EXTENDED REPORT

Implication of IL-2/IL-21 region in systemic sclerosis genetic susceptibility

ABSTRACT

Objective The interleukin 2 (IL-2) and interleukin 21 (IL-21) locus at chromosome 4q27 has been associated with several autoimmune diseases, and both genes are related to immune system functions. The aim of this study was to evaluate the role of the IL-2/IL-21 locus in systemic sclerosis (SSc).

Patients and methods The case control study included 4493 SSc Caucasian patients and 5856 healthy controls from eight Caucasian populations (Spain, Germany, The Netherlands, USA, Italy, Sweden, UK and Norway). Four single nucleotide polymorphisms (rs2069762, rs6822844, rs6835457 and rs907715) were genotyped using TaqMan allelic discrimination assays.

Results We observed evidence of association of the rs6822844 and rs907715 variants with global SSc (p=6.6E-4 and p=7.2E-3, respectively). Similar statistically significant associations were observed for the limited cutaneous form of the disease. The conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs6822844 polymorphism. Consistently, the rs2069762A-rs6822844T-rs6835457G-rs907715T allelic combination showed evidence of association with SSc and limited cutaneous SSc subtype (p=1.7E-03 and p=8E-4, respectively).

Conclusions These results suggested that the IL-2/IL-21 locus influences the genetic susceptibility to SSc. Moreover, this study provided further support for the IL-2/IL-21 locus as a common genetic factor in autoimmune diseases.

INTRODUCTION

Interleukin 2 (IL-2) and interleukin 21 (IL-21) are equally attractive biological candidates that may influence the pathogenesis of autoimmune diseases. Both are cytokines involved in the proliferation of T and B lymphocytes and different immunological activation pathways.1 Moreover, the IL-2 and IL-21 genes cover a region of approximately 200 kb that maps in the 4q27 locus. IL-2 has an important role in the maintenance of immune system homeostasis and self-tolerance. This cytokine has two paradoxical roles: promoting T cell proliferation and terminating T cell responses. Moreover, IL-2 facilitates the production of immunoglobulins through B cells and induces the differentiation and proliferation of natural killer cells.1 2 IL-21 is a potent immunomodulatory cytokine with pleiotropic effects on both innate and adaptive immune responses. These actions include the following positive effects: enhanced proliferation of lymphoid cells, increased cytotoxicity of CD8 T cells and natural killer cells, and differentiation of B cells into plasma cells. IL-21 is also produced by T helper 17 (Th17) cells and is a critical regulator of Th17 development.1 3 Genetic association studies have demonstrated that several IL-2/IL-21 polymorphisms influence the risk for autoimmune diseases (AIDs). The first evidence of this association was found in type 1 diabetes, Graves’ disease, coeliac diseases and rheumatoid arthritis.4–7 These results have been confirmed through replication studies in different populations and extended to other autoimmune diseases, such as inflammatory bowel diseases, giant cell arthritis, psoriasis and systemic lupus erythematosus (SLE).6–17

Systemic sclerosis (SSc) is a chronic fibrotic autoimmune disease in which patients are commonly classified into the following two major subgroups that are related to the specific autoantibodies against several nuclear and/or nucleolar antigens: (i) limited cutaneous SSc (lcSSc), which is related to the positive status of anticientromere autoantibodies (ACA) and (ii) diffuse cutaneous (dcSSc), which is related to the positive status of antitopoiso merase
autoantibodies (ATA). More than 40 susceptibility loci to SSc have been identified during the last 10 years. Half of these variants need to be replicated in different populations and many of these variants are shared among different AIDs, especially SLE. In this regard, one single nucleotide polymorphism (SNP) of the IL-2 gene was proposed as risk factor to lcSSc subtype, but this association has not been confirmed by other studies. Moreover the IL-21 gene has been implicated as a potential driver of AIDs and recently a fine-mapping in SLE demonstrated that variants of the IL-2/IL-21 region are implicated in the genetic susceptibility to SLE. Thus, the aim of this study was to evaluate the influence of the IL-2/IL-21 region in SSc genetic susceptibility.

PATIENTS AND METHODS

Subjects
This case-control association study was comprised of 4493 SSc patients and 5896 controls of Caucasian ancestry. The discover cohort included the Spanish group, which consisted of 1176 SSc patients and 1721 healthy controls. The follow-up phase consisted of the following subjects: 609 SSc cases and 426 controls from Germany, 365 SSc cases and 754 controls from the Netherlands, 916 SSc cases and 884 controls from USA, 595 SSc cases and 1107 controls from Italy, 225 SSc cases and 273 controls from Sweden, 374 SSc cases and 456 controls from the UK and 102 SSc cases and 278 controls from Norway. There was an overlapping of 1726 SSc and 2578 controls with the previous GWAS in SSc.

The patients fulfilled the 1980 American College of Rheumatology classification criteria for SSc or the criteria proposed for early SSc. In addition, the patients were classified as having lcSSc or dcSSc as described by LeRoy et al. The following clinical data were collected for the ascertainment of the clinical phenotype of the SSc patients: age, gender and presence of SSc-specific autoantibodies (Ab; ACA and ATA). The control population consisted of unrelated healthy individuals recruited in the same geographical regions as the SSc patients, and they were matched by age, sex and ethnicity with the SSc patient groups. The study was approved by local ethical committees from all the participating centres. Both patients and controls were included in the study after written informed consent was obtained.

SNP Selection and genotyping
Four SNPs of the IL-2/IL-21 region were selected for this study. The rs2069762 SNP was selected because it is a genetic factor of lcSSc subtype susceptibility by a study in a small Italian cohort. SSc and SLE share some immunogenetic pathways; thus, the rs6822844, rs6835457 and rs907715 IL-2/IL-21 polymorphisms were studied because they are the most associated variants in a recent fine-mapping of the region in SLE.

DNA from the patients and the controls were extracted from peripheral white blood cells following standard procedures. The samples were genotyped for the rs2069762, rs6822844, rs6835457 and rs907715 IL-2/IL-21 region polymorphisms using predesigned SNP genotyping assays from Applied Biosystems (Assay IDs: C__1589950_10, C__28983601_10, C__1597475_10 and C__8949748_10, respectively). TaqMan SNP genotyping was performed using a 7900HT Real-Time PCR system from Applied Biosystems following the manufacturer’s suggestions (Foster City, California, USA). In all the cohorts, the genotyping success rate was greater than 95%, and randomly selected samples were genotyped twice to verify the genotyping accuracy. Ninety-nine percent of the genotypes were identical.

RESULTS

The cases and controls of the eight Caucasian populations were in Hardy-Weinberg equilibrium at a 5% significance level. Additionally, the minor allelic frequencies of the four studied SNPs were similar to those reported by the HapMap project for the Utah residents with ancestry from northern and western Europe (CEU) population (http://hapmap.ncbi.nlm.nih.gov/). The LD structure of the eight cohorts is shown in the supplemental material (see online supplementary figure S1).

First, an association study was conducted in a Spanish case-control set, and a significant association was observed between the rs907715 SNPs minor allele and the global SSc (p=0.03, OR=0.85 95% CI 0.8 to 0.9) and the lcSSc subtype (p=0.04, OR=0.83 95% CI 0.7 to 0.9). A trend of association was observed between the minor allele of the rs622844 SNP and the global SSc (p=0.04, OR=0.84 95% CI 0.7 to 1) and lcSSc subtype (p=0.04, OR=0.79 95% CI 0.7 to 0.9). Also a trend of association was detected between the minor allele of rs6835457 and lcSSc subtype in this population (p=0.03, OR=0.87 95% CI 0.8 to 1). In contrast, no association was observed with the rs2069762 SNP (p=0.8 for both SSc and lcSSc) (see online supplementary tables S1–S3). Based on these observations, we decided to evaluate other Caucasian cohorts and to perform a meta-analysis.

Table 1 shows the meta-analysis results for the IL-2/IL-21 SNPs, the global SSc, the main SSc subtypes, the ACA and the ATA antibodies positive status. The combined analysis showed that the minor allele frequencies of the rs6822844 and rs907715 SNPs were significantly higher in controls than in SSc (p=0.6–0.8 OR=0.86 95% CI 0.79 to 0.95 and p=0.7–0.9 OR=0.81 95% CI 0.85 to 0.96, respectively).
A trend of association was observed in the meta-analysis for the rs6822844 and rs6835457 variants and ACA positive status (p value=0.01 OR=0.87 CI 0.78 to 0.97 and p value=0.05 OR=0.92 CI 0.85 to 1, respectively). The rs6835457 SNP also had a trend of association with global SSc and lcSSc (p value=0.01 OR=0.93 CI 0.87 to 0.98 and p value=0.05 OR=0.92 CI 0.86 to 0.92, respectively).

Table 1 Genotype and minor allele frequencies of meta-analysis of four IL-2/IL-21 SNPs located in SSc patients and healthy controls from European and US populations

<table>
<thead>
<tr>
<th>SNP</th>
<th>Genotype, N (%)</th>
<th>MAF (%)</th>
<th>Allele test</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2069762</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/A Controls (n=5482)</td>
<td>510 (9.30)</td>
<td>2266 (41.34)</td>
<td>2706 (49.36)</td>
</tr>
<tr>
<td>SSc (n=4281)</td>
<td>429 (10.02)</td>
<td>1778 (41.53)</td>
<td>2074 (48.47)</td>
</tr>
<tr>
<td>lcSSc (n=2897)</td>
<td>295 (10.18)</td>
<td>730 (42.05)</td>
<td>836 (48.16)</td>
</tr>
<tr>
<td>A (+) (n=1736)</td>
<td>170 (9.79)</td>
<td>428 (41.51)</td>
<td>509 (49.37)</td>
</tr>
<tr>
<td>rs6822844</td>
<td>T/G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls (n=5792)</td>
<td>149 (2.57)</td>
<td>1475 (25.47)</td>
<td>4168 (71.96)</td>
</tr>
<tr>
<td>SSc (n=4407)**</td>
<td>98 (2.22)</td>
<td>996 (22.60)</td>
<td>3313 (75.18)</td>
</tr>
<tr>
<td>lcSSc (n=2977)***</td>
<td>67 (2.25)</td>
<td>659 (22.14)</td>
<td>2251 (75.18)</td>
</tr>
<tr>
<td>rs6835457</td>
<td>G/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls (n=5720)</td>
<td>144 (2.51)</td>
<td>1475 (25.47)</td>
<td>4168 (71.96)</td>
</tr>
<tr>
<td>SSc (n=4392)****</td>
<td>98 (2.22)</td>
<td>996 (22.60)</td>
<td>3313 (75.18)</td>
</tr>
<tr>
<td>lcSSc (n=2965)*****</td>
<td>67 (2.25)</td>
<td>659 (22.14)</td>
<td>2251 (75.18)</td>
</tr>
</tbody>
</table>

*All p values have been calculated for the allelic model. **Breslow-Day p value=0.29. Higgins’ test (I²)=17.3%. Random-effects model p value=8.6E-04 p=3.5E-3 Random-effects OR=0.86. ***Breslow-Day p value=0.16. I²=33.9%. Random-effects model p value=4.1E-03. Random-effects OR=0.93. ****Breslow-Day p value=0.06. I²=48.6%. Random-effects model p value=0.1. Random-effects OR estimate=0.93. *****Breslow-Day p value=0.02. I²=58%. Random-effects model p value=0.09. Random-effects OR estimate=0.91. ******Breslow-Day p value=0.09. I²=43.7%. Random-effects model p value=0.05. Random-effects OR estimate=0.91.
†If it is applicable, Bonferroni correction is shown.

ACA, anticytromere autoantibodies; ATA, antitopoisomerase autoantibodies; dcSSc, diffuse cutaneous SSc; NA, not applicable; SNP, single nucleotide polymorphisms; SSc, systemic sclerosis.

Table 2 Conditional logistic regression analysis for the IL-2/IL-21 SNPs located in SSc considering the eight European and US populations as covariate

<table>
<thead>
<tr>
<th>Group of analysis</th>
<th>SNP</th>
<th>MAF Cases</th>
<th>MAF Controls</th>
<th>p value of each SNP conditioned by rs6822844</th>
<th>p value of rs6822844 conditioned by each SNP</th>
<th>r² with rs6822844</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSc</td>
<td>rs2069762</td>
<td>0.31</td>
<td>0.30</td>
<td>0.69</td>
<td>0.83</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>rs6835457</td>
<td>0.32</td>
<td>0.34</td>
<td>0.43</td>
<td>0.024</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>rs907715</td>
<td>0.32</td>
<td>0.34</td>
<td>0.19</td>
<td>0.026</td>
<td>0.32</td>
</tr>
<tr>
<td>lcSSc</td>
<td>rs2069762</td>
<td>0.31</td>
<td>0.30</td>
<td>0.69</td>
<td>0.70</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>rs6835457</td>
<td>0.32</td>
<td>0.34</td>
<td>0.53</td>
<td>0.014</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>rs907715</td>
<td>0.32</td>
<td>0.34</td>
<td>0.3</td>
<td>0.015</td>
<td>0.32</td>
</tr>
<tr>
<td>ACA +</td>
<td>rs2069762</td>
<td>0.31</td>
<td>0.30</td>
<td>0.64</td>
<td>0.015</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>rs6835457</td>
<td>0.32</td>
<td>0.34</td>
<td>0.81</td>
<td>0.061</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>rs907715</td>
<td>0.32</td>
<td>0.34</td>
<td>0.56</td>
<td>0.063</td>
<td>0.32</td>
</tr>
</tbody>
</table>

ACA, anticytromere autoantibodies; lcSSc, limited cutaneous SSc; MAF, minor allelic frequencies; SNP, single nucleotide polymorphisms; SSc, systemic sclerosis.
A conditional logistic regression analysis was used to identify which SNP could be the causal SNP for the observed associations between the studied polymorphisms. The association of each SNP was evaluated using the populations as covariates, and the association was conditioned to the rs6822844 SNP because the lowest \(p_{value} \) and strongest effect (OR) were observed in this locus. This analysis showed that the association of the rs907715 SNP was explained by the rs6822844 effect, because only the latter SNP remained significant after conditioned to each other (rs907715 conditioned \(p_{value}=0.19 \); rs6822844 conditioned \(p_{value}=0.026 \)). Moreover, the rs2069762 and rs6855457 SNPs exhibited significance only when conditioned to the rs6822844 SNP. These results suggest that the rs6822844 signal could explain the association observed in the IL-2/IL-21 locus (table 2).

Finally, the results of the conditional haplotype-based association testing are shown in table 3. The allelic combination formed by the rs2069762 major allele and the rs6822844, rs6855457 and rs907715 minor alleles was significantly increased in the controls compared with the global SSc (\(p_{c}=1.7E-3 \), \(OR=0.89 \) 95% CI 0.81 to 0.98), the lcSSc subtype increased in the controls compared with the global SSc diseases or dcSSc or ATA positive status, which is the same effect observed for the T allele of the rs6822844. Importantly, the ORs observed for this allelic combination were not different from the ORs observed for the rs6822844 SNP analysis. These observations were slightly different from the results of the SLE study performed by Hughes et al.\(^{13} \) where the observed association between IL-2/IL-21 region and SLE could be explained by the rs6855457 and rs907715 SNPs. Together, these results support the idea that the common genetic factors in autoimmune diseases may be associated at a regional level but differ in the specific SNPs associated with each disease, including the magnitude and direction of the association.\(^{31, 32} \)

Although, the logistic regression test and the allelic combination analyses conditioned by the rs6822844 SNP suggest that this variant is responsible for the association observed in the region; we cannot totally discard a slight role of the rs6835457 and rs907715 polymorphisms in SSc due to the moderate LD between them and the rs6822844 SNP.

The rs6822844 and rs6855457 SNPs are located in the flanking 5′-untranslated region of IL-21, and the rs907715 polymorphism is located in intron 3 of the IL-21 gene. In contrast, the rs2069762 SNP is located in the flanking 5′-untranslated region of IL-2, which did not exhibit significant association with SSc, the subtypes of the disease or the antibodies’ status. The rs2069762 minor allele has been previously associated with the lcSSc subtype.\(^{26} \) Our study has a considerably larger sample size than the previous study; therefore the previous reported

Table 3 Conditional haplotype-based association analysis of four IL-2/IL-21 SNPs located according to diseases, lcSSc diseases subtype and ACA status and considering the eight European and US populations as covariates

<table>
<thead>
<tr>
<th>Allelic combination</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
<td>SSc (OR 95%)</td>
<td>P*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CI 95%)</td>
<td></td>
</tr>
<tr>
<td>AGGT</td>
<td>0.182</td>
<td>0.181</td>
<td>-ref-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATGT</td>
<td>0.152</td>
<td>0.133</td>
<td>0.89 (0.81 to 0.98)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGAC</td>
<td>0.298</td>
<td>0.306</td>
<td>1.04 (0.96 to 1.12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGAC</td>
<td>0.369</td>
<td>0.379</td>
<td>1.04 (0.96 to 1.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1The order of the SNPs is rs2069762, rs6822844, rs6855457, rs907715.

\(p_{value} \) of the likelihood ratio test. Based on WHAP method.\(^{19} \)

**Omnibus test \(X^2=14.5 \) (df=3); \(p_{value}=2.35E-3; \) \(Pc=9.4E-3. \)

**Omnibus test \(X^2=14.5 \) (df=3); \(p_{value}=2.32E-3; \) \(Pc=9.28E-3. \)

**Omnibus test \(X^2=8.92 \) (df=3); \(p_{value}=0.03; \) \(Pc=0.12. \)

ACa, anticientromere autoantibodies; lcSSc, limited cutaneous SSc; SNP, single nucleotide polymorphisms; SSc, systemic sclerosis.

DISCUSSION

Our study suggests for the first time the influence of the rs6822844 polymorphism of the IL-2/IL-21 region in susceptibility to SSc. This variant also influences the lcSSc subtype of the diseases and probably the ACA positive status due to the trend of association observed between the rs6822844 polymorphism and this phenotype. Although, our study had sufficient statistical power for both dcSSc and ATA analysis (95% and 91%, respectively), we observed that there were not significant associations between the four IL-2/IL-21 SNPs and dcSSc or ATA positive status. The ORs exhibited the same direction as the significant associations with SSc and lcSSc, suggesting that an increment in the sample size with future studies could show a significant relation between the IL-2/IL-21 SNPs and dcSSc or ATA. Interestingly, the rs6822844 variant was associated in the same OR direction as that observed in SLE. The minor allele of this variant is more frequent in healthy donors than in SSc patients, lcSSc subtype subjects and SLE patients.\(^{12, 16} \) The logistic regression and the allelic combination analyses support that the rs6822844 SNP association was responsible for the observed associations. The rs2069762A-rs6822844T-rs6835457G-rs907715T allelic combination was associated as a protective factor to SSc, lcSSc subtype and ACA positive status, which is the same effect observed for the T allele of the rs6822844. Importantly, the ORs observed for this allelic combination were not different from the ORs observed for the rs6822844 SNP analysis. These observations were slightly different from the results of the SLE study performed by Hughes et al.\(^{13} \) where the observed association between IL-2/IL-21 region and SLE could be explained by the rs6855457 and rs907715 SNPs. Together, these results support the idea that the common genetic factors in autoimmune diseases may be associated at a regional level but differ in the specific SNPs associated with each disease, including the magnitude and direction of the association.\(^{31, 32} \)

Although, the logistic regression test and the allelic combination analyses conditioned by the rs6822844 SNP suggest that this variant is responsible for the association observed in the region; we cannot totally discard a slight role of the rs6835457 and rs907715 polymorphisms in SSc due to the moderate LD between them and the rs6822844 SNP.

The rs6822844 and rs6855457 SNPs are located in the flanking 5′-untranslated region of IL-21, and the rs907715 polymorphism is located in intron 3 of the IL-21 gene. In contrast, the rs2069762 SNP is located in the flanking 5′-untranslated region of IL-2, which did not exhibit significant association with SSc, the subtypes of the disease or the antibodies’ status. The rs2069762 minor allele has been previously associated with the lcSSc subtype.\(^{26} \) Our study has a considerably larger sample size than the previous study; therefore the previously reported
significant association for rs2069762 might stem from type 1 statistical error. This fact together with the location of the associated SNP suggests a highlighted role of the IL-21 cytokine. By examining the expression and regulation of IL-21 and the IL-21 receptor (IL-21R) in patients with SSc, a previous study demonstrated an upregulation of IL-21R in epidermis samples.33 However, a recent study has demonstrated that the scleroderma burden in allogeneic haemopoetic stem cell transplantations is driven by Th17 induction via IL-21 and IL-23 signalling.54 Together, these results suggest that IL-21/IL-21R signalling has a pathogenic function in SSc.

The role of IL-2 and IL-21 in the immune system makes these genes plausible candidates for the genetic component of autoimmune diseases.1 35 56 Our results increase the evidence that have shown that the rs6822844 is significantly associated with multiple autoimmune diseases.10–13 According to the HapMap project for the CEU population (http://hapmap.ncbi.nlm.nih.gov/), the rs68284 polymorphism tags seven other variants located along the IL-2/IL-21 region (rs15132245, rs15122573, rs4459999, rs15151961, rs1514064, rs6014280 and rs2069778), but clear evidence that connects any of these variants with the IL-2 and/or IL-21 regulation is lacking. Together, all point out these genetic variants as good candidates for functional studies in SSc pathogenesis and in other autoimmune diseases.

Although, the combined analyses of the rs6822844 polymorphism did not show heterogeneity (BD P-value=0.29, I²=17.8%) between the eight European populations, a weak point of our study is that we did not have enough data available to control the association by principal component. Furthermore, as we mentioned before, an increment in the sample size for the stratified analysis could define in an accurate way the role of the studied variants in different clinical manifestations of SSc as their influence in the presence of coautoimmunity. Consequently, it is necessary to replicate the actual observation.

To conclude, consistent with previous studies on autoimmune diseases, the IL-2/IL-21 region is a susceptibility genetic factor for SSc and its lcSSc subtype. The rs6822844 polymorphism confers the best association signal for SSc. It is also worth mentioning that this study shows the importance of the study of different populations and broad collaboration to find the missing heritability for relatively rare diseases like SSc.

Author affiliations
1 Cellular Biology and Immunology Department, Instituto de Parasitología y Biomedicina López-Neyra, IFBUC-CSIC, Granada, Spain
2 Department of Internal Medicine, Hospital Vall d’Hebron, Barcelona, Spain
3 Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
4 Department of Internal Medicine, Hospital Clínico Universitario San Cecilio, Granada, Spain
5 Department of Allergy, Clinical Immunology and Rheumatology, IRCCS Fondazione Policlinico-Mangiagalli-Regina Elena & University of Milan, Milan, Italy
6 Department of Rheumatology, Hospital Universitario 12 de Octubre, Madrid, Spain
7 Department of Rheumatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
8 Department of Rheumatology, Hospital Marqués de Valdecilla, IFIMAC Santander, Spain
9 Department of Internal Medicine, Hospital Park Taulí, Sabadell, Spain
10 Department of Rheumatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
11 Department of Systemic Autoimmune Diseases, Hospital Clinic de Barcelona, Barcelona, Spain
12 Department of Rheumatology, Hospital Universitario La Princesa, Madrid, Spain
13 Department of Rheumatology, Lund University Hospital, Lund, Sweden
14 Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin and German Rheumatism Research Centre, a Leibnitz institute, Berlin, Germany
15 Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
16 Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
17 Department of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
18 Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
19 Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
20 Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
21 Department of Rheumatology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
22 Department of Medicine, Università degli Studi di Verona, Verona, Italy
23 UO Reumatologia ed Immunologia Clinica, Spedali Civili, Brescia, Italy
24 Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
25 Department of Dermatology, University of Cologne, Cologne, Germany
26 Division of Transfusion Medicine, University Hospital of Cologne, Cologne, Germany
27 Department of Dermatology, Allergology, and Venerology, Ruhr University Bochum, Bochum, Germany
28 Arthritis Research UK Epidemiology Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
29 Centre for Rheumatology, Royal Free and University College Medical School, London, UK
30 Department of Rheumatology and Clinical Immunogenetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
31 Section Complex Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
32 Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands

Acknowledgements We thank Sonia García and Gema Robledo for their excellent technical assistance and all the patients and control donors for their essential collaboration. We thank Barco Nacional de ADN (University of Salamanca, Spain). We are also thankful to EUSAR (the EULAR Scleroderma Trials and Research group) and the German Network of Systemic Sclerosis for the facilitation of this project.

Spanish Scleroderma Group Jose Luis Callejas and Raquel Rios, Unidad de Enfermedades Sistémicas Autoinmunes, Servicio de Medicina Interna, Hospital Clínico Universitario San Cecilio, Granada; Nuna Navarrete, Servicio de Medicina Interna, Hospital Virgen de las Nieves, Granada; Rosa García Portales, Servicio de Reumatología, Hospital Virgen de la Victoria, Málaga; María Teresa Camps, Servicio de Medicina Interna, Hospital Carlos Haya, Málaga; Antonio Fernández-Netbro, Servicio de Reumatología, Hospital Carlos Haya, Málaga; María F. González-Escribano, Servicio de Inmunología, Hospital Virgen del Rocio, Sevilla; Julio Sánchez-Román, Francisco J García-Hernández and Mª Jesús Castillo, Servicio de Medicina Interna, Hospital Virgen del Rocio, Sevilla; Mª Ángeles Aguirre and Inmaculada Gómez-Gracia, Servicio de Reumatología, Hospital Reina Sofia, Córdoba, Benjamin Fernández-Guzelín and Luis Rodríguez-Rodríguez, Servicio de Reumatología, Hospital Clínico San Carlos, Madrid; José Luis Andreu, Servicio de Reumatología, Hospital Puerta del Hierro, Madrid; Paloma García de la Peña, Servicio de Reumatología, Hospital Madrid Norte Sanchinarro, Madrid; Lina Martínez, Servicio de Reumatología, Hospital General Universitario Gregorio Marañón, Madrid; María Ángeles Robles, Natividad Oreiro, Servicio de Reumatología, INIBIC-Hospital Universitario A Coruña, La Coruña; Vicente Foroll, Servicio de Medicina Interna, Hospital Valle de Hebrón, Barcelona; Anna Pro, Servicio de Reumatología, Hospital Del Mar, Barcelona; Mónica Rodríguez Carballera, Servicio de Medicina Interna, Hospital Universitari Mutua Terrassa, Barcelona; Francisco Javier Naranve, Servicio de Reumatología, Hospital Universitari de Bellvitge, Barcelona; Bernardino Díaz, Luis Trapiella and María Gallego, Servicio de Medicina Interna, Hospital Central de Asturias, Oviedo; María del Carmen Freire and Inés Vaquer, Unidad de Trombosis y Vasculitis, Servicio de Medicina Interna, Hospital Xeral Complexo Hospitalario Universitario de Vigo, Vigo; María Victoria Egurrola, Servicio de Medicina Interna, Hospital de Cruces, Barakaldo; Luis Sáez-Cornet, Unidad de Enfermedades Autoinmunes Sistémicas, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, Zaragoza; Federico Díaz and Vanesa Hernández, Servicio de Reumatología, Hospital Universitario de Canarias, Tenerife; Emma Beltrán, Hospital General Universitario, Valencia Spain.

Contributors All the authors listed participated in all or at list one of these activities: Conception and design, acquisition of data or analysis and interpretation of data. Drafting the article or revising it critically for important intellectual content. Final approval of the version published.

Funding This work was supported by the following grants: LMDG was funded by the Ayudas Predoctorales de Formación en Investigación en Salud (FIS-FD09/00544) from the Instituto de Salud Carlos III. JM was funded by GENFER from the Spanish
Basic and translational research

Society of Rheumatology, SAF2009-11110 from the Spanish Ministry of Science, ICTS-4977 from Junta de Andalucia, Spain, in part by Redes Temáticas de Investigación Cooperativa Sanitaria Program, RD08/0077/RIER (from Instituto de Salud Carlos III (ISCIII), Spain and by Fondo Europeo de Desarrollo Regional (FEDER). TRDJR was funded by the VDI laureate from the Dutch Association of Research (NWO) and Dutch Arthritis Foundation (National Reumafonds). JM and TRDJR were sponsored by the Orphan Disease Program grant from the European League Against Rheumatism (EULAR). BPKC is supported by the Dutch Diabetes Research Foundation (grant 2008.40.001) and the Dutch Arthritis Foundation (Reumafonds), grant N0 09-1-406. TW was granted by DFG WI 1031/6.1 and DFG KFO 250 TP03. NDC was funded by P-0590-2010, Conselleria de Salud, Junta de Andalucia, Spain. US National Institutes of Health and National Institute of Arthritis and Musculoskeletal Diseases (NIH-NIAMS) R01-AR-055258, Two-Stage Genome Wide Association Study in Systemic Lupus and by the NIH-NIAMS Center of Research Translation (CORT) in SSc (P50AR054144), K23AR061436, and the Department of Defense Congressionally Directed Medical Research Programs (W81XWH-07-01-0111), (NIH-NIAID) 1U01AI09090.

Competing interests None.

Ethics approval The local ethical committees in accordance with the tenets of the Declaration of Helsinki.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES