),
the achieved partial coherence will be wasted. Conversely, an
optimal case would be the one in which a cluster becomes
frustrated due to a change in the internal interactions just after
synchronizing. Indeed, if the cluster is already synchronized,
such a change will not affect the achieved coherency. Any
extra time spent by the oscillators in the same configuration
once local synchronization has been attained does not help
to enhance the coherence of the system. For lower velocities
this happens more often and for longer periods, making the
average (global) synchronization time longer.

The key factor driving synchronization at a global scale
are hence nonfrustrated clusters that have reached local
synchronization. For slow velocities, even if their overall
fraction is small, for every “cluster change” the oscillators
belonging to nonfrustrated (and already synchronized) clusters
act as effective “spreaders” of synchronization across the
system. However, as velocity is increased beyond the point
where nonfrustrated clusters cannot synchronize before a
topological change occurs (ν > 1), the fraction of effective
“spreaders” starts to decrease and synchronization is no longer
promoted by mobility, leading to NMB.

Synchronization time thus depends on the trade-off between
two factors: the presence of frustrated clusters in the system
and the chances that nonfrustrated clusters have reached local
synchronization before a change in the interaction pattern takes
place.

The first factor is a merely topological characteristic of
the interaction pattern, which only depends on the interaction
rules and not on the velocity of the oscillators. On the contrary,
the second one is affected by mobility in a negative way: the
higher the velocity, the smaller the chances that local clusters
can synchronize.

To quantify the first property, in Fig. 5 we show the
probability of observing at least one frustrated configuration
Pf r in a randomly generated static connectivity pattern as a
function of the fraction of asymmetric interactions, pA, and
the average number of neighbors, k̄.

It can be deduced from the isolines that what affects Pf r

the most is pA, while the only effect of k̄ is that of slightly
reducing the value Pf r if increased at fixed pA.

In this regard, the heat map of Pf r shows an overall
resemblance to Fig. 3(a), making this magnitude a good
candidate to explain the transition between the monotonic and
the nonmonotonic regions.

By overprinting the NMB boundary shown in Fig. 3(b)
on Fig. 5, the relation between the boundary ρNMB ≈ 0 (in
red) and Pf r is also clear. The boundary of the NMB occurs
between isocurve Pf r = 0.55 and isocurve Pf r = 0.75. More
precisely, it follows Pf r = 0.55 when k̄ � 2, then moves to
Pf r = 0.75 as the connectivity increases.

FIG. 5. Pf r vs pA, k̄. The probability of obtaining at least
one frustrated cluster decreases by decreasing the asymmetry of
the interaction pattern and, to a lesser degree, by increasing the
connectivity. The same boundary shown in Fig. 3(b) has been added
as a guide for comparison. Pf r averaged over 150 static interaction
networks composed of N = 20 oscillators. Heat map interpolated
using multiquadratic RBF.

This observation can be interpreted in terms of the general
topology of the interaction pattern: Sparsity penalizes the
achievement of synchronization in the intermediate velocity
regime because global coherency through local synchroniza-
tion is reached faster when there are large nonfrustrated
clusters already synchronized (only one common phase for
all the oscillators) than when there are several small clusters in
the same situation. For that reason, the higher the connectivity,
the higher Pf r in order to make the local synchronization
mechanism ineffective for intermediate velocities (which
leads to NMB). Therefore, when the system is made up of
separated small groups of connected oscillators, having at
least one frustrated cluster in around 50–55 % of the static
configurations is enough to trigger NMB. On the contrary,
when the system is almost connected (the largest connected
components include more than 80% of the oscillators) and
the effect of mobility can be understood as that of a rewiring
mechanism, a larger Pf r is necessary in order to observe strong
nonmonotonicity [22]. In Fig. 6 we plotted the heat map of the
average fraction of oscillators belonging to the largest (weakly)
connected component of the system to further clarify this point.

As a general conclusion, we can state that a certain amount
of frustrated configurations are required for the system to
display NMB. The value ranges between Pf r = 0.55 and
Pf r = 0.75, depending on the connectivity. It is not possible,
at the present stage, to extend these results to other values of
the rest of the parameters, and especially to other number of
units in the system. However, most of the significant trends
in the behavior of these systems do not change by changing
ε or N (see Appendix D). Even though we cannot make a
strong claim stating that the precise amount of Pf r required
would not change under other conditions, it is very likely
that the relation between frustration and nonmonotonicity
would stay the same. In particular, it is important to stress
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FIG. 6. Fraction of oscillators in the largest connected component
g against the expected fraction of asymmetric interactions, pA, and
the average number of neighbors, k̄. Heat map interpolated using
multiquadratic RBF.

that lying below the percolation threshold is not a necessary
condition for the appearance of NMB: If the fraction of
asymmetric interaction is large enough, the existence of
frustrated configuration enhances nonmonotonicity even when
all the oscillators belong to the same cluster.

IV. CONCLUSIONS

The present work constitutes another step forward to
understand the peculiar phenomena of the prevention of
synchronization of a group of mobile PCOs by tuning their
velocities, presented in [7] and further studied in other
works [8,20,23].

In this research, we have first shown how two conditions
are needed for this phenomenology to appear, mainly a sparse
connectivity pattern and asymmetric interactions. We have
confirmed a control parameter ν, a quantity expressed in terms
of the quotient among the time a typical cluster of oscillators
takes to synchronize and the average time spent for these
clusters to suffer a connectivity change due to mobility. We
furthermore have put forward a microscopic explanation to
show how the appearance of frustrated clusters is the most
likely explanation behind the nonmonotonic dependency of
the average synchronization time on the velocity in systems of
moving PCOs.

Frustration can be regarded as an emerging property of the
connectivity pattern that solely depends on the interaction rules
implemented in each model, not on their dynamics. This leads
us to believe that any model of the same class (moving PCOs)
might display exactly the same behavior.

Additionally, we have proposed two metrics that allow
one to (1) determine if the system can display NMB and (2)
predict for which values of the velocity such behavior may
occur. The first metric is the probability of finding a frustrated
configuration Pf r . Although we are not able, at the present
moment, to suggest a precise value of Pf r above which
NMB will be observed, we can confidently state that if Pf r

is high enough, NMB will surely appear. The threshold value
is affected by the concurrence of other factors, such as the
size of frustrated clusters or the existence of synchronizable
subclusters within one frustrated group. The relevance of
these secondary factors is very difficult to analyze because
of finite size effects. Further efforts need to be devoted to
determining the precise necessary conditions for NMB in
terms of the values of the parameters of the model.

The second metric, ν, had already been conceptually
introduced in [7]. In this paper, we confirmed that it is a
general fact that, above ν = 1, when the typical time for local
synchronization is larger than the average time between two
topological changes, the behavior of the system may deviate
from monotonicity.

It must be noted that the phenomenology studied here
may have large relevance due to their application in swarms
of autonomous robotic vehicles, as its appearance has been
reproduced in experimental settings [8]. The present work
sheds light on explaining the appearance of this intriguing
emerging behavior and, moreover, helps in identifying
possible general features that might be not only restricted
to mobile pulse-coupled oscillators but can be applied
more generally to wider sets of models subject to discrete,
nonlinear firing processes. The explanation provided in this
work constitutes thus solid ground from which to test this
hypothesis on other models, equally nonlinear, proposed in
the literature, which might be especially relevant for new
technological applications in robotics.
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APPENDIX A: AVERAGE NEIGHBORS
(FINITE-BOUNDARY-CONDITIONS EFFECTS)

This Appendix shows the estimation of the average number
of neighbors that we used to take into account for the finite
boundary conditions. With periodic boundary conditions, the
average fraction of neighbors is equal to the fraction of area
covered by the cone of vision:

k̄0

(N − 1)
= αR2

2L2
. (A1)

Taking into account finite boundary conditions, the average
number of neighbors, k̄, is smaller than k̄0 because the area of
the cone can be partially out of the space. The orientations are
uniformly distributed and hence k̄

k̄0
does not depend on α, but

depends on R. Figure 7 shows the corresponding fit leading to
the following expression for the average number of neighbors
with finite boundary conditions:

k̄

k̄0
= k̄

αR2(N−1)
2L2

= c0 + c1R + c2R
2,

c0 = 0.9996, c1 = −3.2 × 10−3, c2 = 2.6 × 10−6. (A2)
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FIG. 7. Average number of neighbors, k̄, with finite boundary
conditions relative to the theoretical value of the average number of
neighbors with periodic boundary conditions, k̄0, as a function of the
COV radius R, including results of the simulation and a quadratic fit.
The inset shows the residuals of the fit together with the maximum
likelihood fit to a normal distribution and kernel density estimator
(KDE). k̄ is computed by averaging over 10 000 static realizations.

The fit has been performed using Ridge regression with
basis expansion (R,R2) obtaining very accurate results, as
shown from the Gaussianity of the residuals. (See inset in Fig. 7
and the good result of the reduced r2 value: r2 > 1–1 × 10−5.)

APPENDIX B: ANALYTICAL CALCULATION OF THE
NEIGHBOR TIME FOR α = π

In this Appendix we perform the analytic calculation of
the average time between two sequential changes in the
interaction pattern, TC , for α = π , although the procedure can
be generalized for an arbitrary α.

Let tC be the average time an oscillator needs in order to
stop having another one inside its COV and thus to stop having
it as its neighbor. We have TC = tC/N , where N is the number
of oscillators in the system.

Consider the representation of Fig. 8: The oscillator with
the cone O1 is located in the origin oriented with velocity
v1 = V î and the oscillator O2 is located in some point of the
semicircle (at distance R and angle 
 ∈ [−π

2 , π
2 ] from O1).

Given that both oscillators have the same modulus velocity V ,
the positions considered for O2 are the only ones from which
this oscillator can enter inside the cone. Let γ be the random
orientation of O2 and v2 = V (î cos γ + ĵ sin γ ) its velocity.
Hence the relative velocity v is

v = v2 − v1 = V (î(cos γ − 1) + ĵ sin γ ). (B1)

Consider the horizontal relative distance x(t) and the
vertical relative distance y(t) as a function of time t :

x(t) = R cos 
 + tV (cos γ − 1),
(B2)

y(t) = R sin 
 + tV sin γ.

FIG. 8. Representation of the integral variables: 
 is the initial
angular coordinate of oscillator O2; angles θ1, θ2, θ3, and θ4 are
the extremes of integration and β is an instrumental variable in the
calculation.

Consider the variable

θ = tan−1

(
sin γ

cos γ − 1

)
, (B3)

which is the polar coordinate of the relative velocity. Notice
that, with the notation introduced in Fig. 8, O2 enters inside
the cone if θ ∈ (θ1(
),θ4(
)). Therefore, the integral we must
solve to find tC is

tC = 〈T (θ,
)〉 = 1

π

∫ π
2

− π
2

d

1

π

∫ θ4(
)

θ1(
)
dθ T (θ,
), (B4)

where T (θ,
) is the time that O2 needs to leave the cone.
Notice that if θ ∈ (θ1(
),θ2(
)), then T (θ,
) ≡ T1

satisfies

(x(T1))2 + (y(T1))2 = R2 (B5)

and T1 > 0.
If θ ∈ (θ2(
),θ3(
)), then T (θ,
) ≡ T2 satisfies

x(T2) = 0. (B6)

And finally if θ ∈ (θ3(
),θ4(
)), then T (θ,
) ≡ T3

satisfies

(x(T3))2 + (y(T3))2 = R2 (B7)

and T3 > 0.
Therefore, integral (B4) becomes

tC = 1

π

∫ π
2

− π
2

d

1

π

∫ θ2(
)

θ1(
)
dθ T1

+ 1

π

∫ π
2

− π
2

d

1

π

∫ θ3(
)

θ2(
)
dθ T2

+ 1

π

∫ π
2

− π
2

d

1

π

∫ θ4(
)

θ3(
)
dθ T3. (B8)
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FIG. 9. δ2 and ρvar vs ν corresponding to curves in Fig. 2 around
the area of interest, νmax = 1. The display of the NMB (if present)
discussed appears in ν > 1 as seen by the decrease in the quality of
the power law fit. Insets show log-log plots over the complete set of
νmax values.

Now we need to determine θ1, θ2, θ3, and θ4. Consider

β = tan−1

(
1 − sin 


cos 


)
. (B9)

We have

θ1 = 
 + π

2
, θ2 = π − β,

θ3 = θ2 + π

2
= 3π

2
− β, θ4 = 
 + 3π

2
. (B10)

Moreover, from Eq. (B3),

cos γ − 1 = sin γ

tan θ
, (B11)

sin γ = −2 tan θ

tan2(θ ) + 1
. (B12)
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FIG. 10. 〈Tsync〉 vs ν. We fix (a) k̄ = 2 and (b) k̄ = 1. The display
of the NMB discussed in Sec. II does not depend on the coupling
parameter ε. 〈Tsync〉 was calculated by averaging over 75 realizations
with N = 20 and α = π .

Now we use the previous expressions to isolate Ti , discard-
ing the null solutions. We obtain

T1 = R(sin 
 tan θ + cos 
)

V
,

T2 = R cos 
(tan2(θ ) + 1)

2V
, (B13)

T3 = R(sin 
 tan θ + cos 
)

V
.

Finally, we substitute expressions (B13) into integral (B8).
The resulting integral is solvable analytically and we obtain
the expression

tC = 3R

πV
(B14)
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FIG. 11. 〈Tsync〉 vs ν. The display of the NMB discussed in
Sec. II does not depend on the number of oscillators, N . 〈Tsync〉 was
calculated by averaging over 75 realizations with k̄ = 2, ε = 0.2, and
α = π .

and hence

TC = 3R

πV N
. (B15)

APPENDIX C: APPEARANCE OF NMB ABOVE ν � 1

In this Appendix we provide further proof that ν is the
appropriate control parameter and that NMB appears when TC

equates TL, that is, when ν = 1. To check for this, we have
proceeded to fit the curves in Fig. 2 according to the relation
〈Tsync〉 = Aνγ taking an increasing number of points in the
interval ν ∈ (0,νmax]. The fits have been performed using a
standard least squares linear fit on the log transformed variables
ln〈Tsync〉 ∼ γ ln ν + ln A.

We proceed to plot two standard metrics relating to the best
fit of each line, its average squared error δ2 and explained
variance ρvar defined, respectively, as

δ2 = 1

Npoints

Npoints∑
i

(〈Tsync〉i − Aν
γ

i

)2
,

ρvar = 1 − (〈Tsync〉 − Aνγ − 〈Tsync〉 − Aνγ )2

(〈Tsync〉 − Aνγ )2
,

〈Tsync〉 − Aνγ ≡ 1

Npoints

Npoints∑
i

〈Tsync〉i − Aν
γ

i . (C1)

As seen in Fig. 9, whenever NMB distinctively appears, the
quality of the fit significantly decreases starting at the point
νmax � 1. The decrease in fit quality with νmax for the cases
where no NMB is present is due to the appearance of the fast
velocity regime, where 〈Tsync〉 becomes independent of ν as
discussed earlier.

APPENDIX D: AVERAGE SYNCHRONIZATION TIME FOR
VARYING ε AND N

In this Appendix we show that neither the coupling
parameter ε nor the number of units, N , affects the appearance
of nonmonotonic trends in the emergence of synchronization
through mobility characterized in Sec. II. As expected, if the
interaction pattern satisfies conditions (a) and (b), the system
deviates from the monotonic behavior starting from ν = 1, for
any (small) value of ε and any N .

In Figs. 10 and 11 we plot the average synchronization time
as a function of the control parameter ν with varying ε and N ,
respectively, for a fixed value of the geometric parameters of
the COV, α = π and k̄ = 1,2. Again, we observe an alignment
of all the curves under the ν rescaling.

Therefore, we can conclude that ν, the ratio between the two
time scales of local synchronization and topological change,
is the appropriate control parameter for this class of systems.
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