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Abstract

Recently, applications of cooperative game theory to economic allocation problems have

gained popularity. In many of these problems, players are organized according to either a

hierarchical structure or a levels structure that restrict the players’ possibilities to cooperate.

In this paper, we propose three new solutions for games with hierarchical structure and

characterize them by properties that relate a player’s payoff to the payoffs of other players

located in specific positions in the hierarchical structure relative to that player. To define

each solution, we consider a certain mapping that transforms the hierarchical structure

into a levels structure, and then we apply the standard generalization of the Shapley Value

to the class of games with levels structure. Such transformation mappings are studied by

means of properties that relate a player’s position in both types of structure.

Keywords: TU-game; hierarchical structure; levels structure; Shapley Value; axioma-

tization
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1 Introduction

Many economic allocation problems are modeled by a cooperative game. A cooperative game

with transferable utility, or simply a game, is a pair consisting of a finite set of players and a

mapping that associates a real number with each subset (or coalition) of players. Each of these

numbers represents the aggregate benefit that the players can obtain by cooperating within the

corresponding coalition. In many of these problems, there is a natural structure according to

which the players are arranged, which also needs to be taken into account. For instance, in water

allocation problems (Ambec and Sprumont, 2002) or in polluted river cost allocation problems

(Ni and Wang, 2007), a graph is used to describe the agents’ location along the river. Problems

with an implicit order of the players are discussed e.g. in Littlechild and Owen (1973), Curiel

et al. (1989), Graham et al. (1990), and Maniquet (2003).

In this paper, we deal with games with hierarchical structure. They consist of a game plus

a directed graph in the form of a (directed) tree that describes the organizational design of the

set of players. Most political, economic or military organizations are organized in a hierarchical

structure, which makes the study of such structures a relevant topic in economic theory, both

from a normative and a positive viewpoint. The study of the properties that certain solutions

for games with hierarchical structure satisfy has received particular attention in the literature,

and many important contributions to this model—as well as to more general, closely related

models—have been made. The main goal of this paper is to make further progress in this

direction.

The class of games with permission structure consists of all pairs made up of a game and a

directed graph (or digraph). Hence, it contains the class of games with hierarchical structure.

For games with permission structure, Gilles et al. (1992) assume that any player needs permission

from all her predecessors in the digraph in order to cooperate with other players. Therefore,

a coalition is feasible, i.e. it can cooperate, if and only if for every player in the coalition, all

her predecessors also belong to the coalition (see also van den Brink and Gilles, 1996). The

permission restricted game assigns to each coalition the worth of its largest feasible subset in the

original game. The Permission Value is then the solution on the class of games with permission

structure that assigns to each element in the class the Shapley Value of its permission restricted
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game.1 On the class of games with hierarchical structure, the so-called Average Tree Permission

Value (van den Brink et al., 2015) is obtained by taking the average of all hierarchical outcomes

(see Demange, 2004) of the permission restricted game on the underlying undirected graph. For

games with an acyclic digraph, the Precedence Shapley Value (Faigle and Kern, 1992) is obtained

by taking the average of all marginal vectors corresponding to the permutations that satisfy the

property that every player comes before any of her predecessors in the digraph.

Another class of games with restricted cooperation that has long been studied is that of

games with coalition structure, which was introduced by Aumann and Drèze (1974) and has

been studied later on by Owen (1977) and Hart and Kurz (1983), among others. In that model,

the game is enriched with a partition of the player set that aims at describing situations where

some players are more closely related to each other than to other players. The class of games

with levels structure introduced by Winter (1989) constitutes a natural generalization of the class

of games with coalition structure. In a game with levels structure, there is an ordered set of

partitions, with the first level being a non-trivial partition of the player set, each level being

coarser than the next level, and the last level being the partition of all singletons. Hence, the

latter games describe situations where within any coalition at any level, some players are closer

to each other than to other players.

The main contribution of the present paper is to propose and characterize three new solutions

for games with hierarchical structure. Each of the suggested solutions is based on a two-stage

procedure of the following type: first, the hierarchical structure is converted into a levels struc-

ture; second, the Shapley Levels Value (Winter, 1989) is applied to the game with the levels

structure obtained in the first stage. To the best of our knowledge, conversion mappings of this

type have not been sufficiently studied despite the fact that they may be useful for the compar-

ison of institutions with different organizational layouts. Our paper adds to the comprehension

of this matter and connects the literature on games with hierarchical structure to the literature

on games with levels structure.

The set of mappings that convert trees into levels structures is very large. Here, we only

consider conversion mappings based on a procedure that starts by setting the grand coalition
1This is called the conjunctive approach. In contrast, in the disjunctive approach of Gilles and Owen (1994),

every player only needs permission from one of her predecessors in the digraph (see also van den Brink, 1997).

For games with hierarchical structure, the two approaches coincide.
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as the least refined partition and continues with the iterative application of the following two

steps.2 First, each element of the previous partition is divided into two subsets, namely the

root of the subtree on that element of the partition and the set of all other players therein.

Second, each of the subsets is further divided in several sets, so that each consists of a player

plus her subordinates.3 The procedure just described underlying the conversion mappings we

use to construct our three solutions has value in its own right. Nevertheless, to further justify

such a procedure, we shall resolve it by a collection of properties that any partition of the player

set might satisfy in accordance with a given tree.

Both mathematical objects, directed trees and levels structures, are useful each to capture

a particular type of restriction to the players’ cooperation possibilities that may exist in an

organization. On the one hand, a directed tree expresses a hierarchical configuration. In a firm,

for instance, an employee might not be allowed to take some decision without the approval of

her superior—being her predecessor in the tree—, as is assumed when applying the Permission

Value. According to Demange (2004), a hierarchical structure is the organizational form that

maximizes stability. With any player in a hierarchical structure, we can associate a so-called team

of players, which consists of the player herself and the players who are below her in the hierarchy.

Demange (2004) also argues that in a hierarchical structure, teams are the relevant units in the

decision-making process. A levels structure, on the other hand, organizes a set of players into a

series of nested partitions. For instance, a firm might be structured in different divisions, which,

in turn, might be divided in different departments, in which employees work. To take a decision,

it might be that, first, all workers of each department have to reach a consensus, second, all

departments of each division have to reach a consensus, and, third and last, all divisions have

to reach an agreement, so that the firm as a whole takes the ultimate decision.

Each of the three solutions for games with hierarchical structure that we introduce builds on

a particular conversion mapping. For the first solution, the entire levels structure resulting from
2Formally, we do not consider the grand coalition as an element of a levels structure. Considering it here,

however, facilitates the exposition of the procedure upon which our conversion mappings are based.
3By construction, this procedure may entail some loss of information when some leaf of the tree has no siblings,

i.e., there are no other players having the same predecessor in the hierarchy. However, on the set of trees where

each leaf has at least one sibling, the procedure establishes a bijection between the latter set and the set of levels

structures.
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the procedure described above is used. For the other two solutions, by contrast, strict subsets of

the collection of all levels are used. The second solution uses the so-called team levels, composed

of teams and singletons. The third solution uses the so-called sibling levels, that arise when

siblings at a given height of the hierarchy become singletons. The characterization results we

provide for all three solutions spell out their differences from an axiomatic viewpoint. Such a

comparative analysis is extended in Section 6 to the solutions from the literature on games with

hierarchical structure mentioned before. Our axiomatizations revolve around the role of players

who are either very weak or very strong in the game, in a sense that we will explain shortly.

To elaborate, it is instructive to recall some properties of the Permission Value (PV) and the

Precedence Shapley Value (PSV), theirs being two of the most established solutions for games

with hierarchical structure. On the one hand, the PSV—but not the PV—satisfies the Null

Player Property, which requires that a null player has to earn a zero payoff irrespective of her

position in the tree. A null player does not contribute to creating any worth in the game, and

thus is a “weak” player. On the other hand, the PV—but not the PSV—satisfies the Necessary

Player Property, which requires that in a monotone game, a necessary player has to earn at least

as much as anybody else. A player is necessary in the game if the worth of any coalition not

containing her is zero, and thus is a “strong” player.

Together with Efficiency and Additivity, the Null Player Property and the Necessary Player

Property single out the Shapley Value of the game. This implies that the hierarchical structure

will be ignored if we simultaneously require the four properties. Throughout the paper, we

impose Efficiency and Additivity, as both properties are standard in the literature. Moreover,

we take the normative stance that except for null players, payoffs should depend on both the

marginal contributions of the players—i.e., the game—and the position of the players in the tree.

This constrains us to impose the Null Player Property and waive the Necessary Player Property.

Instead of the latter, we consider several weaker axioms, all of which set as an upper bound

to a player’s payoff the total payoff of a certain related coalition (her siblings, her team, her

successors’ team, or her siblings’ successors) containing a necessary player.4 For each of these

upper bound properties, we then consider the corresponding lower bound property, which results
4We will show that there is a sense in which the bound properties that we consider do indeed balance out a

player’s position in the hierarchy with her productivity in a reasonable way.
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from reversing the inequality and the identity of the necessary player. It turns out that with

the help of some auxiliary properties, we are able to single out each of the three solutions for

games with hierarchical structure that we propose by choosing different combinations of lower

and upper bound properties.5

The paper is organized as follows: Section 2 is a preliminary section on games, directed

graphs, and levels structures. In Section 3 we introduce and characterize the procedure described

above, which assigns a levels structure to every hierarchical structure represented by a directed

tree. In Section 4 we introduce and axiomatize our first solution for games with hierarchical

structure. This solution uses all the information contained in the levels structure obtained from

the conversion mapping of Section 3. In Section 5 we define and axiomatize two alternative

solutions for these games. These solutions use proper subsets of the levels structure. In Section

6 we first review and assess the properties introduced throughout the paper. Then we compare

the three new solutions with some existing solutions from the literature. Section 7 contains

the concluding remarks. All proofs can be found in the online Appendix—see Supplementary

Material.

2 Preliminaries

2.1 Games

Let a finite non-empty set Ω ⊂ N of potential players be given. Then, a cooperative game with

transferable utility, or simply a game, is a pair (N, v), where ∅ 6= N ⊆ Ω is a finite set of players

and v : 2N = {S : S ⊆ N} → R is a characteristic function, with v(∅) = 0. For any coalition

S ⊆ N , v(S) represents the worth of coalition S, i.e., the total payoff that members of the

coalition can obtain by agreeing to cooperate. We denote the collection of all games by G. For

the sake of readability, we henceforth slightly abuse notation and write T ∪ i and T \ i instead

of T ∪{i} and T \ {i} for T ⊆ N and i ∈ N , respectively. We use the | · | operator to denote the

cardinality of a finite set.

Given (N, v) ∈ G and i ∈ N , we say that i is a null player in (N, v) if v(T ∪ i) − v(T ) = 0

5Among the auxiliary properties, the one that requires that teams have to be autonomous in distributing their

payoffs stands out. Such a property is used in the axiomatization of the first two solutions.
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for all T ⊆ N \ i, and we say that i is a necessary player in (N, v) if v(T ) = 0 for all T ⊆ N \ i.

A game (N, v) ∈ G is monotone if v(T ) ≤ v(R) for all T ⊆ R ⊆ N . We denote by GM ⊂ G

the class of all monotone games. For each nonempty T ⊆ N , the unanimity game (N, uT ) is

given by uT (R) = 1 if T ⊆ R, and uT (R) = 0 otherwise. It is well-known that every game

(N, v) ∈ G can be written in a unique way as a linear combination of unanimity games (N, uT )

by v =
∑
∅6=T⊆N ∆T (v)uT , where ∆T (v) =

∑
R⊆T (−1)|T |−|R|v(R) are the Harsanyi dividends

(Harsanyi, 1959).

A solution on G is a map, f , that assigns a unique vector f(N, v) ∈ RN to every (N, v) ∈ G,

where fi(N, v) represents the payoff to player i ∈ N . A permutation of N is a bijective map

π : N → N . Let Π(N) denote the set of permutations ofN . Given π ∈ Π(N) and i ∈ N , let π−1[i]

indicate the set of players ordered before i in permutation π, i.e., π−1[i] = {j ∈ N : π(j) < π(i)}.

The best-known solution on G is the Shapley Value (Shapley, 1953), which is defined for every

(N, v) ∈ G and i ∈ N by

Shi(N, v) =
1

|Π(N)|
∑

π∈Π(N)

(v
(
π−1[i] ∪ {i}

)
− v

(
π−1[i]

)
).

2.2 Games with hierarchical structure

Given the set Ω of potential players, a directed graph (or digraph) is a pair (N,D), where

∅ 6= N ⊆ Ω is a finite set of nodes (representing the players) and D ⊆ N ×N is a binary relation

on N (representing the hierarchy). Given (N,D) and T ⊆ N , the digraph (T,DT ) is the induced

subgraph on T given by DT = {(i, j) ∈ D : i, j ∈ T}. For a given digraph (N,D) and i, j ∈ N ,

a (directed) path from i to j is a sequence of distinct nodes (i1, . . . , im) such that i1 = i, im = j,

and (ik, ik+1) ∈ D for k = 1, . . . ,m − 1. A digraph (N,D) is a (rooted) directed tree with root

i0 ∈ N if there does not exist a player j ∈ N with (j, i0) ∈ D and if there is exactly one directed

path from the top-node i0 to every other node. Note that, in particular, (i, i) /∈ D for all i ∈ N

if (N,D) is a directed tree. We denote the set of all directed trees by D.

For every (N,D) ∈ D and i ∈ N , the nodes in SD(i) = {j ∈ N : (i, j) ∈ D} are called the

successors of i, and the nodes in PD(i) = {j ∈ N : (j, i) ∈ D} are called the predecessors of i.

For a directed tree (N,D) ∈ D with root i0, it holds that PD(i0) = ∅ and |PD(j)| = 1 for every

j ∈ N \ {i0} and, accordingly, we denote by pD(j) the unique predecessor of j 6= i0. Let (N, D̂)

be the transitive closure of a digraph (N,D), i.e., (i, j) ∈ D̂ if and only if there is a directed
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path from i to j. The players in ŜD(i) = SD̂(i) are called the subordinates of i, and the players

in P̂D(i) = PD̂(i) are called the superiors of i.

For a directed tree, we follow Demange (2004) and call the set ŜD(i)∪ i the team of player i,

i.e. the team of i consists of i herself plus all her subordinates. We stress that the set P̂D(i), with

i 6= i0, is the set of nodes on the unique path from i0 to i, excluding i herself. The rank of i in the

hierarchy is the length of this path and is denoted by lD(i), i.e., for every i ∈ N , lD(i) =
∣∣∣P̂D(i)

∣∣∣.
Whenever there is no possible confusion regarding (N,D), we write l(i) instead of lD(i). For

every (N,D) ∈ D, the depth of the hierarchy is given by l(D) = maxi∈N l(i). Further, given

(N,D) ∈ D and i ∈ N \ i0, the set of siblings of i is denoted by A(i) and is the set of players

with the same predecessor as i, including i herself, i.e., A(i) = {j ∈ N : (pD(i), j) ∈ D}. Finally,

for T ⊆ N we denote SD(T ) = ∪i∈TSD(i).

A game with hierarchical structure is a triple (N, v,D), where (N, v) ∈ G and (N,D) ∈ D.

We denote by GD the set of all games with hierarchical structure. A solution on GD is a map,

f , that assigns a vector f(N, v,D) ∈ RN to every triple (N, v,D) ∈ GD.

2.3 Games with levels structure

A partition of a finite set N is a collection of subsets, P ⊆ 2N , such that (i) T 6= ∅ for every

T ∈ P , (ii) ∪T∈PT = N , and (iii) for every T,R ∈ P with T 6= R, T ∩ R = ∅. Given Ω, a

levels structure is a pair (N,B), where ∅ 6= N ⊆ Ω, |N | ≥ 2, and, for some integer m ≥ 0,

B = (B1, . . . , Bm+1) is a sequence of m+1 partitions of N such that (i) B1 is a proper partition,

i.e. |B1| ≥ 2, (ii) for each r ∈ {1, . . . ,m}, Br is coarser than Br+1, i.e., for each T ∈ Br there is

U ⊆ Br+1 such that T = ∪R∈UR, and (iii) Bm+1 = {{i} : i ∈ N}.6 The partition Bm+1 consisting

of all singleton coalitions is added for notational convenience. For each r ∈ {1, . . . ,m + 1}, the

partition Br is called the r-th level of B and each T ∈ Br is called a union (of the r-th level).

We denote by (N,B0) the trivial levels structure, where B0 = ({{i} : i ∈ N}) is the unique

levels structure with m = 0. The collection of all levels structures (N,B), with ∅ 6= N ⊆ Ω, is

denoted by L.

Example 2.1. Let N = {1, 2, 3, 4, 5} and B = (B1, B2, B3) be given by B1 = {{1, 2}, {3, 4, 5}},

B2 = {{1, 2}, {3}, {4, 5}}, and B3 = {{1}, {2}, {3}, {4}, {5}}. Then, the pair (N,B) is a levels
6Note that we do not exclude the possibility that Br = Br+1 for some r ∈ {1, . . . ,m}.
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structure, i.e., (N,B) ∈ L.

A game with levels structure is a triple (N, v,B), where (N, v) ∈ G and (N,B) ∈ L. We

denote by GL the set of all games with levels structure. A solution on GL is a map, f , that

assigns to every (N, v,B) ∈ GL a vector f(N, v,B) ∈ RN . The best-known solution on GL is the

Shapley Levels Value, introduced by Winter (1989).7 This solution is based on the assumption

that the levels structure restricts the admissible permutations. For a levels structure (N,B) ∈ L

with B = (B1, . . . , Bm+1), define the sets of permutations Ωr(B), with r ∈ {0, . . . ,m}, starting

with Ω0(B) = Π(N), and then recursively for r = 1, . . . ,m,

Ωr(B) = {π ∈ Ωr−1(B) : ∀T ∈ Br,∀i, j ∈ T and k ∈ N, if π(i) < π(k) < π(j) then k ∈ T}.

Therefore, Ωr(B), with r > 0, is the subset of permutations of Ωr−1(B) such that the elements

of each union of Br are consecutive. We let Ω(B) = Ωm(B) be the set of permutations that keep

the agents of every union of every level consecutive. Then, the Shapley Levels Value ShL is the

solution on GL defined for every (N, v,B) ∈ GL and i ∈ N by

ShLi (N, v,B) =
1

|Ω(B)|
∑

π∈Ω(B)

(v
(
π−1[i] ∪ i

)
− v

(
π−1[i]

)
). (2.1)

Note that the trivial levels structure (N,B0) does not put any restriction on the order of players.

Therefore, for every (N, v) ∈ G, ShL(N, v,B0) = Sh(N, v). A game with levels structure where

r = 1 corresponds to a game with coalition structure, as introduced in Aumann and Drèze (1974).

It is easy to verify that the Shapley Levels Value yields the same payoff vector as the Owen Value

(Owen, 1977) for the latter class of games.

3 From Directed Trees to Levels Structures

Next, we turn to the first relevant question of this paper: Is there a reasonable way to convert

a given hierarchical structure into a levels structure? To answer it, we abstract for the moment

from the analysis of how payoffs should be allocated in a game with hierarchical structure, and we

focus on the relation between directed trees and levels structures. First, we propose a procedure

to convert a directed tree into a collection of nested partitions. Second, we show that a mapping
7Other solutions for games with levels structure can be found in Álvarez-Mozos and Tejada (2011).
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that converts any directed tree into a levels structure satisfies some required properties if and

only if any directed tree is mapped into a levels structure that is a subset of the collection of

nested partitions obtained from our procedure.

Accordingly, we start by proposing a way to map any directed tree into a levels structure.

Let H : D → L be such that for every (N,D) ∈ D, H(N,D) = (N,BD) with

BD =
(
BD

1,1, B
D
1,2, B

D
2,1, B

D
2,2, . . . , B

D
l(D),1, B

D
l(D),2

)
, (3.2)

defined for r ∈ {1, . . . , l(D)} by

BD
r,1 =

{
{i} : l(i) < r

}
∪
{
ŜD(j) : l(j) = r − 1

}
and (3.3)

BD
r,2 =

{
{i} : l(i) < r

}
∪
{
ŜD(j) ∪ j : l(j) = r

}
. (3.4)

By definition, we obtain that (i) BD
1,1 is a proper partition of N , (ii) BD

1,2 is a refinement of BD
1,1,

and (iii) for every r ∈ {2, . . . , l(D)}, the partition BD
r,1 is a refinement of BD

r−1,2 and the partition

BD
r,2 is a refinement of BD

r,1. Further, we note that BD
l(D),2 = {{i} : i ∈ N}, since ŜD(j) = ∅ for

every j ∈ N with l(j) = l(D).8 As a consequence, (N,BD) ∈ L.

We illustrate the above definitions by an example that will be used throughout the paper.

Example 3.1. Consider the directed tree (N,D) ∈ D, with N = {1, . . . , 8} and D = {(1, 2), (1, 3),

(2, 4), (2, 5), (3, 6), (5, 7), (5, 8)}—see the graph below. Then, (N,BD) ∈ L is given by BD =

(BD
1,1, . . . , B

D
3,2), where

u u
u

uu
u u
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BD
1,1 = {{1}, {2, 3, 4, 5, 6, 7, 8}},

BD
1,2 = {{1}, {2, 4, 5, 7, 8}, {3, 6}},

BD
2,1 = {{1}, {2}, {3}, {4, 5, 7, 8}, {6}},

BD
2,2 = {{1}, {2}, {3}, {4}, {5, 7, 8}, {6}},

BD
3,1 = {{1}, {2}, {3}, {4}, {5}, {6}, {7, 8}},

BD
3,2 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}.

The object of the remaining part of this section is to provide a justification for the mappingH

defined in Eqs. (3.2)—(3.4). First, note that the conversion mapping H respects the important
8Note that two consecutive partitions of BD might coincide.
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role of the teams, as highlighted by Demange (2004), in the following sense: At each even level

BD
r,2, every player i with l(i) < r is a singleton in the partition, while each player with rank

l(i) = r in the hierarchy forms a union with all other players in his team. Furthermore, at each

odd level BD
r,1, every player i with l(i) < r is a singleton in the partition, while the team of

each player with rank l(i) = r in the hierarchy forms a union with the teams of all her siblings.

Accordingly, we call every even level a team level and every odd level a sibling level.

Next, we show that the mapping H can essentially be characterized by five properties. These

properties connect the agents’ position in a directed tree to their participation in a given union of

a partition of the player set. Although we only consider properties that apply to a single partition

of the player set, such properties can straightforwardly be generalized to a levels structure.

The properties considered follow two principles. For a given player in the directed tree, the

first principle considers her most natural companions in the partition. In order of preference,

these are: (i) her team, (ii) her siblings, and (iii) all other players. The second principle takes

a certain equality notion into account, by requiring that under some additional conditions, two

agents with the same rank in the directed tree are treated equally in the partition. Given a

partition P of N and i ∈ N , let Pi denote the element of P to which player i belongs.

Definition 3.1. Given a directed tree (N,D) ∈ D, a partition P of N is said to respect (N,D)

when the following five properties hold:

p1 If (i, j) ∈ D, then [Pi 6= {i}] =⇒ [j ∈ Pi].

p2 If j ∈ A(i), then
[
Pi \ (ŜD(i) ∪ i) 6= ∅

]
=⇒ [j ∈ Pi].

p3 If l(i) = l(j), then [SD(i) 6= ∅ and Pi = {i}] =⇒ [Pj = {j}].

p4 If (i, j) ∈ D, then [Pi = {i}] =⇒
[
Pj ⊆ ŜD(i)

]
.

p5 If l(i) = l(j), A(i)\i 6= ∅, and A(j)\j 6= ∅, then
[
Pi ⊆ (ŜD(i) ∪ i)

]
⇐⇒

[
Pj ⊆ (ŜD(j) ∪ j)

]
.

The first property, p1, states that if within the partition, a player depends on some other

player in the sense that she is in the same union with this other player, then she must be in the

same union of the partition as all other members of her team. This holds no matter whether

within the partition, a player depends on another player who is in her team or on a player who

is not. p2 states that if within the partition, a player i depends on some player who is not in
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her team, then all i’s siblings must belong to the same union as i. p3 requires that if a player

is a singleton in the partition while having at least one successor in the directed tree, then any

other player with the same rank should also be a singleton. According to p4, when a player is

a singleton in the partition, then none of the members of her team depends on a player who

does not belong to this team. Finally, p5 states that for any two players with the same rank

who each have one sibling at least, either within the partition they only depend on their team

or they depend on a player who is not in her team.

Finally, we characterize the mappings that convert any directed tree (N,D) ∈ D into a levels

structure (N,B), where any partition P ∈ B respects (N,D), i.e., it satisfies the five properties

p1–p5. Recall that (N,BD) = H(N,D) denotes the levels structure defined by Eqs. (3.2)–(3.4).

Theorem 3.2. Consider a directed tree (N,D) ∈ D. Then, a proper partition P of N respects

(N,D) if and only if P ∈ BD. Moreover, the five properties of Definition 3.1 are independent.

Note that the mapping assigning the trivial partition {N} with N as its unique element to

every directed tree also satisfies the five properties. Since some properties become meaningless

for this partition, we have only considered proper partitions in the theorem. The next corollary

follows immediately from Theorem 3.2.

Corollary 3.1. Any mapping I : D → L, such that every partition in I(N,D) respects (N,D)

and has a maximal number of different partitions, can be built from the partitions in
(
N,BD

)
.

To sum up, in this section we have focused on a particular way to map a directed tree into a

levels structure, namely that every partition of the levels structure respects the tree in the sense

of Definition 3.1. The properties p1–p5 and Theorem 3.2 imply that in such a levels structure, a

player that is higher in the hierarchy is more independent from the other players in the collection

of nested partitions, in the sense that such a player becomes a singleton coalition at a lower-

ranked partition in the levels structure than another player who is lower in the hierarchy.9 While

the proposed mapping between the set of directed trees and the set of levels structures has value

in its own right, due to the way it is constructed and because of the properties it satisfies, it will

turn out that the solutions for games with hierarchical structure to be introduced hereafter will

add even more to its relevance.
9We stress that more independent does not mean better off, not even for monotone games. An elaboration of

this argument can be found in Álvarez-Mozos et al. (2015).
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4 A New Solution for Games with Hierarchical Structure

We are now ready to introduce and axiomatize a new type of solution for the class of games with

hierarchical structure, GD. For each solution of this type, we follow a two-stage procedure. First,

the hierarchical structure (N,D) is transformed into a levels structure (N,B), with B being a

subset of the collection BD of partitions generated by the conversion mapping H. Second,

the Shapley Levels Value is applied to the game with levels structure obtained in the first

stage. The first solution of this type that we propose is obtained by taking the levels structure

(N,BD) = H(N,D), i.e., by considering the entire collection of partitions that satisfy the five

properties of Theorem 3.2.

Definition 4.1. The solution ϕSL on the class of games with hierarchical structure GD is the

solution given by

ϕSL(N, v,D) = ShL
(
N, v,BD

)
, with (N, v,D) ∈ GD.

By definition, the first level of (N,BD) consists of two unions: the root player as a singleton

and the set of all other players. Consequently, because ϕSL is obtained by applying ShL to

(N,BD), besides receiving her singleton worth (dividend), the root player earns half the dividends

of all coalitions she belongs to. Any other player i with at least one subordinate belongs to the

same union as all her subordinates for any partition BD
r,l such that (r, l) ≤lex (l(i), 1), with i’s

team being a union in BD
l(i),2.

10 At the next level, namely at the level corresponding to BD
l(i)+1,1,

player i then becomes a singleton and all her subordinates form a union by themselves. Hence,

each player obtains a share equal to the sum of all shares of all her subordinates in the dividends

of any coalition to which she belongs together with at least one of her subordinates. We illustrate

the new solution with an example.

Example 4.1. Consider (N, uN , D) ∈ GD, with (N,D) the hierarchy given in Example 3.1.

Then,

ϕSL(N, uN , D) =

(
1

2
,
1

8
,
1

8
,

1

16
,

1

32
,
1

8
,

1

64
,

1

64

)
.

Note that the root of the tree obtains half the worth of the grand coalition. Then, the proposed

value assigns half the remainder to Player 2 and her subordinates, and half the remainder to

Player 3 and her subordinates, and so on, until the last level of the levels structure is reached.
10For (r, l), (r, l) ∈ N× N, we write (r, l) ≤lex (r′, l′) if either r < r′ or r = r′ and l ≤ l′.

13



In the following, we provide a set of properties (or axioms) that will characterize the value

ϕSL on the class GD. The first three axioms are natural generalizations of the classical efficiency,

additivity, and null player properties.

eff A solution f on GD satisfies Efficiency if for every (N, v,D) ∈ GD,∑
i∈N

fi(N, v,D) = v(N).

add A solution f on GD satisfies Additivity if for every (N, v,D), (N,w,D) ∈ GD,11

f(N, v + w,D) = f(N, v,D) + f(N,w,D).

npp A solution f on GD satisfies the Null Player Property if for every (N, v,D) ∈ GD and

i ∈ N a null player in (N, v),

fi(N, v,D) = 0.

While eff and add are standard, the use of npp in our framework needs some justification.

We start by noting that we are not the first to use npp within a setting of restricted cooperation.

Faigle and Kern (1992), in particular, included such a property in their axiomatization of the

Precedence Shapley Value. More recently, Fiestras-Janeiro et al. (2016) have also considered

npp to characterize the Precedence Shapley Value in a special class of games under precedence

constraints.12 npp establishes a weak necessary condition for a player to earn a non-zero payoff:

her contributions to all other coalitions of players, including the empty coalition, cannot all be

zero. Hence, an important feature of npp is that it is independent of the hierarchy. We impose

npp throughout the paper.

In contrast with the above two solutions, the Permission Value does not satisfy npp.13 It

does however satisfy the Necessary Player Property, which is defined below.
11Given two games (N, v) and (N,w), the game (N, v + w) is defined by (v + w)(S) = v(S) + w(S) for all

S ⊆ N .
12Fiestras-Janeiro et al. (2016) consider hierarchical structures represented by an ordered partition of the player

set, i.e. a partition with a linear order on the elements of the partition. In that context, they call this solution

the Hierarchical Value.
13In van den Brink and Gilles (1996) and van den Brink (1997), the weaker Inessential Player Property is

used to axiomatize the Permission Value by requiring that a null player in (N, v) has to earn a zero payoff if her

subordinates in (N,D) are all also null players in (N, v).

14



nepp A solution f on GD satisfies the Necessary Player Property if for every (N, v,D) ∈ GD

with (N, v) ∈ GM , i ∈ N a necessary player in (N, v), and j ∈ N \ {i},

fi(N, v,D) ≥ fj(N, v,D).

The above property requires that in a monotone game, a necessary player has to earn at least

as much as any other player, irrespective of her position in the hierarchy. As mentioned in the

Introduction, requiring eff, add, npp, and nepp yields the Shapley Value of the game and

thus completely ignores the hierarchy. Therefore, the combination of these four properties is

not particularly appealing for games with hierarchical structure. To circumvent this limitation,

we shall consider a collection of properties that result from weakening nepp. Each of these

properties compares a player’s payoff to the payoff of a different set of players with whom she is

related in the hierarchy in some particular way, viz. her siblings, her team, her successors’ team,

or her siblings’ successors. It is important to point out that all these properties apply in the

class of monotone games only, so they do not impose any requirement for non-monotone games.

The first weakening of nepp requires that a necessary player has to earn at least as much

as any of her siblings if they all are at the bottom of the tree. Since any two such players are

symmetric in the hierarchy, any of them will be in a stronger position overall if she is necessary

in the game. This implies, in particular, that two siblings who are necessary in the game and

have no successors have to receive the same payoff, and thus this first weakening of nepp can

be seen as a weak symmetry property.

nsp A solution f on GD satisfies the Necessary Sibling Property if for every (N, v,D) ∈ GD

with (N, v) ∈ GM , if two players i, j ∈ N are such that SD(i) = SD(j) = ∅, i ∈ A(j), and

if i is a necessary player in (N, v),

fi(N, v,D) ≥ fj(N, v,D).

Instead of comparing the payoffs of siblings, who are related to each other in the hierarchy

from a horizontal perspective, we now explore a vertical perspective by relating a player’s payoff

to the total payoff of all her subordinates, provided that at least one of them is a necessary

player.
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sub A solution f on GD satisfies the Superior Upper Bound if for every (N, v,D) ∈ GD with

(N, v) ∈ GM , if j ∈ ŜD(i) is necessary in (N, v) for some i ∈ N ,

fi(N, v,D) ≤
∑

h∈ŜD(i)

fh(N, v,D).

The above property requires that in a monotone game a player, say i, cannot earn more than

the total payoff of her subordinates when at least one them, say j, is a necessary player. Note

that nepp would require that j earns at least as much as i. As a consequence, sub is weaker than

nepp, provided that all payoffs are non-negative. Having introduced sub, a natural counterpart

is to require that a necessary player has to earn at least as much as all her subordinates combined.

slb A solution f on GD satisfies the Superior Lower Bound if for every (N, v,D) ∈ GD with

(N, v) ∈ GM , if i ∈ N is necessary in (N, v),

fi(N, v,D) ≥
∑

j∈ŜD(i)

fj(N, v,D).

Note that sub and slb are not merely obtained from each other by reversing the inequalities:

the necessary players are different. We further point out that slb, as well as other similar

properties introduced in the next section, is not a weakening of nepp. In fact, the two properties

are not logically related. For the sake of exposition, we have named the properties from the point

of view of the superior, whether she is a necessary player or not.

Finally, we introduce a property that suggests how a solution should behave with respect to

certain changes in the hierarchical structure. More specifically, the property below states that

merging all players of one team cannot not affect the payoffs of the other players. Merging player

j with the rest of her team ŜD(j) in game (N, v,D) yields a new game
(
N \ ŜD(j), vj, DN\ŜD(j)

)
,

with vj defined for every T ⊆ N \ ŜD(j) by

vj(T ) =

v(T ) if j 6∈ T,

v
(
T ∪ ŜD(j)

)
if j ∈ T.

When a team merges as just described, the role of the other players in the hierarchy does

not change. The only difference is that as a result of the merger, the latter players only have to

deal with the top player of the merged team, instead of having to deal with each of the players
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of such team. The next property requires that as long as productivities remain unaffected by

the merger of a team, so should the payoffs of the players who do not take part in the merger.

imt A solution f on GD satisfies Independence of Merging Teams if for every (N, v,D) ∈ GD,

j ∈ N , and i ∈ N \
(
ŜD(j) ∪ j

)
,

fi(N, v,D) = fi

(
N \ ŜD(j), vj, DN\ŜD(j)

)
.

The above property may be especially appealing in certain real-world allocation problems.

For instance, it can be interpreted as an autonomy property for regions in a country or for

departments in an organization such as a firm or a university. Whatever the specific setting,

imt provides different units with the freedom to reorganize themselves without affecting the

entire payoff structure. In combination with eff, this independence property further implies

that when all players in a team merge—and delegate their role to the team’s boss—, the boss’s

payoff in the reduced hierarchy has to be equal to the sum of the payoffs of all members of the

team in the original hierarchy. As a consequence, under imt, there exist no incentives for a team

to merge as far as the team’s aggregate payoff is concerned.

It turns out that the properties introduced throughout the section characterize the solution

ϕSL on the class of games with hierarchical structure.

Theorem I. A solution f on GD satisfies eff, add, npp, imt, nsp, slb, and sub, if and only

if f = ϕSL. Moreover, the seven properties are independent.

In the next section, we consider different versions of upper and lower bound properties that

lead to two alternative solutions for games with hierarchical structure.

5 Two Alternative Solutions

The solution ϕSL proposed in the previous section uses the entire levels structure of the conversion

mapping defined in Section 3. That is to say, all the information about the tree preserved by

the conversion mapping is used. In the present section, we propose two alternative solutions for

games with hierarchical structure. Both alternatives are based on the same procedure used to

construct ϕSL, yet with some changes. First, the hierarchical structure (N,D) is transformed
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into a levels structure (N,B), with B now being a subset of the collection BD of partitions

generated by the conversion mapping H instead of the entire collection. Second, the Shapley

Levels Value is applied to the game with levels structure obtained in the first stage.

5.1 A first alternative solution based on the team levels

For the first alternative solution, we consider the levels structure
(
N,B

D
)

given by B
D

=(
B
D

1 , B
D

2 , . . . , B
D

l(D)

)
, where

B
D

k = BD
k,2 for k ∈ {1, . . . , l(D)},

with BD
k,2 as given by Eq. (3.4). Compared with the original levels structure (N,BD), we now

only consider all partitions BD
k,2, with k ∈ {1, . . . , l(D)}.14 That is, we admit all the team levels

(even levels) and disregard all the siblings levels (odd levels). Since each element in a partition is

either a singleton or a team, this approach builds on the assumption that teams are the relevant

organizational units of production. To every (N, v,D) ∈ GD, the first alternative solution assigns

the Shapley Levels Value of the game with levels structure
(
N, v,B

D
)
.

Definition 5.1. The solution ϕSL on the class of games with hierarchical structure GD is the

solution given by

ϕSL(N, v,D) = ShL
(
N, v,B

D
)
, with (N, v,D) ∈ GD.

We illustrate the above definition by an example.

Example 5.1. Consider (N, uN , D) ∈ GD, with (N,D) being the hierarchy given in Example

3.1. Then, the level structure
(
N,B

D
)
consists of the three even levels. Compared to the level

structure used for solution ϕSL, the first level’s partition of (N,BD) consists of the top player as

a singleton and the teams of each of her two successors. This yields the payoff vector given by

ϕSL(N, uN , D) =

(
1

3
,
1

9
,
1

6
,
1

9
,

1

27
,
1

6
,

1

27
,

1

27

)
.

The example above reveals that ϕSL does not satisfy slb, since player 1 earns less than her

subordinates jointly, despite the fact that she is necessary in (N, uN). The reason is that in the

14Note that B
D

l(D) is the trivial partition of singletons.
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less refined levels structure (N,B
D

), the subordinates of a player, say i, are grouped in different

teams of i’s successors right at the first level where player i is separated from her subordinates.

For necessary players and when the game is monotone, properties slb and sub (see Section

4) establish a relation between a player’s payoff and the sum of the payoffs of all other players in

her team or, equivalently, the sum of the payoffs of all her successors’ teams. Indeed, we stress

that ŜD(i) =
⋃
j∈SD(i)

[
{j} ∪ ŜD(j)

]
for all i ∈ N . Thus, all these teams, i.e.

[
{j} ∪ ŜD(j)

]
with j ∈ SD(i), are considered at once. Nevertheless, under the assumption that teams are

autonomous, it might instead be appealing to relate the payoff of a player to the total payoff of

the players in each of her successors’ teams separately. We do so in the following two properties,

with the so-called team upper bound property being again a weakening of nepp—provided that

payoffs are non-negative—and the team lower bound property being its counterpart.

tub A solution on GD, f , satisfies the Team Upper Bound if for every (N, v,D) ∈ GD with

(N, v) ∈ GM , if j ∈ ŜD(i) is necessary in (N, v) for some i ∈ N and h ∈ SD(i) ∩(
P̂D(j) ∪ j

)
,15

fi(N, v,D) ≤
∑

k∈ŜD(h)∪h

fk(N, v,D).

tlb A solution on GD, f , satisfies the Team Lower Bound if for every (N, v,D) ∈ GD with

(N, v) ∈ GM , if i ∈ N is necessary in (N, v) and j ∈ SD(i),

fi(N, v,D) ≥
∑

k∈ŜD(j)∪j

fk(N, v,D).

It is easy to verify that slb ⇒ tlb and sub ⇐ tub. Substituting slb and sub with tlb

and tub in Theorem I singles out solution ϕSL.

Theorem II. A solution f on GD satisfies eff, add, npp, imt, nsp, tlb, and tub if and

only if f = ϕSL. Moreover, the seven properties are independent.

In Theorems I and II, we have used the superior and team upper- and lower-bound properties

to characterize the solution ϕSL that uses the most refined levels structure and the solution ϕSL

that uses only the team levels (even levels), respectively. An ensuing question is what solution

results from using only the sibling levels (odd levels). We turn to that next.
15Note that h is uniquely determined.
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5.2 A second alternative solution based on the sibling levels

As just mentioned, a further solution for games with hierarchical structure can be obtained

by keeping from BD only the partitions BD
k,1, with the caveat that we have to add the trivial

partition of singletons BD
l(D),2 in order for such a sequence of partitions to formally be a levels

structure. If we do so, we obtain the levels structure (N, B̃D) with B̃D =
(
B̃D

1 , B̃
D
l(D), B̃

D
l(D)+1

)
,

where B̃D
k = BD

k,1 for k ∈ {1, . . . , l(D)} and B̃D
l(D)+1 = BD

l(D),2 = {{i} : i ∈ N}, which induces the

following definition:

Definition 5.2. The solution ϕ̃SL on the class of games with hierarchical structure GD is the

solution given by

ϕ̃SL(N, v,D) = ShL
(
N, v, B̃D

)
, with (N, v,D) ∈ GD.

There is an obvious sense in which this third solution can be considered to be the complement

of ϕSL. The reason is that except for the last level, both solutions use disjoint subsets of the

information contained in the levels structure obtained by applying H to the original hierarchical

structure. As for the first and second solutions, we illustrate the definition of the third solution

by our example.

Example 5.2. Consider again (N, uN , D) ∈ GD, with (N,D) being the hierarchy given in

Example 3.1. Then, the level structure
(
N, B̃D

)
consists of the three odd levels plus the level BD

3,2

of singletons. In that case, the first level consists of two unions, the top player being a singleton

union and all other players, i.e., all her successors together with all their team members, being

in the other union. Applying the Shapley Levels Value yields the payoff vector

ϕ̃SL(N, uN , D) =

(
1

2
,
1

8
,
1

8
,

1

24
,

1

24
,
1

8
,

1

48
,

1

48

)
.

From an inspection of the payoffs in the example above, it follows that ϕ̃SL does not satisfy

tub. Take i = 2 and j = h = 4, for instance. Then, {4} is a team that contains a necessary

player in (N, uN), but the payoff to player 2 is greater than the payoff to player 4. It is also

straightforward to see that ϕ̃SL does not satisfy imt. Take for instance i = 2 and j = 3. Then,

i’s payoff becomes 1
6
when j merges with her team. Interestingly, however, ϕ̃SL does satisfy

stronger versions of nsp, sub, and slb, all of which are introduced next.
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First, we consider a property that relates the payoff of any necessary player to the payoffs

of her siblings in monotone games. Unlike nsp, the requirement on the payoffs does not only

apply to siblings at the bottom of the hierarchy, but also to siblings that may have successors.

snsp A solution on GD, f , satisfies the Strong Necessary Sibling Property if for every (N, v,D) ∈

GD with (N, v) ∈ GM , if i ∈ N is necessary in (N, v) and j ∈ A(i),

fi(N, v,D) ≥ fj(N, v,D).

Note that snsp ⇒ nsp, i.e., snsp is stronger than nsp. Nevertheless, snsp is still weaker

than nepp.

Second, we consider two properties that relate the payoff of a player, say i, to the total payoff

of the subordinates of one of i’s siblings, provided that either there is a necessary player amongst

the latter or i herself is a necessary player, respectively.

ssub A solution on GD, f , satisfies the Strong Superior Upper Bound if for every (N, v,D) ∈ GD

with (N, v) ∈ GM and every i ∈ N , if h ∈ A(i) and some j ∈ ŜD(h) is necessary in (N, v),

fi(N, v,D) ≤
∑

p∈ŜD(h)

fp(N, v,D).

sslb A solution on GD, f , satisfies the Strong Superior Lower Bound if for every (N, v,D) ∈ GD

with (N, v) ∈ GM , if i ∈ N is necessary in (N, v) and j ∈ A(i),

fi(N, v,D) ≥
∑

h∈ŜD(j)

fh(N, v,D).

Provided that payoffs are non-negative, ssub is a weakening of nepp. Moreover, because

i ∈ A(i), sslb ⇒ slb and ssub ⇒ sub. While ϕ̃SL satisfies ssub and sslb—see Theorem III

below—, it does not satisfy imt, as we have seen in Example 5.2. This implies that a property

requiring a connection between the payoffs of two groups of players who are only related in the

hierarchy at a higher level is needed to characterize ϕ̃SL. For both ϕSL and ϕSL, imt plays such

a role. In the case of ϕ̃SL, by contrast, we consider a property that relates the payoff of the

subordinates of two players when one of the former is necessary in the game.
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nop A solution on GD, f , satisfies the Necessary Offspring Property if for every (N, v,D) ∈ GD

and every i ∈ N such that ŜD(i) contains necessary players, it holds that for every j ∈ A(i),∑
h∈ŜD(i)

fh(N, v,D) ≥
∑

h∈ŜD(j)

fh(N, v,D).

The above property can be seen as a variation of nsp and snsp in the following sense: instead

of comparing the payoffs of two siblings when one of them is a necessary player in the game, as

nsp and snsp do, nop relates the total payoff of the two sets of subordinates of two siblings by

requiring that the total payoff to one of the sets is at least as much as the total payoff to the other

one if the former contains a necessary player. Requiring this might be reasonable in situations

where players identify themselves with their (local) boss, and so the relation in the hierarchy

between the two siblings translates into a relation between the two sets of subordinates.

Theorem III. A solution f on GD satisfies eff, add, npp, snsp, sslb, ssub, and nop if and

only if f = ϕ̃SL. Moreover, the seven properties are independent.

That is, if in Theorem I we replace nsp, sub, and slb by the stronger properties snsp, ssub,

and sslb, and imt by nop, we single out solution ϕ̃SL instead of ϕSL.

6 Properties and Solutions: Assessment and Comparison

The goal of this section is two-fold. First, we examine at length the properties for solutions of

games with hierarchical structure that we have introduced throughout the paper. Second, we

compare our three new solutions to the best-known solutions that have been proposed so far in

the literature.

6.1 Assessment of the properties

As we have already mentioned, the Necessary Player Property, nepp, is too demanding a condi-

tion in our setting. This follows from the fact that when such a property is combined with eff,

add, and npp, it leads to a solution that ignores the hierarchical structure. Throughout the

paper, we have explored several ways to weaken nepp, namely nsp, sub, tub, snsp, and ssub,

each variant then leading to a different solution (in combination with other axioms). Because of
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the importance that such properties have in our analysis, we start this section by showing the

logical relations between them and nepp in a diagram.

nepp

tubsnsp ssub

subnsp

Figure 1: The logical relations between the Necessary Player Property (nepp) and its weakenings

(provided that payoffs are non-negative).

Having illustrated the logical relations between nepp and its weakenings, we now proceed

with the rest of the section. Beyond methodological differences, our three solutions diverge

significantly from an axiomatic viewpoint. This has been delineated in the previous section

based on the characterizations of the three solutions by means of certain properties, including

some of the weakenings of nepp just mentioned. Since many of these properties are new in the

literature, their use has to be justified.16

First, we focus on nsp. This weakening of nepp is satisfied by all three solutions. Because

it can be seen as a very weak symmetry axiom, it is then quite reasonable for many real-world

applications. Indeed, nsp only requires that for two players without successors who have the

same boss, and thus have identical positions in the hierarchy, their relative payoff has to be fully

determined by their marginal contributions in the game. An extremely weak implementation of

such a condition is to require that if one of the players is necessary in the game, she has to earn

at least as much as the other player.

Second, a central role in the characterizations of the new solutions is played by the so-called
16Most of the properties that we discuss below are only required for monotone games. However, to facilitate

the discussion, we shall not mention this feature again.
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upper bound (sub, tub, and ssub) and lower bound (slb, tlb, and sslb) properties. All these

axioms relate a player’s payoff to the payoff of certain other players with whom she is related

in the hierarchy. On the one hand, the upper bound properties arise from weakening nepp,

provided that payoffs are non-negative. On the other hand, the corresponding lower bound

properties are natural counterparts, and it seems reasonable to discuss them in pairs, namely

sub/slb, tub/tlb, and ssub/sslb.

We start by reflecting on sub and slb. These two properties require a comparison to be

made between a player’s payoff and the total payoff of her subordinates. Doing so seems par-

ticularly reasonable in a firm, given the fact that sub relaxes the assumption often made in the

literature that a manager’s wage should not be more than the sum of all her (direct) succes-

sors’s wages—see e.g. Williamson (1967). sub weakens this in two ways. First, provided that

payoffs are non-negative, it relaxes the upper bound by considering the sum of the wages of all

her subordinates instead of that of her successors only. Second, it focuses on the case where at

least one subordinate is necessary. In turn, a motivation for slb is as follows: Suppose that a

manager without whom the firm cannot produce any worth, i.e. a necessary player, has only one

subordinate. Then, it is reasonable to demand that the manager earn at least as much as the

subordinate. A natural generalization of this property when the manager has more subordinates

is thus to require that the manager has to earn at least as much as the sum of the payoffs of

all her subordinates. This is precisely what slb demands. Furthermore, we note that the latter

property is related to some extent to the axiom of structural monotonicity (sm), although both

axioms are not logically related. Property sm is used in van den Brink and Gilles (1996) to

axiomatize the Permission Value, and it requires that a player has to earn at least as much as

each of her successors. On the one hand, provided that payoffs are non-negative, slb has a

stronger flavor than sm in that it considers the total payoff of all the subordinates of a player

instead of the payoff of a successor. On the other hand, slb has a weaker flavor than sm in that

it requires the inequality to hold if and only if the manager is necessary in the game.

We now focus on tub and tlb. On the one hand, because slb ⇒ tlb, the latter property

should be acceptable if slb is so. Moreover, likewise slb, tlb can also be related to sm. On

the other hand, as an alternative to sub, tub takes the team of one of the player’s successors as

reference instead of taking the set of all subordinates of the player, as sub does. For organizations
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where teams act more or less independently, tub seems thus more reasonable.17

Next, consider ssub and sslb. These two properties share some features of nsp, for they

compare a player’s payoff with that of a coalition of players who are all related to her siblings.

Moreover, like tlb and tub, ssub and sslb consider teams instead of individual players. Re-

quiring both ssub and sslb, in particular, can be useful when comparing branches of different

size. Indeed, suppose that player i is the head of some department—namely, the branch below

her—, and that one of her siblings is the head of a much bigger department. According to nsp,

if player i and her sibling both had no successors, i would then earn at least as much as her

sibling, provided that she is necessary in the game. When both i and her sibling have successors,

however, nsp has no bite. In such a situation, player i could instead claim at least as much as

all her siblings’ subordinates combined. This is precisely what sslb demands. Finally, ssub

can further be justified as a natural counterpart of sslb, analogously as sub and tub are the

natural counterparts of slb and tlb, respectively.

Third, we discuss snsp and nop. On the one hand, snsp strengthens nsp by demanding

that any necessary player in the game has to receive at least as much as any of her siblings. Yet,

requiring so is still less stringent than nepp. A rationale for the application of snsp is to assume

that siblings should be treated equitably as far as their position in the hierarchy is concerned, no

matter how their teams are organized. In particular, their relative payoff should be determined

solely by their marginal contributions in the game. snsp implements such a condition. On

the other hand, nop fills the gap needed to complete the characterization of ϕ̃SL, which has

been primarily motivated from a methodological viewpoint as the complement of ϕSL. Precisely

because of this, however, nop unravels which coalitions of players are to be compared in terms

of their aggregate payoffs: teams in the case of solution ϕSL (recall tub and tlb) as opposed

to teams without their boss in the case of solution ϕ̃SL (recall ssub, sslb, and nop).

Fourth and last, imt can be discussed beyond the comments made in Section 4. This property

requires that when a player and all her subordinates merge, payoffs of all other players cannot
17We stress that the difference between ϕSL and ϕSL boils down to choosing either the pair slb/sub or the pair

tlb/tub, respectively. The decision about which pair to choose should depend on the application considered. For

instance, if we were to interpret a hierarchical structure as a model for the different layers of public administration,

slb/sub would probably be a better (worse) description than tlb/tub of a centralized (decentralized) budget

distribution.
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change. Similar vertical and horizontal merge (split) neutrality axioms have been considered in

van den Brink (2010). Instead of requiring that a merger cannot affect the players who are not

involved, however, these axioms require that after the merger, the payoff of the resulting merged

player has to be equal to the sum of all merging players. Hence, rather than stipulating an

independence condition, as imt does, these neutrality axioms require a type of payoff stability,

so that players have no incentive to either merge or split. In the literature on communication

graph games, so-called independence axioms have been considered, which do not consider a

merger in the structure of the graph, but a merger in the game. Similarly to imt, those axioms

require that the payoff of players who are not involved in the merger has to remain unchanged.

Such an independence axiom on the class of unanimity games is used in Mishra and Talman

(2010) to characterize the Average Tree Solution for communication graph games.

6.2 Comparison with other values

We now turn to the issue of which of the new properties are satisfied by other solutions from

the literature. Doing so will enable us to examine our three solutions more thoroughly from a

comparative, axiomatic viewpoint. We focus on five well-known solutions, which we now describe

informally for the sake of completeness.

First, the Precedence Shapley Value (PSV , Faigle and Kern, 1992) is obtained as the average

of the marginal vectors for which successors enter before their predecessors in the directed tree.

Second, the Permission Value (PV , van den Brink and Gilles, 1996) is obtained as the Shapley

Value of the permission restricted game. To every coalition, this game assigns the worth of its

largest feasible subset in the original game. A set of players is feasible if for every player in the

set, all her predecessors are also in the set. Third, to every player i, the Hierarchical Outcome

(HO, Demange, 2004) assigns the worth of her team, v({i} ∪ ŜD(i)), minus the sum of the

worths of the teams of all her successors,
∑

j∈SD(i) v({j} ∪ ŜD(j)).18 Fourth, the Average Tree

Permission Value (ATPV , van den Brink et al., 2015) applies the Average Tree Value defined in

Herings et al. (2005) to an associated undirected graph game, where the game is the permission

restricted game and the graph is the undirected graph obtained from the hierarchical structure
18The Hierarchical Outcome and the Permission Value are compared with two other values in van den Brink

et al. (2016).
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by ignoring the orientation of the arcs.19 Finally, for the sake of completeness, we also consider

the solution Sh, which assigns to every game with hierarchical structure the Shapley Value of

the game, and thus ignores the hierarchical structure.

It can be easily verified that the above five solutions, as well as our three new solutions,

satisfy eff and add. For the remaining properties, we present Table 1.

npp nsp snsp sub tub ssub slb tlb sslb imt nop

ϕSL ∗ ∗ − ∗ − − ∗ + − ∗ −

ϕSL ∗ ∗ − + ∗ − − ∗ − ∗ −

ϕ̃SL ∗ + ∗ + − ∗ + + ∗ − ∗

Sh + + + + − + − + − − −

PSV + + − − − − + + − − −

PV − + + + + + − − − − −

HO − + + − − − + + + + +

ATPV − + − − − − − − − − −

Table 1: A ∗ means that the property is satisfied and used to characterize the corresponding

value. The + sign means that the property is satisfied, but not used in the characterization, and

the − sign means that it is not satisfied.

A few comments are in order. First, beyond eff, add, and nsp, all the properties introduced

in this paper are satisfied by at least one of the five solutions taken from the literature. Second,

among the latter, HO seems to be the solution that has more features in common with the

solutions based on levels structures, as it satisfies all lower bound properties, imt, snsp, and

nop. Third, except for eff, add, and nsp, ATPV does not satisfy any of the other properties

considered in the paper.

Finally, to further illustrate the differences between our three new solutions and the five

solutions from the literature, we compute the payoffs for the latter in the case of the game with

hierarchical structure of Example 3.1. There are two polar cases: either the spoils are divided
19For a complete definition of the Average Tree Permission Value, we refer to van den Brink et al. (2015).
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equally or everything is allocated to the root of the tree. Indeed,

Sh(N, uN) = PV (N, uN , D) = ATPV (N, uN , D) =

(
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

)
,

PSV (N, uN , D) = HO(N, uN , D) = (1, 0, 0, 0, 0, 0, 0, 0).

That is, at least as far as unanimity games are concerned, our three solutions use the entire

information contained in the hierarchical structure (Sh, PV and ATPV do not differentiate at

all between the players), but not so much as to assign all the worth to one player (as done by

PSV and HO). Accordingly, there is a sense in which ϕSL, ϕSL, and ϕ̃SL yield a compromise

between the two extreme proposals. Such a feature is a consequence of the fact that our solutions

are based on the Shapley Levels Value. As such, they are more sensitive to the agents’ position

in the hierarchy.

The importance of how responsive solutions should be to changes in the hierarchy seems to

have been underestimated in the literature on games with hierarchical structure. When the game

is the unanimity game of the grand coalition, in particular, the payoff assigned by a solution

to a player in a game with hierarchical structure can be interpreted as the player’s importance

in the hierarchy. Our paper adds to the knowledge about this issue by providing three solution

concepts that assign a distinctive payoff to each player, depending not only on her position

in the hierarchy but also on that of certain other players. Hence, our approach builds on the

assumption that even small changes in the hierarchy could induce changes in the payoffs.

7 Concluding Remarks

In this paper we have introduced a new way to exploit the information contained in a hierarchical

structure by mapping it into a levels structure, without any loss of information in many settings.

This has enabled us to define three new solutions for games with hierarchical structure, which we

have all characterized. From an axiomatic point of view, the most relevant differences between

the solutions stem from the fulfillment (or lack of fulfillment) of certain properties that result from

relaxing, by means of the information contained in the hierarchical structure, the requirement

that in a monotone game, a necessary player should obtain at least as much as any other player.

Because the latter requirement (i.e., the Necessary Player Property) and the Null Player

Property combined are too demanding in our setting—when taken together with Efficiency and
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Additivity—, we have chosen to keep the Null Player Property and to relax the Necessary Player

Property. We have then shown that doing so fits particularly well with the approach based on

levels structures, for it has allowed us to define reasonable solutions for games with hierarchical

structure. Instead, we could have kept the Necessary Player Property and considered different

ways to weaken the Null Player Property. This is a plan for future research.

One further appeal for the suggested ways of weakening the Necessary Player Property is that

they are all informative about how certain relations between players and/or teams translate into

power within hierarchical organizations. According to our assessment, these relations have been

overlooked to date. Gaining insight about whether, and if so how, an organization’s structure

should affect the rewards to its members might be a relevant issue in real-world organizations

such as universities, firms, or countries. Our paper contributes to this knowledge by shedding

more light on the comparison of different organizational structures, some of which are flat and

some of which are structured along steep hierarchies.

Our analysis has relied in particular on three ways of mapping a directed tree into a levels

structure. In all cases, we have required that a player who is higher in the hierarchy is more

independent from the other players in the collection of nested partitions, in the sense that such a

player becomes a singleton coalition at a lower-ranked partition than a player that is lower in the

hierarchy. A full understanding of the advantages of our procedure requires further examination.

For instance, it seems interesting to answer a question that can be seen as the reversal of this

paper: Which are all the solutions for games with hierarchical structure that can be obtained

according to our procedure? This is also left for future research.
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—FOR ONLINE PUBLICATION ONLY—

Appendix A Proofs of Section 3

Proof of Theorem 3.2 We note that |N | ≥ 2. We first prove that for each (N,D) ∈ D, every partition

P ∈ BD satisfies p1–p5. Second, we prove that if a partition P 6= {N} respects a given directed tree

(N,D) ∈ D (i.e., the partition satisfies p1–p5 with respect to (N,D)), then P must belong to BD.

Existence: Let (N,D) ∈ D, i ∈ N and P be any proper partition of the levels structure H(N,D).

We assume that P 6= {{j}}j∈N , for if not it is immediate to verify that P satisfies all properties with

respect to any D. We distinguish two cases, depending on whether P = BD
s,1 as defined in Eq. (3.3) or

P = BD
s,2 as defined in Eq. (3.4), where s ≥ 1 is an integer.

Case 1: T = BD
s,1. In this case, we have

P =
{
{i} : l(i) ≤ s− 1

}
∪
{
ŜD(i) : l(i) = s− 1

}
. (A.5)

First, let i, j ∈ N be such that (i, j) ∈ D and Pi 6= {i}.20 Then, by Eq. (A.5), we obtain l(i) ≥ s

and then ŜD(i) ⊆ Pi. In particular, p1 is satisfied. Second, let i, j ∈ N be such that j ∈ A(i) and

Pi \ ŜD(i) 6= ∅. By Eq. (A.5), we have l(i) ≥ s. Since l(j) = l(i), from Eq. (A.5) it follows that Pi = Pj

and p2 holds. Third, let i, j ∈ N be such that l(i) = l(j), SD(i) 6= ∅, and Pi = {i}. From Eq. (A.5), it

follows that l(i) ≤ s − 1, so Pj = {j} and p3 is met. Fourth, let i, j ∈ N be such that (i, j) ∈ D and

Pi = {i}. Note in particular that SD(i) 6= ∅. Then, l(i) ≤ s − 1 and l(j) ≤ s. If l(i) < s − 1, we have

Pj = {j}. If l(i) = s − 1, we have Pj = ŜD(i). In any case, p4 is satisfied. Fifth, let i, j ∈ N be such

that l(i) = l(j), A(i) \ i 6= ∅, and A(j) \ j 6= ∅. If l(i) < s, we have Pi = {i} and Pj = {j}. If l(i) ≥ s,

we have A(i) ⊆ Pi and A(j) ⊆ Pj . In the two cases, p5 is satisfied.

Case 2: P = BD
s,2. In this case, we have

P =
{
{i} : l(i) ≤ s− 1

}
∪
{
ŜD(j) ∪ j : l(j) = s

}
. (A.6)

First, let i, j ∈ N be such that (i, j) ∈ D and Pi 6= {i}. Then, by Eq. (A.6), we have l(i) ≥ s and

Pi = Pj , so p1 is satisfied. Second, let i, j ∈ N be such that j ∈ A(i) and Pi \
(
ŜD(i) ∪ i

)
6= ∅. By Eq.

(A.6), we have l(i) ≥ s + 1. Then, Pi = Pj and p2 holds. Third, let i, j ∈ N be such that l(i) = l(j),

SD(i) 6= ∅, and Pi = {i}. Then, Eq. (A.6) implies that l(j) = l(i) ≤ s − 1 and hence Pj = {j}.

Therefore, p3 is met. Fourth, let i, j ∈ N be such that (i, j) ∈ D and Pi = {i}. Note in particular that

20Recall that for a given partition of N , P and i ∈ N , we denote by Pi the element of P containing player i.
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SD(i) 6= ∅ and then, l(i) ≤ s − 1. If l(i) = s − 1, we have Pj = ŜD(j) ∪ j ⊆ ŜD(i). If l(i) < s − 1, we

have l(j) ≤ s − 1 and hence Pj = {j} ⊆ ŜD(i). In any case, p4 is satisfied. Fifth, let i, j ∈ N , with

i 6= j, be such that l(i) = l(j), A(i) \ i 6= ∅, and A(j) \ j 6= ∅. If l(i) ≤ s − 1, we obtain Pi = {i} and

Pj = {j}. If l(i) = s, we obtain Pi = ŜD(i) ∪ i and Pj = ŜD(j) ∪ j. If l(i) > s, we obtain Pi * ŜD(i)

and Pj * ŜD(j). In all three cases, p5 holds.

Uniqueness: Let P be a proper partition of N that satisfies p1–p5. First, let i ∈ N be such that

Pi 6= {i}. By p1, Pi = Pj for every j ∈ SD(i). Thus, also Pj 6= {j}, and applying p1 again yields

Pk = Pj for every k ∈ SD(j). By repeating the same procedure until there is no more agent with

successors, we obtain that Pl = Pi for every l ∈ ŜD(i). Hence the next implication holds for every

i ∈ N :

[Pi 6= {i}] =⇒
[
ŜD(i) ⊆ Pi

]
. (A.7)

Next, for given i and j ∈ P̂D(i), suppose that Pj 6= {j}. Then by Eq. (A.7) it holds that i ∈ Pj , and

thus Pi 6= {i}. From this, we obtain the implication below for every i ∈ N

[Pi = {i}] =⇒
[
∀j ∈ P̂D(i), Pj = {j}

]
. (A.8)

We can assume that there is at least one player who is a singleton in P . Conversely, suppose that

for every l ∈ N , Pl 6= {l}. In particular, Pi0 6= {i0}. Since ŜD(i0) = N \ {i0}, from Eq. (A.7) it follows

that P = {N}, and thus P is not a proper partition of N .

Define the set KD(P ) ⊆ N by

KD(P ) = {i ∈ N : Pi = {i}, SD(i) 6= ∅, and ∃j ∈ SD(i) such that Pj 6= {j}} . (A.9)

We show that either KD(P ) 6= ∅ or

P = {{i} : i ∈ N}. (A.10)

In the latter case, P = BD
l(D),2 and thus P ∈ BD, which concludes the proof.

If KD(P ) = ∅, suppose there is a player i with Pi = {i} and SD(i) 6= ∅. Then p3 implies that

Pj = {j} for every j ∈ N , where l(j) = l(i). By Eq. (A.8), it then follows that Pk = {k} for every

k ∈ N where l(k) < l(i). Further, for every j ∈ N such that l(j) = l(i) and SD(j) 6= ∅, we have that

Pk = {k} for every k ∈ SD(j), since otherwise j ∈ KD(P ), which contradicts that KD(P ) = ∅. Hence,

Pk = {k} for every k ∈ N with l(k) = l(i) + 1. By repeating the latter step iteratively, it follows that

Eq. (A.10) holds. It remains to consider the case where SD(i) = ∅ for all i ∈ N , with Pi = {i}. Since

there is at least one player i with Pi = {i}, from Eq. (A.8) it follows that Pi0 = {i0}. As |N | ≥ 2 and
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KD(P ) = ∅, we obtain again following an iterative argument that Eq. (A.10) holds, hence completing

the proof.

In the remaining, we consider the case where KD(P ) is nonempty. We first prove that

l(i) = l(j) for i, j ∈ KD(P ), (A.11)

i.e., all players of KD(P ) are at the same distance from the root. Suppose this is not the case, and let

i, j ∈ KD(P ) be such that l(i) < l(j). Let k ∈ SD(i) be a successor of i such that Pk 6= {k}. The

existence of such a player is guaranteed, as i ∈ KD(P ). When l(i) + 1 = l(j), we obtain l(k) = l(j).

Since j ∈ KD(P ), and so SD(j) 6= ∅ and Pj = {j}, p3 implies that Pk = {k}, which is a contradiction.

When l(i) + 1 < l(j), let h ∈ P̂D(j) be such that l(h) = l(i) + 1. Since j ∈ KTD, Ph = {h} by Eq. (A.8).

By p3, also Pk = {k}, again contradicting the hypothesis above. Therefore, Eq. (A.11) holds.

Next, we consider the set of all players who are subordinates of some player in KD(P ), i.e.,

S(KD(P )) =
{
i ∈ N : ∃j ∈ KD(P ) such that i ∈ ŜD(j)

}
.

We deal with the players in this set and the players in her complement separately.

First, we consider the set N \ S(KD(P )). Since KD(P ) 6= ∅, it follows by p3 that Pi = {i} for every

i ∈ N \ KD(P ) with l(i) = s, and consequently, Pi = {i} for every i ∈ N with l(i) = s. Further, by Eq.

(A.8), we obtain that Pi = {i} for every i ∈ N with l(i) < s. Next, consider a player i ∈ N \KD(P ) such

that l(i) = s and SD(i) 6= ∅ and take j ∈ SD(i). Since, i /∈ KD(P ), it holds that Pj = {j}. By repeating

the latter argument for every k ∈ SD(j) and so forth, it follows that Pk = {k} for all k ∈ ŜD(i). Taking

everything together, we have shown that for every j ∈ N \ S(KD(P )),

Pj = {j}. (A.12)

Second, we consider the set S(KD(P )). Take some i ∈ KD(P ) and suppose that for some j ∈ SD(i),

it holds that Pj \
(
ŜD(j) ∪ j

)
6= ∅, and thus Pj 6= {j}. By Eq. (A.7), it holds that ŜD(j) ⊆ Pj . Then,

since Pi 6= {i}, by p4, we have

Pj ⊆ ŜD(i).

On the other hand, when A(j) = {j}, it holds trivially that⋃
k∈SD(i)

(
ŜD(k) ∪ k

)
= ŜD(i) ⊆ Pj ,

and thus Pj = ŜD(i). Also, if A(j)\ j 6= ∅, then, by p2, k ∈ Pj for all k ∈ A(j)\ j and Eq. (A.7) implies

that ŜD(l) ⊆ Pj for all k ∈ A(j) \ j. Therefore,⋃
k∈SD(i)

(
ŜD(k) ∪ k

)
= ŜD(i) ⊆ Pj
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and then, Pj = ŜD(i). Hence, when there exists j ∈ SD(i) such that Pj \
(
ŜD(j) ∪ j

)
6= ∅, it holds that

Pj includes all subordinates of i, and thus for every k ∈ SD(i),

Pk = ŜD(i). (A.13)

Next, suppose that for some i ∈ KD(P ), it holds that Pj ⊆ ŜD(j) for every j ∈ SD(i). If Pj 6= {j},

then Eq. (A.7) implies that ŜD(j) ⊆ Pj and thus Pj = ŜD(j). When Pj = {j} and SD(j) 6= ∅, we

obtain by p3 that Pk = {k} for every k ∈ SD(i), which contradicts that i ∈ KD(P ). Hence, when

Pj = {j}, SD(j) = ∅. Therefore, Pj = ŜD(j)∪ j. In both cases, we have that Pj = ŜD(j)∪ j. It follows

that for every i ∈ KD(P ), either Eq. (A.13) holds, or for all j ∈ SD(i),

Pj = ŜD(j) ∪ j. (A.14)

Finally, let i1, i2 ∈ KD(P ) be two different players and suppose that Eq. (A.14) holds when we take

i = i1, but it does not hold when we take i = i2, that Eq. (A.13) holds when we take i = i2, but that it

does not hold when we take i = i1. It follows, in particular, that A(i1) \ {i1} 6= ∅ and A(i2) \ {i2} 6= ∅.

However, this leads to a contradiction with p5.

As a consequence of all the above steps, we have proved that either

P =
⋃

i∈N :l(i)=s

{{i}} ∪
 ⋃
j∈P̂D(i)

{{j}}

 ∪ {ŜD(i)}

 , (A.15)

or

P =
⋃

i∈N :l(i)=s

{{i}} ∪
 ⋃
j∈P̂D(i)

{{j}}

 ∪
 ⋃
j∈SD(i)

{ŜD(j) ∪ {j}}

 . (A.16)

Note that Eqs. (A.15) and (A.16) are equivalent to P = BD
1,s and P = BD

2,s respectively, so that

P ∈ BD.

Independence of the properties used in Theorem 3.2

Consider the following triples composed of a finite set N , a rooted tree D ∈ GN , and a partition

T ∈ PN :

1. N = {1, 2, 3}, D = {(1, 2), (2, 3)} and T = {{1, 2}, {3}}.

In this case, D and T satisfy p2, p3, p4, and p5 but fail to satisfy p1.

2. N = {1, 2, 3, 4, 5}, D = {(1, 2), (1, 3), (1, 4), (1, 5)} and T = {{1}, {2, 3}, {4, 5}}.

In this case, D and T satisfy p1, p3, p4, and p5 but fail to satisfy p2.
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3. Case 3: N = {1, 2, 3, 4, 5}, D = {(1, 2), (1, 3), (2, 4), (3, 5)} and

T = {{1}, {2, 4}, {3}, {5}}.

In this case, D and T satisfy p1, p2, p4, and p5 but fail to satisfy p3.

4. N = {1, 2, 3, 4, 5}, D = {(1, 2), (1, 3), (2, 4), (3, 5)} and T = {{1}, {2}, {3}, {4, 5}}.

In this case, D and T satisfy p1, p2, p3, and p5 but fail to satisfy p4.

5. N = {1, 2, 3, 4, 5, 6, 7}, D = {(1, 2), (2, 4), (2, 5), (1, 3), (3, 6), (3, 7)} and

T = {{1}, {2}, {3}, {4, 5}, {6}, {7}}.

In this case, D and T satisfy p1, p2, p3, and p4 but fail to satisfy p5.
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Appendix B Proofs of Section 4

This appendix contains the proof of Theorem I. Before we present it, however, we prove two lemmas

that will come in handy in the proofs of Theorems I–III. Given (N,D) ∈ D and i ∈ N , let Ni be given

by

Ni = ŜD(i) ∪ P̂D(i) ∪ SD
(
P̂D(i)

)
, (B.17)

Note that i ∈ SD
(
P̂D(i)

)
and thus i ∈ Ni, and that Ni further consists of all subordinates and superiors

of i together with all successors of her superiors. We call the players in Ni \ i the relatives of i.21 We

next define the game (Ni, vi) ∈ G by, vi(T ) = v
(
TDi
)
for every T ⊆ Ni, with

TDi = T ∪

 ⋃
j∈T\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)

 . (B.18)

We prove now the first of our lemmas.

Lemma B.1. If a solution on GD, f , satisfies independence of merging teams (imt), then for every

(N, v,D) ∈ GD and i ∈ N , fi(N, v,D) = fi(Ni, vi, DNi).

Proof.

Let (N, v,D) ∈ GD and i ∈ N , and consider (Ni, vi, DNi) as defined in Eqs. (B.17) and (B.18). If

Ni = N , then DNi = D and TDi = T for all T , so that vi = v. Hence fi(Ni, vi, DNi) = fi(N, v,D).

Hence, consider the case in which Ni 6= N . Then, for some integer m > 0, there is a sequence of

games (N (k), v(k), D(k)), k = 0, . . . ,m, such that (i) (N (0), v(0), D(0)) = (N, v,D), (ii) for k = 1, . . .m,

N (k) = N (k−1) \ ŜD(j) for some j ∈ N (k−1), v(k) =
(
v(k−1)

)k and D(k) =
(
D(k−1)

)
N(k) , and (iii)

N (m) = Ni and so D(m) = DNi . The existence of such a sequence is guaranteed by Eq. (B.17). Then,

by imt, for all k ∈ {1, . . . ,m},

fi(N
(k), v(k), D(k)) = fi(N

(k−1), v(k−1), D(k−1)) for all i ∈ N (m) = Ni.

Moreover, for each T ⊆ Ni,

v(m)(S) = v(0)

 ⋃
j∈T\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)

 .

Since v(0) = v, it follows that v(m) = vi, which completes the proof.

�

21Note that “being a relative” is not a symmetric relation.
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When all players in N \ i are relatives of i, we have Ni = N and thus (Ni, vi, DNi) = (N, v,D). In

that case, the statement of the lemma is trivial. When they are not relatives, the lemma provides us

with a property implied by imt requiring the payoff of a player not be affected by changes in the position

in the hierarchy of players who are not her relatives. As the proof of Lemma B.1 shows, (Ni, vi, DNi)

is obtained from the repeated application of imt. Indeed, when Ni 6= N , there is an integer m > 0

and a sequence of games with hierarchical structure
(
N (k), v(k), D(k)

)
, with k = 0, . . . ,m, such that (i)(

N (0), v(0), D(0)
)

= (N, v,D), (ii) for every k ∈ {1, . . .m}, N (k) = N (k−1) \ ŜD(j) for some j ∈ N (k−1),

v(k) =
(
v(k−1)

)j , and D(k) =
(
D(k−1)

)
N(k) , and (iii)

(
N (m), v(m), D(m)

)
= (Ni, vi, DNi).

The next example illustrates the consequences of imt as stated in Lemma B.1.

Example B.2. Consider (N, uN , D) ∈ GD with D as given in Example 3.1. For i = 4, we have

N4 = {1, 2, 3, 4, 5} and (N4, DN4) the tree given by the left side of Figure 2. If a solution f satisfies

imt, then Lemma B.1 implies that the payoff to Player 4 in (N, v,D) is equal to the payoff of Player

4 in (N4, v4, DN4). Hence, ϕSL4 (N4, (uN )4, DN4) = ϕSL4 (N, uN , D) = 1
16 . Taking i = 3 yields N3 =

{1, 2, 3, 6} and (N3, DN3), given by the right side of Figure 2. By Lemma B.1, ϕSL3 (N3, (uN )3, DN3) =

ϕSL3 (N, uN , D) = 1
8 .
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Figure 2: Directed trees DN4 and DN3 of Example 3.1

The second of our lemmas shows that for a unanimity game (N, uT ), the repeated application of

imt results in a new unanimity game. Note that T (i) = T when Ni = N .

Lemma B.3. Consider (N, cuT , D) ∈ GD, where c > 0 and T ⊆ N . Then, for every i ∈ N ,

(Ni, (cuT )i) = (Ni, cuT (i)) with

T (i) = (T ∩Ni) ∪
{
j ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(j) ∩ T 6= ∅

}
.
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Proof.

Let (N, cuT , D) ∈ GD, with c > 0 and T ⊆ N , and let i ∈ N . For each R ⊆ Ni, we have

(uT )i(R) = uT (RDi ) =


1 if T ⊆ RDi ,

0 otherwise,

where RDi is defined according to Eq. (B.18). Note that

T ⊆ RDi ⇐⇒ T ⊆ R ∪

 ⋃
j∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)


⇐⇒ [T ∩Ni ⊆ R] and

T \Ni ⊆
⋃

j∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)

 .
We claim that T \Ni ⊆

⋃
j∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)


⇐⇒

[{
j ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(j) ∩ T 6= ∅

}
⊆ R

]
.

(B.19)

Then, (cuT )i = cuT (i) with

T (i) = (T ∩Ni) ∪
{
j ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(j) ∩ T 6= ∅

}
.

Therefore, it only remains to prove the claim in Eq. (B.19). On the one hand, let j ∈ Ni\
(
ŜD(i) ∪ P̂D(i) ∪ i

)
be such that ŜD(j) ∩ T 6= ∅ and j /∈ R. Take k ∈ ŜD(j) ∩ T . Then, by construction of Ni—note that

j ∈ Ni \
(
ŜD(i) ∪ P̂D(i) ∪ i

)
—, we have k ∈ T and k /∈ Ni, but

k /∈
⋃

h∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(h). (B.20)

On the other hand, let k ∈ T \Ni such that Eq. (B.20) holds. Then, let j ∈ Ni \
(
ŜD(i) ∪ P̂D(i) ∪ i

)
be such that k ∈ ŜD(j). The existence of j is guaranteed by construction of Ni. Hence,

j ∈
{
h ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(h) ∩ T 6= ∅

}
\R.

�

We are finally in the position to prove the characterization of the first solution, ϕSL.

Proof of Theorem I

We first prove that there is at most one solution on GD that satisfies all properties. After that, we

will prove that ϕSL satisfies them.
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Uniqueness: Suppose that f satisfies the seven axioms. For every (N, v0, D), with (N, v0) the null

game given by v0(S) = 0 for all S ⊆ N , npp implies that fi(N, v0, D) = 0 for all i ∈ N .

Next, let (N, cuT , D) ∈ GD, where ∅ 6= T ⊆ N and c > 0. We prove uniqueness of f(N, cuT , D) by

induction on the depth l(D) of the directed tree (N,D). If l(D) = 0, we have that N = T = {i0}. Then

eff implies that fi0(N, cuT , D) = c. Proceeding by induction, assume that for every N ′ ⊆ N , every

T ′ ⊆ N ′, and every (N ′, D′), f(N ′, cuT ′ , D
′) is uniquely determined whenever l(D′) < l(D).22 For every

i ∈ N , we define the set of subordinates of i with rank equal to the depth of the directed tree, i.e.,

HD(i) =
{
j ∈ ŜD(i) : l(j) = l(D)

}
.

We distinguish five cases with respect to i ∈ N .

Case I: i ∈ N \ T . By npp, fi(N, cuT , D) = 0.

Case II: i ∈ T , SD(i) 6= ∅, and HD(i) = ∅. By imt, fi(N, cuT , D) = fi(Ni, (cuT )i, DNi).23 Due

to Lemma B.3, (Ni, (cuT )i) is a scaled unanimity game and, by definition of Ni, l(DNi) < l(D). Then,

it follows from the induction hypothesis that fi(Ni, (cuT )i, DNi), and thus fi(N, cuT , D), is uniquely

determined.

Case III: i ∈ T , SD(i) = ∅, and l(i) < l(D). Following exactly the same argumentation as in Case

II, it can be shown that fi(N, cuT , D) is uniquely determined.

Case IV: i ∈ T and HD(i) 6= ∅. Note that HD(i) 6= ∅ implies SD(i) 6= ∅. By imt, we have

fi(N, cuT , D) = fi(Ni, (cuT )i, DNi). However, unlike in Case II, we have l(DNi) = l(D). Define

Qi = SD

(
P̂D(i)

)
\
(
P̂D(i) ∪ i

)
as the set of subordinates of superiors of i, except i and all her superiors.

Note that
{
ŜD(i), {i}, P̂D(i), Qi

}
is a partition of Ni. Therefore, by eff,

fi(Ni, (cuT )i, DNi)

= c−
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi)−
∑

j∈P̂D(i)

fj(Ni, (cuT )i, DNi)−
∑
j∈Qi

fj(Ni, (cuT )i, DNi).
(B.21)

For each j ∈ Qi, by Lemma B.3 we have that
(

(Ni)j , ((cuT )i)j , D(Ni)j

)
is also a unanimity game and,

by construction of (Ni)j , we obtain that l
(
D(Ni)j

)
< l(DNi) = l(D). The latter holds since SD(i) 6= ∅

and lD(j) ≤ lD(i) for any j ∈ Qi ⊆ Ni. Then, by applying imt to (Ni, (cuT )i, DNi) we obtain that

fj (Ni, (cuT )i, DNi) = fj

(
(Ni)j , ((cuT )i)j , D(Ni)j

)
for each j ∈ Qi. From the induction hypothesis, it

then follows that

fj (Ni, (cuT )i, DNi) is uniquely determined for j ∈ Qi. (B.22)

22Note that we assume the induction hypothesis for every subset N ′ of N and the (scaled) unanimity game on

every subset T ′ of N ′.
23Throughout the proof, every time we apply imt, we are actually using the result from Lemma B.1.
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We note that (Ni)j ∩ ŜD(i) = ∅ for j ∈ Qi. By npp, slb, and sub, we have that

∑
j∈ŜD(i)

fj(Ni, (cuT )i, DNi) =


fi(Ni, (cuT )i, DNi) if ŜD(i) ∩ T 6= ∅,

0 otherwise.
(B.23)

Let Xi = 1 if ŜD(i) ∩ T 6= ∅ and Xi = 0 otherwise. Next, we show uniqueness of fi(Ni, (cuT )i, DNi) by

a second induction on
∣∣∣P̂D(i) ∩ T

∣∣∣. First, assume that
∣∣∣P̂D(i) ∩ T

∣∣∣ = 0. Then, Eq. (B.21) reduces to

(1 + Xi) · fi(Ni, (cuT )i, DNi) = c−
∑
j∈Qi

fj(Ni, (cuT )i, DNi).

Hence, fi(Ni, (cuT )i, DNi) is uniquely determined.

Second, suppose that for some integer t > 0, fi(Ni, (cuT )i, DNi) is uniquely determined for every

i′ ∈ T with HD(i′) 6= ∅ and
∣∣∣P̂D(i′) ∩ T

∣∣∣ < t, and let i ∈ T be such that HD(i) 6= ∅ and
∣∣∣P̂D(i) ∩ T

∣∣∣ = t.

Take k ∈ P̂D(i) ∩ T such that for every j ∈ P̂D(i) ∩ T we have l(k) ≥ l(j), i.e., k is the predecessor of

i who is closest to the latter in the tree among those superiors of i that belong to T . By slb and sub,

and the fact that i ∈ T ∩ ŜD(k), we obtain

fk(Ni, (cuT )i, DNi) = fi(Ni, (cuT )i, DNi) +
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi) (B.24)

+
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi) +
∑

j∈P̂D(i)∩ŜD(k)

fj(Ni, (cuT )i, DNi).

Moreover, due to npp and the definition of k, Eq. (B.24) reduces to

fi(Ni, (cuT )i, DNi) = fk(Ni, (cuT )i, DNi)−
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi)

−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi). (B.25)

By definition of k, we also have
∣∣∣P̂D(k) ∩ T

∣∣∣ < ∣∣∣P̂D(i) ∩ T
∣∣∣ = t. Hence, by the second induction

hypothesis, fk(Ni, (cuT )i, DNi) is uniquely determined. Then, using Eq. (B.23), we can rewrite Eq.

(B.25) as

(1 + Xi) · fi(Ni, (cuT )i, DNi) = fk(Ni, (cuT )i, DNi)−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi).

Therefore, fi(Ni, (cuT )i, DNi) is uniquely determined.

Case V: i ∈ T , SD(i) = ∅, and l(i) = l(D). Note that SD(i) = ∅ implies HD(i) = ∅. By imt,

fi(N, cuT , D) = fi(Ni, (cuT )i, DNi). (B.26)
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Note that every j ∈ Ni \ A(i) belongs to one of the four cases above with respect to (Ni, (cuT )i, DNi).

Then, from the previous cases, the fact that l(DNi) = l(D), and the induction hypothesis

fj (Ni, (cuT )i, DNi) is uniquely determined for j ∈ Ni \A(i). (B.27)

Next, by eff, ∑
j∈A(i)

fj(Ni, (cuT )i, DNi) = c−
∑

j∈Ni\A(i)

fj(Ni, (cuT )i, DNi).

Further, by npp and nsp, for each j ∈ A(i)

fj(Ni, (cuT )i, DNi) =


fi(Ni, (cuT )i, DNi) if j ∈ T,

0 otherwise.

Let Yj = 1 if j ∈ T and Yj = 0 otherwise. Then, from the two above equations, it follows that

fi(Ni, (cuT )i, DNi) ·
∑
j∈A(i)

Yj = c−
∑

j∈Ni\A(i)

fj(Ni, (cuT )i, DNi).

Uniqueness of fi(N, cuT , D) is obtained straightforwardly by applying Eq. (B.27) to the above equation,

as Yi = 1.

We conclude from Cases I–V that f(N, cuT , D) is uniquely determined if c > 0. Now, consider

(N, cuT , D) with c < 0.24 We have already mentioned that npp implies that fi(N, v0, D) = 0 for all

i ∈ N , where (N, v0) is the null game. Since cuT + (−cuT ) = v0, add implies that

f(N, cuT , D) = f(N, v0, D)− f(N,−cuT , D) = −f(N,−cuT , D).

Since −c > 0, f(N,−cuT , D) is uniquely determined. Thus, f(N, cuT , S) = −f(N,−cuT , S) is also

uniquely determined if c < 0.

Finally, by add we have that f(N, v,D) =
∑

∅6=T⊆N
f(N,∆v(T )uT , D) is uniquely determined for all

(N, v) ∈ G.

Existence: First, solution ϕSL satisfying eff, add, and npp follows from the fact that for a

given (N, v,D) ∈ GD, the levels structure (N,BD) does not depend on the game (N, v), and from the

properties Efficiency, Additivity, and Dummy Player Property satisfied by the Shapley Levels Value (see

Winter, 1989).

24Note that we cannot apply the superior upper and lower bound properties, since cuT is not monotone if

c < 0.
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To show that ϕSL also satisfies imt, let (N, v,D) ∈ GD and i ∈ N . Let also U ir,s ∈ BD
r,s be such that

i ∈ U ir,s, with (r, s) ∈ {1, . . . , l(D)} × {1, 2}. Then,

U ir,l =


U ⊇ ŜD(i) ∪ i if r < l(i) or (r, s) = (l(i), 1),

ŜD(i) ∪ i if (r, l) = (l(i), 2),

{i} if r > l(i).

(B.28)

Moreover, ŜD(i) ∈ BD
l(i)+1,1. That is, i and her subordinates belong to the same union in all levels of

(N,BD) prior to level (l(i), 2), at which point the union that contains i is exactly ŜD(i)∪ i, with ŜD(i)

and {i} being unions of the next level. From then on, {i} is always a union herself.

In Álvarez-Mozos et al. (2013), a Multiplication Property satisfied by the Shapley Levels Value is

identified. Here, we only provide an informal description of the property to avoid the introduction of

further notation.25 The property requires the share of v(N)—prescribed by the Shapley Levels Value—

that a player obtains in a game with levels structure be obtained by multiplying each of the shares

received according to the Shapley Value by each of the unions U ir,l in certain internal games defined

for each player and each level of the levels structure. The internal game that corresponds to level (r, l)

only uses the information contained in the unions of the coarser levels to which the unions of the game

belong, i.e. U ik,h, with (k, h) ≤lex (r, l), and disregards any other information. For example, with only

one level of cooperation there is an internal game played by all unions and then, there are as many

internal games as unions in the partition, and the player set of each of these games is the corresponding

union. For every union, the internal game then describes the prospects of a coalition that defects from

the union to form a union itself. From the fact that the Shapley Levels Value satisfies the Multiplication

Property, it follows from Eq. (B.28) that, due to the way it is constructed, ϕSL satisfies imt.

To show that ϕSL satisfies nsp, let (N, v,D) ∈ GD and i ∈ N with SD(i) = ∅. Then, it can be

easily verified that every j ∈ A(i) with SD(j) = ∅ has a completely symmetric position in the structure

(N,BD) w.r.t. player i, meaning that for every level, both i and j either belong to the same union or

each of them forms a union as a singleton. From this observation, it follows that in exactly half of the

permutations in Ω(BD), i comes before j and vice versa. Then, whenever j is a necessary player and

(N, v) ∈ GM , we obtain from Eq. (2.1) and the definition of ϕSL that fi(N, v,D) ≤ fj(N, v,D).

Finally, to show that ϕSL satisfies slb and sub, we use the Level game property fulfilled by the

Shapley Levels Value (Álvarez-Mozos and Tejada, 2011). Let (N, v,B) be a game with levels structure

of cooperation and let T ∈ Br ∈ B. This property states that the joint payoff to the members of

25For a formal description, we refer to Álvarez-Mozos et al. (2013).
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T according to the Shapley Levels Value is precisely the payoff to the union T in a game with levels

structure where the players are the unions at level r and the structure is obtained from B by truncating

its levels at level r. That is,
∑

i∈T Sh
L
i (N, v,B) = ShLT (Br, v

r, (B1, . . . , Br)), where for every Q ⊆ Br,

vr(Q) = v (∪R∈QR).

Let (N, v,D) ∈ GD and i ∈ N . Then, note that Eq. (B.28) implies that among the admissible

permutations of Ω(BD), i comes before her subordinates in half of them and in the other half, all her

subordinates come before player i. By the Level game property described above, it is enough to study

the payoffs to the unions up to level (l(i) + 1, 1). Following a reasoning similar to the one used for nsp,

we can conclude that if i is a necessary player in a monotone game, then she earns as much as all her

subordinates together and vice versa. Thus, ϕSL satisfies both slb and sub.
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Appendix C Proofs of Section 5

Proof of Theorem II

We first show uniqueness and then existence.

Uniqueness: The proof follows the same steps as in the proof of Theorem I, except for Case IV,

where we use tlb and tub instead of slb and sub. Therefore, we only show how to adapt Case IV.

Accordingly, let i ∈ T be such that HD(i) 6= ∅. Proceeding as in the proof of Theorem I, Eqs. (B.21)

and (B.22) follow. Then, by applying npp, tlb, and tub, instead of Eq. (B.23) we obtain for all

j ∈ SD(i)

∑
h∈ŜD(j)∪j

fh(Ni, (cuT )i, DNi) =


fi(Ni, (cuT )i, DNi) if (ŜD(j) ∪ j) ∩ T 6= ∅,

0 otherwise.
(C.29)

Now, for each j ∈ SD(i), let Zj = 1 if
(
ŜD(j) ∪ j

)
∩ T 6= ∅ and Zj = 0 otherwise. Next, we conduct a

second induction on
∣∣∣P̂D(i) ∩ T

∣∣∣ as in the proof of Theorem I. When
∣∣∣P̂D(i) ∩ T

∣∣∣ = 0, Eq. (B.21) now

reduces to 1 +
∑

j∈SD(i)

Zj

 · fi(Ni, (cuT )i, DNi) = c−
∑
j∈Qi

fj(Ni, (cuT )i, DNi),

so fi(Ni, (cuT )i, DNi) is uniquely determined.

Now, suppose that for some integer t > 0, fi(Ni, (cuT )i, DNi) is uniquely determined for every i′ ∈ T

with HD(i′) 6= ∅ and
∣∣∣P̂D(i′) ∩ T

∣∣∣ < t, and assume that
∣∣∣P̂D(i) ∩ T

∣∣∣ = t. Take k ∈ P̂D(i) ∩ T such that

for every j ∈ P̂D(i)∩ T , we have l(k) ≥ l(j), i.e., k is the superior of i who is closest to the latter in the

tree among those superiors of i that belong to T . Let also p ∈ SD(k) ∩
(
P̂D(i) ∪ i

)
, and note that p is

uniquely defined. By tlb and tub, and the fact that i ∈ T , we obtain

fk(Ni, (cuT )i, DNi) = fi(Ni, (cuT )i, DNi) +
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi)

+
∑

j∈Qi∩ŜD(p)

fj(Ni, (cuT )i, DNi) +
∑

j∈P̂D(i)∩(ŜD(p)∪p)

fj(Ni, (cuT )i, DNi).
(C.30)

Moreover, due to npp, Eq. (C.30) reduces to

fi(Ni, (cuT )i, DNi)

=fk(Ni, (cuT )i, DNi)−
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi)−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi)

=fk(Ni, (cuT )i, DNi)−
∑

j∈SD(i)

∑
h∈(ŜD(j)∪j)

fh(Ni, (cuT )i, DNi)−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi).

(C.31)
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By definition of k, we have
∣∣∣P̂D(k) ∩ T

∣∣∣ < ∣∣∣P̂D(i) ∩ T
∣∣∣ = t. Hence, by the second induction hypothesis,

fk(Ni, (cuT )i, DNi) is uniquely determined. By using Eq. (C.29), we can rewrite Eq. (C.31) as1 +
∑

j∈SD(i)

Zj

 · fi(Ni, (cuT )i, DNi) = fk(Ni, (cuT )i, DNi)−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi).

Therefore, fi(Ni, (cuT )i, DNi) is uniquely determined. This completes Case IV. The rest of the unique-

ness part of the proof is done in the same way as the proof of Theorem I.

Existence: Solution ϕSL satisfying eff, add, and npp can be shown as in the proof of Theorem

I. To prove that ϕSL also satisfies imt, let (N, v,D) ∈ GD and i ∈ N . Note that when l(i) < l(D), it

holds that
ŜD(i) ∪ i ∈ BD

l(i),2 and for every j ∈ SD(i),

ŜD(j) ∪ j ∈ BD
l(i)+1,2.

(C.32)

That is, i and her subordinates belong to the same union in all levels of
(
N,B

D
)
prior to level l(i), at

which point i and her successors’ teams form separate unions. From then on, i is always a singleton.

From the fact that the Shapley Levels Value satisfies the multiplication property (Álvarez-Mozos et al.,

2013), it can be verified due to Eq. (C.32) that because of the way it is constructed, ϕSL satisfies imt.

To show that ϕSL satisfies nsp, we can repeat the argument used in the proof of Theorem I, since two

siblings with no successors also have a symmetric position in the levels structure
(
N,B

D
)
. Finally, to

show that ϕSL satisfies tlb and tub we can replicate the argument used in Theorem I to show the

subordinate bounds using Eq. (C.32) instead of Eq. (B.28).

Proof of Theorem III

We first show uniqueness and then existence.

Uniqueness: Suppose that f satisfies the seven axioms. For every (N, v0, D), with (N, v0) being

the null game, npp implies that fi(N, v0, D) = 0 for all i ∈ N . Next, let (N, cuT , D) ∈ GD, where

∅ 6= T ⊆ N and c > 0. For every i ∈ N \ T , by npp, fi(N, cuT , D) = 0.

Let i ∈ T henceforth. If |T | = 1, npp and eff imply that fi(N, v,D) = c. Hence, assume

that |T | ≥ 2. We show uniqueness of fi(N, cuT , D) by induction on her rank, l(i). If l(i) = 0, by

using eff, sslb, and ssub, we easily obtain that fi(N, cuT , D) = c
2 . Then, assume that for every

j ∈ T with l(j) < l, fj(N, cuT , D) is uniquely determined, and consider that l(i) = l for some integer

l ∈ {1, . . . , l(D)}. For each j ∈ N , let Xj = 1 if ŜD(j) ∩ T 6= ∅ and Xj = 0 otherwise. Also, for each

j ∈ N , let Yj = 1 if j ∈ T and Yj = 0 otherwise.
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By npp, sslb, and ssub, we have that for each j ∈ A(i)

∑
h∈ŜD(j)

fh(N, v,D) = Xj · fi(N, v,D). (C.33)

Similarly, by npp and snsp, we have that

∑
j∈A(i)

fj(N, v,D) =
∑
j∈A(i)

Yj · fi(N, v,D). (C.34)

Next, we distinguish two cases, depending on whether l = 1 or l > 1.

Case I: l = 1. Note that we have i0 = pD(i). By eff, we obtain

c = fi0(N, v,D) +
∑
j∈A(i)

fj(N, v,D) +
∑

h∈ŜD(j)

fh(N, v,D)

 .

By using Eqs. (C.33) and (C.34), the above equation reduces to

c = fi0(N, v,D) +
∑
j∈A(i)

(Yj + Xj) · fi(N, v,D).

By the induction hypothesis, fi0(N, v,D) is determined. Moreover, the coefficient of fi(N, v,D) in the

above equation is strictly positive. Thus, fi(N, v,D) is determined.

Case II: l > 1. For every r ∈ {0, . . . , l}, let ir ∈
(
P̂D(i) ∪ i

)
be such that l(ir) = r. Note that, in

particular, we have il = i. Also note that Yil = 1 and Xir = 1 for all r ∈ {0, . . . , l − 1}.

First, by npp and nop, for each r ∈ {1, . . . , l − 1},

∑
j∈A(ir)

∑
h∈ŜD(j)

fh(N, v,D) =
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj(N, v,D). (C.35)

Second, we claim that for r ∈ {0, . . . , l},26

c =

r∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj(N, v,D)

+

r∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir)

fj(N, v,D). (C.36)

We prove Eq. (C.36) by induction on r. The case r = 0 is straightforward, since due to eff, c =

fi0(N, v,D) +
∑

j∈ŜD(i0)
fj(N, v,D). Hence, assume that Eq. (C.36) holds if we substitute r by r − 1.

26The multiplication over an empty set is 1.
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To facilitate the presentation of the calculations, we denote fj = fj(N, v,D) for all j ∈ N . Then,

r∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+
r∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir)

fj

=

r−1∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+

r−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir−1)

fj

+
r−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(ir)

fj +
r∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir)

fj −
r−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir−1)

fj

=c+
r−1∏
p=0

∑
j∈A(ip)

Xj ·

 ∑
j∈A(ir)

fj +
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj −
∑

j∈ŜD(ir−1)

fj

 = c,

where the second equality holds from the second induction hypothesis and the last equality is explained

as follows. Indeed, note that for every r ∈ {1, . . . , l − 1}∑
j∈A(ir)

fj +
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj −
∑

j∈ŜD(ir−1)

fj

=
∑

j∈A(ir)

fj +
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj −
∑

j∈A(ir)

fj −
∑

j∈A(ir)

∑
h∈ŜD(j)

fh = 0,

where the last equality holds by Eq. (C.35).

Third, by using Eq. (C.36) when r = l, Eq. (C.36) reduces to

c =
l−1∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+
l−1∏
p=0

∑
j∈A(ip)

Xj ·
∑
j∈A(i)

fj +
l∏

p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(i)

fj . (C.37)

Fourth, applying Eqs. (C.33) and (C.34) to Eq. (C.37) yields

c =
l−1∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+

 l−1∏
p=0

∑
j∈A(ip)

Xj ·
∑
j∈A(i)

Yj +
l∏

p=0

∑
j∈A(ip)

Xj · Xi

 ·fi(N, v,D). (C.38)

By the first induction hypothesis, the first term in the right-hand side of Eq. (C.38) is determined.

Moreover, the coefficient of fi(N, v,D) in Eq. (C.38) is strictly positive. Therefore, fi(N, v,D) is

unique.

Thus, we have shown that f(N, cuT , D) is uniquely determined. Following the lines of the proof of

Theorem I, it can also be verified that f(N, cuT , D) is uniquely determined if c < 0, hence implying by

add that f(N, v,D) =
∑
∅6=T⊆N f(N,∆v(T )uT , D) is uniquely determined for all (N, v) ∈ G.

Existence: First, solution ϕ̃SL satisfying eff, add, and npp can be shown as in the proof of

Theorem I. To prove that ϕ̃SL also satisfies snsp, sslb, ssub, and nop, let (N, v,D) ∈ GD, i ∈ N , and
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j ∈ A(i). Then for every l < l(i),

ŜD(i) ∪ ŜD(j) ∪ {i, j} ⊆ T ∈ BD
l,1 and

ŜD(i), ŜD(j), {i}, {j} ∈ BD
l(i),1.

(C.39)

That is, i and her siblings (as well as all their subordinates) belong to the same union in all levels of(
N, B̃D

)
prior to level l(i), at which point i and her siblings are all singletons, while the subordinates

of each sibling of i (including i herself) constitute a union of that level.

To show that ϕ̃SL satisfies snsp, we can repeat the argument used in the proof of Theorem I since,

by Eq. (C.39), two siblings have a symmetric position in the structure
(
N, B̃D

)
, even if they have

successors. A similar reasoning shows that ϕ̃SL satisfies sslb, ssub, and nop. Indeed, from Eq. (C.39),

it is easy to verify that for every i ∈ N and j ∈ A(i), coalitions {i} and ŜD(j) have a symmetric position

in the structure
(
N, B̃D

)
because they are in the same union up to certain level at which both coalitions

became a union of the partition. Consequently, there are as many admissible permutations in Ω(B̃D)

in which i comes before coalition ŜD(j) than admissible permutations in which i comes after coalition

ŜD(j). From this observation, it follows that ϕ̃SL satisfies sslb and ssub. Finally, to show that ϕ̃SL

satisfies nop, we note that the reasoning above also applies to the coalitions ŜD(i) and ŜD(j), given

that they also have a symmetric position in the structure
(
N, B̃D

)
.
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Appendix D Logical independence of the axioms

Independence of the axioms of Theorem I

1. The solution fi(N, v,D) = 0 for all (N, v,D) ∈ GD and i ∈ N satisfies add, npp, imt, nsp, slb,

and sub. It does not satisfy eff.

2. The solution f(N, v,D) = v(N)ϕSL(N, uE(N,v), D) for all (N, v,D) ∈ GD, with E(N, v) being

the set of all non-null players in (N, v), satisfies eff, npp, imt, nsp, slb, and sub. It does not

satisfy add.

3. Let ω ∈ RΩ
++ be an exogenous vector. For a given (N, v,D) ∈ GD, let

R = {i ∈ N : i is not a null player and SD(A(i)) = ∅} .

Then, consider the solution f defined for each (N, v,D) ∈ GD and each i ∈ N as follows. First,

if v = uT for some T ⊆ N ,

fi(N, v,D) =


ωi∑

j∈A(i)∩R ωj

∑
j∈A(i) ϕ

SL
i (N, v,D) if N = Ω and i ∈ R,

ϕSLi (N, v,D) otherwise.

Second, for an arbitrary (N, v) ∈ G, f(N, v,D) =
∑
∅6=T⊆N f(N,∆v(T )uT , D). Then f satisfies

add, eff, npp, imt, slb, and sub. Moreover, f does not satisfy nsp.

4. The solution f(N, v,D) = v(N)ϕSL(N, uN , D) for all (N, v,D) ∈ GD satisfies add, eff, imt,

nsp, slb, and sub. It does not satisfy npp.

5. The solution ϕ̃SL introduced in Definition 5.2 satisfies add, eff, npp, nsp, slb, and sub. It does

not satisfy imt.

6. Recall that i0 denotes the root of the tree. The solution given by fi0(N, v,D) = v(N)−v(N \{i0}),

and fi(N, v,D) = ϕSL(N, v |N\{i0}, D) if i ∈ N \ {i0}, satisfies eff, add, npp, imt, nsp, and

slb. It does not satisfy sub.

7. The solution ϕSL introduced in Definition 5.1 satisfies eff, add, npp, imt, nsp, and sub. It

does not satisfy slb.
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Independence of the axioms of Theorem II

1. The solution fi(N, v,D) = 0 for all (N, v,D) ∈ GD and i ∈ N satisfies add, npp, imt, nsp, tlb,

and tub. It does not satisfy eff.

2. The solution f(N, v,D) = v(N)ϕSL(N, uE(N,v), D) for all (N, v,D) ∈ GD, with E(N, v) being

the set of all non-null players in (N, v), satisfies eff, npp, imt, nsp, tlb, and tub. It does not

satisfy add.

3. The solution f(N, v,D) = v(N)ϕSL(N, uN , D) for all (N, v,D) ∈ GD satisfies add, eff, imt,

nsp, tlb, and tub. It does not satisfy npp.

4. Let ω ∈ RΩ
++ be an exogenous vector. For a given (N, v,D) ∈ GD, let

R = {i ∈ N : i is not a null player and SD(A(i)) = ∅} .

Then, consider the solution f defined for each (N, v,D) ∈ GD and each i ∈ N as follows. First,

if v = uT for some T ⊆ N ,

fi(N, v,D) =


ωi∑

j∈A(i)∩R ωj

∑
j∈A(i) ϕ

SL
i (N, v,D) if N = Ω and i ∈ R,

ϕSLi (N, v,D) otherwise.

Second, for an arbitrary (N, v) ∈ G, f(N, v,D) =
∑
∅6=T⊆N f(N,∆v(T )uT , D). Then f satisfies

add, eff, npp, imt, tlb, and tub. Moreover, f does not satisfy nsp.

5. Let N∗ = {1, 2, 3, 4, 5} and D∗ = {(1, 2), (1, 3), (2, 4), (3, 5)}. Let also α ∈ [0, 1] \ {0.5}. Then,

consider the solution f defined for each (N, uT , D) ∈ GD, with T ⊆ N , and i ∈ N as follows:

fi(N, u{3,4}, D) =


α if (N, v,D) = (N∗, u{3,4}, D

∗) and i = 3,

1− α if (N, v,D) = (N∗, u{3,4}, D
∗) and i = 4,

ϕSLi (N, uT , D) otherwise.

The solution f on GD is then simply obtained as the additive extension on the whole class of

games with hierarchical structure, and it satisfies add, eff, npp, nsp, tlb, and tub. Moreover,

f does not satisfy imt.

6. The solution f(N, v,D) = Sh(N, v) satisfies add, eff, npp, imt, nsp, and tub. It does not

satisfy tlb.
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7. The solution ϕSL satisfies add, eff, npp, imt, nsp, and tlb. It does not satisfy tub.

Independence of the axioms of Theorem III

1. The solution fi(N, v,D) = 0 for all (N, v,D) ∈ GD and i ∈ N satisfies add, npp, snsp, sslb,

ssub, and nop. It does not satisfy eff.

2. The solution f(N, v,D) = v(N)ϕ̃SL(N, uE(N,v), D) for all (N, v,D) ∈ GD, with E(N, v) being

the set of all non-null players in (N, v), satisfies eff, npp, snsp, sslb, ssub, and nop. It does

not satisfy add.

3. The solution f(N, v,D) = v(N)ϕ̃SL(N, uN , D) for all (N, v,D) ∈ GD satisfies eff, add, snsp,

sslb, ssub, and nop. It does not satisfy npp.

4. Let N∗ = {1, 2} and D∗ = {(1, 2)}, and consider the solution f defined for each (N, uT , D) ∈ GD,

with T ⊆ N , and i ∈ N as follows:

fi(N, uT , D) =


i
3 if (N, v,D) = (N∗, u{1,2}, D

∗) and i ∈ {1, 2},

ϕ̃SLi (N, uT , D) otherwise.

The solution f on GD is then simply obtained as the additive extension on the entire class of

games with hierarchical structure and it satisfies eff, add, npp, snsp, ssub, and nop. It does

not satisfy sslb.

5. Let N∗ = {1, 2} and D∗ = {(1, 2)}, and consider the solution f defined for each (N, uT , D) ∈ GD,

with T ⊆ N , and i ∈ N as follows:

fi(N, ut, D) =


3−i

3 if (N, v,D) = (N∗, u{1,2}, D
∗) and i ∈ {1, 2},

ϕ̃SLi (N, uT , D) otherwise.

The solution f on GD is then simply obtained as the additive extension on the whole class of

games with hierarchical structure and it satisfies eff, add, npp, snsp, sslb, and nop. It does

not satisfy ssub.

6. Let N∗ = {1, 2, 3} and D∗ = {(1, 2), (1, 3)}, and consider the solution f defined for each

(N, uT , D) ∈ GD, with T ⊆ N , and i ∈ N as follows:

fi(N, v,D) =


i
5 if (N, v,D) = (N∗, u{2,3}, D

∗) and i ∈ {2, 3},

ϕ̃SLi (N, uT , D) otherwise.
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Then, solution f on GD is then simply obtained as the additive extension on the whole class of

games with hierarchical structure and it satisfies eff, add, npp, ssub, sslb, and nop. It does

not satisfy snsp.

7. Let N∗ = {1, 2, 3, 4, 5} and D∗ = {(1, 2), (1, 3), (2, 4), (3, 5)}, and consider the solution f defined

for each (N, uT , D) ∈ GD, with T ⊆ N , and i ∈ N as follows:

fi(N, v,D) =


i
9 if (N, v,D) = (N∗, u{4,5}, D

∗) and i ∈ {4, 5},

ϕ̃SLi (N, uT , D) otherwise.

Then, solution f on GD is then simply obtained as the additive extension on the whole class of

games with hierarchical structure and it satisfies eff, add, npp, snsp, ssub, and sslb. It does

not satisfy nop.
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