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Abstract

El Niño Southern Oscillation (ENSO) is an interannual climate phenomenon that
arises in the tropical Pacific as a result of coupled interactions between the atmo-
sphere and the ocean. It is the most prominent modulator of climate variability
on this timescale, and in this respect it plays a fundamental role as a precursor in
seasonal climate forecasting worldwide. The nature of the dynamical system of the
atmosphere is chaotic and in that sense its predictability is sensitive to initial condi-
tions, which constraints our ability to foresee the evolution of ENSO for an unlimited
period of time in advance. This dissertation is dedicated to exploring the possibility
for extending the state-of-the-art prediction of the phenomenon. In particular, it fo-
cuses on the identification of precursory signals in the ocean and in the atmosphere
that improve the understanding and long-lead forecasts of the events. In addition, a
new statistical modelling technique based on dynamic components and state-space
methods is developed and applied to the problem of ENSO prediction, and the se-
lected precursor covariates are incorporated in its design. This exceedingly flexible
methodology has been tested and verified in other areas of science such as engineer-
ing and econometrics, but is only beginning to enter the field of climate science. In
this thesis it is shown that to some extent this methodological strategy can bridge
the purely dynamical and purely statistical concepts of a forecasting exercise.

Very early premonitory signals that are a result of an in-depth and step-by-step
analysis of the processes accompanying the origin and evolution of El Niño, and es-
pecially those happening in the subsurface ocean, which is less impacted by initial
conditions, are established. These tracers are defined in the far western and central
tropical Pacific region and are shown to anticipate El Niño at least two and a half
years before its boreal winter peak in the eastern equatorial Pacific. Initial inten-
sification of the easterly trade winds at this time is associated with convergence of
mass, downwelling and anomalous warming of the subsurface tropical ocean layers
in the far west. In this way, both the South Equatorial Current and the Equatorial
Undercurrent are strengthened, which leads to the propagation of warm subsurface
anomalies eastward along and below the thermocline. These anomalous patterns lead
to changes in the circulation and anomalous warming of the surface of the ocean in
the central tropical Pacific at a later stage, which then leads to the suppression of the
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easterly trade winds. The main area of tropical convection shifts to the east, which
weakens the Walker circulation and triggers the Bjerknes feedback. This allows the
further propagation of the subsurface warm ocean anomalies, which eventually reach
the eastern Pacific and are upwelled to the surface, which marks the onset of an El
Niño event.

Warm anomalies in the subsurface equatorial ocean have been previously used as
precursors in statistical ENSO forecasting models via the integration of the upper
ocean heat content or through the incorporation of anomalies of the 20◦C isotherm.
In this way, however, the propagation feature of the anomalies is not taken into ac-
count, and no direct connection is made between the first anomalous patterns and
the occurrence of a warm event. Instead, only the peak in upper ocean heat con-
tent is used to signal a forthcoming El Niño, and it occurs much later in the overall
evolution of the event, i.e. about 9 months before its mature phase. Hence, the
predictive potential of the incipient warming that starts much earlier in the western
tropical Pacific, and that could substantially extend the forecast lead time, is not
harnessed in these prediction schemes. Furthermore, through experimentation with
a complex physical model it is also shown here that a significant association between
the increase in heat content in the western and central Pacific and the occurrence of
El Niño exists at the longer lead time of 21 months, and not just during the peak
of equatorial heat content 9 months before. Therefore, the work presented in the
dissertation provides strong implications for the possibility of improvement of the
capacity and long-lead capabilities of other models.

The definition of ENSO predictors at specific depths and regions in the ocean and
atmosphere also requires the availability of reliable surface and subsurface measure-
ments of various climate variables. Although sporadic measurements have been taken
in the tropical Pacific for a long time as a result of shipping expeditions and scien-
tific missions, regular and high-resolution measurements have only begun with the
satellite era in the 1980s, and especially with the placement of an observation sys-
tem in the tropics as a result of the Tropical Ocean Global Atmosphere Program
(1985-1994). This Program has been launched primarily to deepen the theoretical
understanding of ENSO and to significantly advance its forecasting. In the disserta-
tion it is verified that the provision of more comprehensive and consistent data sets
as a result of the Program also significantly enhances the forecasting capabilities of
the designed statistical model. Forecasts evidently and substantially improve after
1994, and the change is distinctly pronounced for the long-lead forecasts that rely
on good-quality subsurface information about the ocean thermal structure in the
western and central tropical Pacific. It is thus established that the higher temporal
and spatial resolution data sets of key variables for El Niño dynamics are now long
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enough for statistical forecasting models to make better use of.

The practical utility of multi-year forecasts of El Niño is also explored in the thesis.
Major teleconnections are driven by ENSO, and this makes it a good predictor for
the climate patterns worldwide, but especially more so in the vicinity of the tropi-
cal Pacific. A well established link in the literature exists between ENSO and local
climatic changes in the coastal areas of Ecuador. Following El Niño is a generally
warmer surface temperature and significantly enhanced precipitation in that region.
These two variables, on the other hand, control the dynamics of mosquito population
and the number of mosquito breeding sites, and in this way affect the incidence of
dengue and other infectious diseases spread by these vectors. Therefore, an exper-
iment is performed where long-lead forecasts of El Niño are used within a dengue
prediction model for the province of El Oro in southern coastal Ecuador. The poten-
tial for very long-lead anticipation of dengue outbreaks in the region is explored, as
well as the prospects for developing an early warning system for dengue epidemics.
The analysis serves as a demonstration of the possibility for an operational climate
service in support of the public health community in Ecuador.



Resumen

El Niño Oscilación Sur (ENSO) es un fenómeno climático interanual que surge en el
Paćıfico tropical como resultado de las interacciones acopladas entre la atmósfera y
el océano. Es el modulador más prominente de la variabilidad climática en esta es-
cala del tiempo y, a este respecto, desempeña un papel fundamental como precursor
en el pronóstico climático estacional en todo el mundo. La naturaleza del sistema
dinámico de la atmósfera es caótica y en ese sentido su predictibilidad es sensible
a las condiciones iniciales, lo que limita nuestra capacidad de prever la evolución
del ENSO por un peŕıodo de tiempo ilimitado de antemano. Esta tesis se dedica
a explorar la posibilidad de extender y mejorar la predicción de última generación.
En particular, se centra en la identificación de señales precursoras en el océano y
en la atmósfera que mejoran la comprensión y los pronósticos a largos plazos de los
eventos. Además, se desarrolla una nueva técnica de modelación estad́ıstica basada
en componentes dinámicos y métodos de modelos de espacio de estado y se aplica al
problema de la predicción de ENSO, y las covariables precursoras seleccionadas se
incorporan en su diseño. Esta metodoloǵıa extremadamente flexible ha sido probada
y verificada en otras áreas de la ciencia como la ingenieŕıa y la econometŕıa, pero
está comenzando a entrar en el campo de la ciencia del clima. En esta tesis se de-
muestra que en cierta medida esta estrategia metodológica puede unir los conceptos
puramente dinámicos y puramente estad́ısticos de un ejercicio de pronóstico.

Las señales premonitorias muy tempranas que son el resultado de un análisis en pro-
fundidad y paso a paso de los procesos que acompañan al origen y evolución de El
Niño, y especialmente aquellos que ocurren en el océano subsuperficial, menos im-
pactado por las condiciones iniciales, son establecidas. Estos trazadores se definen
en el extremo occidental y central de la región del Paćıfico tropical y se demuestra
que anticipan a El Niño por lo menos por dos años y medio antes de su pico boreal
de invierno en el Paćıfico ecuatorial oriental. La intensificación inicial de los vientos
alisios del este en este momento se asocia con la convergencia de masa, el proceso
de downwelling y el calentamiento anómalo de las capas de profundidad del océano
tropical subsuperficiales en el lejano oeste. De esta manera, tanto la Corriente Ecu-
atorial Sur como la Corriente Subterránea Ecuatorial se fortalecen, lo que conduce
a la propagación de anomaĺıas cálidas subsuperficiales hacia el este a lo largo y por
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debajo de la termoclina. Estos procedimientos anómalos conducen a cambios en la
circulación y calentamiento anómalo de la superficie del océano en el Paćıfico trop-
ical central en una etapa posterior, que luego conduce a la supresión de los vientos
alisios de este. La principal área de convección tropical se desplaza hacia el este,
lo que debilita la circulación de Walker y provoca la retroalimentación de Bjerk-
nes. Esto permite la propagación ulterior de las anomaĺıas oceánicas cálidas del
subsuelo, que eventualmente alcanzan el Paćıfico oriental y se elevan a la superficie
por las reacciones advectivas y termoclinas, que marca el inicio de un evento El Niño.

Las anomaĺıas cálidas en el océano ecuatorial subsuperficial se han utilizado como
precursores previamente en modelos estad́ısticos de predicción de ENSO mediante
la integración del contenido de calor oceánico superior o mediante la incorporación
de anomaĺıas de la isoterma de 20 ◦C. De esta manera, sin embargo, no se tiene
en cuenta la caracteŕıstica de propagación de las anomaĺıas y no se hace ninguna
conexión directa entre los primeros patrones anómalos y la ocurrencia de un evento
cálido. En cambio, sólo el pico en el contenido de calor del océano superior se uti-
liza para señalar un próximo El Niño, y este pico se produce mucho más tarde en
la evolución general de un evento, es decir, alrededor de 9 meses antes de su fase
madura. Por lo tanto, el potencial predictivo del incipiente calentamiento que ocurre
mucho antes en el Paćıfico tropical occidental, y que podŕıa prolongar sustancial-
mente el plazo de pronóstico, no se utiliza en estos esquemas de predicción. Además
mediante la experimentación con un modelo f́ısico complejo también se demuestra
aqúı que existe una asociación significativa entre el aumento del contenido de calor
en el Paćıfico occidental y central y la ocurrencia de El Niño en el plazo más largo de
21 meses y no sólo durante el pico del contenido de calor ecuatorial 9 meses antes.
Por lo tanto, el trabajo presentado en la tesis ofrece fuertes implicaciones para la
posibilidad de mejorar las capacidades de largo plazo de otros modelos.

La definición de los predictores de ENSO a profundidades y regiones espećıficas en
el océano y la atmósfera también requiere la disponibilidad de fiables mediciones su-
perficiales y subsuperficiales de diversas variables climáticas. Aunque en el Paćıfico
tropical se han realizado mediciones esporádicas durante mucho tiempo como resul-
tado de expediciones maŕıtimas y misiones cient́ıficas, las mediciones regulares y de
alta resolución sólo han comenzado con la era de los satélites en los años ochenta y,
especialmente, con la colocación de un sistema de observación en los trópicos como
resultado del Programa del Océano Tropical Atmósfera Global (1985-1994). Este
Programa ha sido lanzado principalmente para profundizar la comprensión teórica
de ENSO y para avanzar significativamente en su pronóstico. En esta disertación se
verifica que la provisión de conjuntos de datos más completos y coherentes como resul-
tado del Programa también mejora significativamente las capacidades de pronóstico
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del modelo estad́ıstico diseñado. Los pronósticos mejoran evidentemente y sustancial-
mente después de 1994, y el cambio es claramente pronunciado para los pronósticos
a largo plazo que se basan en información subsuperficial de buena calidad sobre la
estructura térmica oceánica en el Paćıfico tropical occidental y central. Se establece
aśı que los conjuntos de datos de las variables de mayor resolución temporal y espa-
cial, y claves para la dinámica de El Niño son ahora lo suficientemente largos como
para que los modelos de predicción estad́ıstica hagan un mejor uso e ellos.

En esta tesis también se explora la utilidad práctica de los pronósticos multi-anuales
de El Niño. Teleconecciones principales son impulsadas por ENSO, lo que lo convierte
en un buen predictor de los patrones climáticos en todo el mundo, pero sobre todo
en las cercańıas del Paćıfico tropical. Un v́ınculo bien establecido en la literatura
es el existente entre ENSO y los cambios climáticos locales en las zonas costeras
de Ecuador. Después de un evento de El Niño hay una temperatura superficial
generalmente más cálida y una precipitación significativamente intensificada en esa
región. Estas dos variables, por otro lado, controlan la dinámica de la población
de mosquitos y el número de criaderos de mosquitos, y de esta manera afectan la
incidencia de dengue y otras enfermedades infecciosas propagadas por estos vectores.
Por lo tanto, se realiza un experimento en el que las predicciones de largo plazo de
El Niño se utilizan en un modelo de predicción del dengue para la provincia de El
Oro en el sur de la costa de Ecuador. Se analiza el potencial de anticipación de
las epidemias de dengue en la región, aśı como las perspectivas de desarrollar un
sistema de alerta temprana para las epidemias de dengue. El análisis sirve como una
demostración de la posibilidad para un servicio climático operacional en apoyo de la
comunidad de salud pública en Ecuador.



To my grandmother who lives in my heart.
Parting with her has brought forward the realization

that life is also a phase of an oscillation.
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reassurance and confidence in me. He has provided excellent advice, expertise and
professional guidance whenever I needed it. He has also helped me to improve and
consolidate my scientific research skills, and has deepened my knowledge in the area
of climate science. Needless to say, this thesis would not have been possible without
him.

I would also like to thank my other collaborators in this research. First, I express
my thankfulness to Joan Ballester for his informal supervisory role. I have gained a
tremendous amount of practical and theoretical knowledge from my interaction with
him, and I am privileged to have had the opportunity to discuss science with him on
a regular basis. I further pay my respects and appreciation to Siem Jan Koopman
who has introduced me to the mathematics of structural time series models and the
state-space approach. He has also worked patiently and sometimes tirelessly with
me on the coding issues that I encountered throughout my modelling work. Special
recognition also goes to Axel Timmermann for sharing his in-depth theoretical un-
derstanding of the physics of the climate system, and ENSO in particular, and to
Rachel Lowe for our excellent collaboration on climate and health research.

The Catalan Institute for Climate Sciences (IC3) provided a very good environ-
ment for my research, so I would like to also appreciate all my colleagues there who
assisted me in the course of developing the thesis. I especially thank Carlos Dommar
for his friendly support in countless occasions, and for our interesting scientific, but
also ordinary-life conversations.

Finally, I would like to thank the people that reside in my heart, and whose love
and support provide the context for all my accomplishments, including the work on
the thesis: Vassil Tzanov for being the man I love, for his care and knowledge, and
for helping me with technical problems of all sorts whenever I encounter them; my
parents for loving me and always putting me first; my brother for being the person
that I can eternally count on; and the rest of my family for their constant moral
support and friendship.



List of Figures

1.1 Neutral State in the Equatorial Pacific . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 El Niño and La Niña . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Discharge-Recharge Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Zonal Wind Stress Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Surface Temperature Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Subsurface Temperature Anomalies at Long Lead Times . . . . . . . . . . . . . 13

1.7 Subsurface Temperature Anomalies at Medium Lead Times . . . . . . . . . . . . 14

1.8 Spectrum of Niño3.4 Index Observations and Predictions . . . . . . . . . . . . . 16

1.9 Subsurface Temperature Predictors . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.10 Prospective Climate Service Tool for Health in Ecuador . . . . . . . . . . . . . . 31

2.1 Origin and evolution of El Niño . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Phase-Locking of Cyclical Components of El Niño Southern Oscillation . . . . . 38

2.3 Long-Lead Dengue Outbreak Predictions . . . . . . . . . . . . . . . . . . . . . . 42



List of Abbreviations

CPAC Central Equatorial Pacific

EN El Niño

ENSO El Niño Southern Oscillation

EPAC Eastern Equatorial Pacific

EUC Equatorial Undercurrent

HC Heat Content

LN La Niña

N34 Niño3.4

NECC North Equatorial Countercurrent

RB RossBell

SEC South Equatorial Current

SLP Sea Level Pressure

SOI Southern Oscillation Index

SST Sea Surface Temperature

TAO-TRITON Tropical Atmosphere-Ocean-Triangle Trans-Ocean Buoy Network

TOGA Tropical Ocean Global Atmosphere

WPAC Western Equatorial Pacific

WWV Warm Water Volume





xii LIST OF FIGURES



Contents

1 State of the art in El Niño Southern Oscillation Science (Introduction and
Motivation) 1

1.1 Physical Processes in the Equatorial Pacific . . . . . . . . . . . . . . . . . . . . 1

1.2 Description of the ENSO Cycle: Phases and Oscillatory Nature . . . . . . . . . 3

1.2.1 Oscillatory Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Theory for the Evolution of El Niño . . . . . . . . . . . . . . . . . . . . . 8

1.3 ENSO Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 ENSO Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 ENSO Forecasts and Climate Services . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Discussion and Conclusions 33

2.1 Superimposed Frequencies of the Cyclical Components of ENSO . . . . . . . . . 37

3 Publications 45

3.1 On the dynamical mechanisms explaining the western Pacific subsurface . . . . . 49

3.2 Improving the long-lead predictability of El Niño . . . . . . . . . . . . . . . . . 57

3.3 Heat advection processes leading to El Niño events . . . . . . . . . . . . . . . . 89

3.4 Sensitivity of El Niño intensity and timing to preceding subsurface heat . . . . . 111

3.5 Multi-year statistical prediction of ENSO . . . . . . . . . . . . . . . . . . . . . . 121

4 Appendices 135

4.1 Long-lead El Niño forecasts coupled to a dengue model . . . . . . . . . . . . . . 135

4.2 Climate services for health: predicting the evolution of the 2016 dengue . . . . . 173

4.3 RossBell Dipole and PSA Mode Dynamics: Combination Forcing . . . . . . . . . 193



Chapter 1

State of the art in El Niño Southern
Oscillation Science (Introduction and
Motivation)

1.1 Physical Processes in the Equatorial Pacific

The equatorial Pacific is characterized by a well-defined contrast in the oceanic and atmo-
spheric conditions between the western Pacific (WPAC) and the eastern Pacific (EPAC). In the
west the upper ocean is warm, the sea level pressure (SLP) is low, and in the atmosphere above
there are cumulonimbus clouds, which determine an area of deep convection and heavy precip-
itation (Figure 1.1, Sarachik and Cane (2010)). The WPAC is also referred to as the ”warm
pool” due to these general characteristics. The ocean in the eastern part, on the other hand, is
cold, with high pressure at the surface, and with scarce precipitation, and it is often referred to
as the ”cold tongue”. Thus, the tropical winds, also called trade winds, typically blow from east
to west, i.e. from the area of high pressure towards the area of low pressure. The warm moist air
in the WPAC rises due to convection and reaches the upper-troposphere westerly branch of the
Walker Circulation, through which it is carried to the east, where it descents and sustains the
area of high pressure (Walker, 1924). The Southern Oscillation is defined through this contrast
of high pressure in the east and low pressure in the west, and is measured by the Southern
Oscillation Index (SOI, NOAA/CPC (2017)).

The easterly winds near the surface also drive a westward ocean current, and thus affect the
ocean dynamics by deepening the thermocline - the border between the upper warm layer of the
ocean and the deeper cold layers - in the west, and bringing it up in the east (Jin and An, 1999).
This tilt of the thermocline is another measure of the strength of the Walker Circulation apart
from the SOI (Jin and Neelin, 1993; Jin, 1997a). The westward surface winds are associated
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Figure 1.1: Neutral state of the ocean-atmosphere system in the equatorial Pacific in boreal
winter (December-January). Illustrated is the contrast between warm conditions in the west
and cold in the east (shading). Depicted are also the Walker Circulation, the area of convection
in the WPAC and the ocean thermocline. Courtesy to the NOAA Climate Prediction Centre.

with poleward ocean motion in both hemispheres within the upper 50 metres of the equatorial
ocean, and this water displacement is compensated by upwelling processes at the equator itself
(Sarachik and Cane, 2010). However, since the thermocline is shallow in the east, the upwelled
water there is colder than that in the west.

In the sense described above, the atmosphere and the ocean in the tropical Pacific act to-
gether in a coupled system. Bjerknes (1969) was the first to theorize the nature of this coupling
framework, within which a positive feedback amplifies initial conditions in the ocean or the
atmosphere. For example, an increase in the east-west zonal gradient of sea surface tempera-
ture (SST) intensifies the convection and the upper-tropospheric divergence, thus strengthening
the Walaker Circulation (Bjerknes, 1966). Superimposed over the normal state of the system
described so far is a cycle of warm and cold phases that is known as El Niño Southern Oscil-
lation (ENSO), and the coupling between the tropical ocean and atmosphere is a fundamental
mechanism for the occurrence of this phenomenon (Fedorov and Philander, 2001; Fedorov et al.,
2003).
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1.2 Description of the ENSO Cycle: Phases and Oscilla-

tory Nature

ENSO is an irregular interannual oscillation and its return period is typically between 2 and
7 years (Philander, 1989). Its warm and cold phases are referred to as El Niño (EN) and La Niña
(LN), respectively. Associated with EN is a relaxation of the surface easterly trade winds and
the occurrence of westerly wind bursts, deepening of the thermocline in the east and shoaling in
the west, increase of SST in the EPAC, and slowing down of the Walker Circulation (i.e. SOI
is more negative, Figure 1.2a,c,e). Conversely, during LN there is an intensification of the trade
winds, deepening of the thermocline in the west and shoaling in the east, and decrease in the
SST in the EPAC, as well as strengthening of the Walker Circulation (Figure 1.2b,d,f). As a
result of the strong coupling between the ocean and the atmosphere, as well as the Bjerknes
feedback, an initial perturbation in the ocean is quickly transmitted to the atmosphere or vice
versa. Thus, an initial warming of SST during EN acts to suppress the easterly trade winds and
amplify the warm anomalies in the ocean or alternatively, initially suppressed easterlies result in
warmer SST. The opposite happens during LN when enhanced easterlies act to decrease the SST
or a drop in SST tends to reinforce them. The exact location of such initial disturbances, as well
as of the peak anomalies may vary during the different events, which accounts for their general
classification into two types - Eastern-Pacific or Central-Pacific ENSO - based on their properties
and especially on their SST structure (Kao and Yu, 2009). However, the ocean-atmosphere cou-
pling and the Bjerknes feedback only explain why such a perturbation would be sustained long
enough and amplified for EN or LN to occur, but do not unravel the reasons for the transition
between one phase to the other or back to neutral conditions corresponding to the normal state
of the tropical ocean-atmosphere system. A number of theories have been proposed to provide
a mechanistic explanation for these swings between warm and cold phases.
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Figure 1.2: Composites of interannual monthly anomalies of a)-b) SLP (in [Nm−2], shading) and wind

stress curl (in [Nm−3], arrows) from the NCEP/NCAR reanalysis (Kalnay et al., 1996), c)-d) SST

(in [◦C], shading) - the NOAA-ERSST-V3 from NOAA/OAR/ESRL PSD, e)-f) subsurface potential

temperature (SUBT; in [◦C], shading) and zonal and vertical currents (arrows) - the ECDA3.1 from

the Geophysical Fluid Dynamics Laboratory (GFDL). Contours represent significance at the 90%, 95%,

99% and 99.99% levels. Composites are calculated for the EN and LN events in the period 1955-2010.
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1.2.1 Oscillatory Theories

The Delayed Oscillator theory of Suarez and Schopf (1988) considers the effect of equatorially-
confined waves propagating in the ocean subsurface. During ENSO SST anomalies are mainly
in the EPAC, while wind anomalies are predominantly in the central Pacific (CPAC; Figure
1.2a,b). During EN the westerly wind anomalies in the CPAC trigger upwelling Rossby and
downwelling Kelvin waves in the ocean below the anomalous circulation. Rossby waves travel
westward, shallow the warm upper layer of the ocean and reflect off of the western boundary
as downwelling Kelvin waves. Kelvin waves travel eastward to the EPAC, where they deepen
the thermocline. The delay effect, which also renders the memory for the oscillation, comes
from the fact that the propagation speed of Rossby waves is three times slower than that of
Kelvin waves (Fedorov and Brown, 2009). Rossby waves then need much longer to traverse the
Pacific basin (∼ 9 months, Troccoli (2010)) and reverse the initial SST warm anomalies through
re-adjustments of the thermocline. Within this theory the most important mechanism is the
western boundary reflection of equatorial internal waves.

The Western Pacific Oscillator theory of Weisberg and Wang (1997) stresses on the importance
of the generation of easterly wind anomalies in the equatorial western Pacific during the mature
phase of EN. At this peak stage of El Niño anomalous off-equatorial anticyclonic wind causes
the formation of easterly winds in the WPAC, which trigger Kelvin waves in the ocean, as well
as upwelling processes, so that cooling proceeds eastward. Thus a negative feedback ensues and
the system is transitioned to LN conditions.

The Advective-Reflective Oscillator theory of Picaut et al. (1997) focuses on zonal ocean
currents in the equatorial Pacific. During EN the warm water that normally resides in the
WPAC is advected eastward and anomalous westerly winds are present in the CPAC. They cause
Kelvin waves to propagate eastward and initiate downwelling processes in the EPAC. Then, at
the eastern ocean boundary they are reflected as Rossby waves that propagate westward and
initiate upwelling processes in the WPAC. Since both types of waves are associated with a
westward zonal current, the mean zonal current converges to the eastern edge of the warm pool,
which is gradually pushed back to the WPAC.

The Recharge-Discharge Oscillator theory of Jin (1997a) and Jin (1997b) regards the dynamic
feedback between the thermocline in the ocean and the wind stress at the surface of the ocean,
and proposes that the tilt of the thermocline reacts immediately to changes in the wind stress,
while wind stress reacts immediately to changes in SST (Figure 1.3). During EN the divergence
of Sverdrup transport due to westerly wind anomalies in the CPAC and warm SST anomalies in
the EPAC results into the discharge of warm water from the equatorial Pacific to higher latitudes.
This causes the thermocline to be shallow over the whole domain, and trigger processes that
bring up cold subsurface water to the surface. This is how cooling of the SST in the EPAC
proceeds, and the oscillation gradually reverses its sign to LN. Then the opposite process starts
with the buildup of warm water in the WPAC as a result of intensified trade winds, i.e. the
recharge phase. It should be noted that the onset of the tropical Pacific discharge/recharge
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always leads the SST anomalies in the EPAC by about 8-9 months and is seasonally dependent
(Jin, 1997a; Meinen and McPhaden, 2000).

The Unified Oscillator theory of Wang (2001) attempts to reconcile all of the above theories
by considering the SST anomalies in the EPAC, zonal wind stress anomalies in the CPAC,
thermocline anomalies in the equatorial and off-equatorial region in the WPAC, and zonal wind
stress anomalies in the equatorial WPAC. It includes the physics of all the other oscillators
in a unified system of equations, and proposes that all these feedbacks are important for the
alternation between the warm and cold phases of ENSO at different times of its development.
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Figure 1.3: Schematic of the Recharge-Discharge Oscillator. Depicted from the top left panel
in a clockwise direction are the: EN phase (Meridional Discharge), transition between EN and
LN, LN phase (Meridional Recharge), transition between LN and EN. The boxes represent
the domain of the equatorial Pacific, the ellipses are the areas of SST anomalies, the thick
arrows indicate the discharge and recharge of mass from the equator, and the thin filled arrows
represent wind stress anomalies. Below each panel is given the anomalous increase/decrease of
the thermocline depth during the respective phase of the oscillation. Adapted from (Jin, 1997a).
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1.2.2 Theory for the Evolution of El Niño

The recharge-discharge paradigm of Jin (1997a) is in essence the mathematical formulation
of a theory first proposed by Wyrtki (1975). He suggested that on average about two years
before the peak of an El Niño event in the equatorial Pacific, intensified easterly trade winds
blow in the CPAC (Figure 1.4a,b), which lead to the accumulation of heat in the subsurface
ocean in the WPAC. This causes the warm pool to expand and extend towards the CPAC, and
positive SST anomalies to appear there as a result. Due to the strong coupling between the
ocean and the atmosphere, these SST anomalies then feedback to the winds, so that the trades
relax and westerly anomalies occur (Figure 1.4c,d), which further push the warm pool in an
eastward direction during the growing phase of EN. The theory, however, did not discuss the
exact physical mechanisms in detail, and failed to convey that the subsurface propagation of
the anomalies towards the eastern portion of the basin is key. Ramesh and Murtugudde (2013)
demonstrated that the buildup of subsurface heat in the WPAC/CPAC always accompanies the
initial stage of EN development, and the start of its eastward displacement along the equatorial
thermocline occurs at a particular step of this evolution about 18-20 months before the peak of
an EN event, when the warm anomalies also start to appear on the surface in the WPAC and
later in the CPAC (Figure 1.5) and start to weaken the trades. Moreover, their analysis suggests
that this process has remained unchanged regardless of the major regime shift in the ocean in
1977 (Hare and Mantua, 2000).

The first two studies in this dissertation, Ballester et al. (2015) and Petrova et al. (2016),
studied the dynamical mechanisms of the subsurface buildup of heat in the WPAC at the early
stage of El Niño origination. Ballester et al. (2015) defined a salinity front at the eastern warm
pool edge (between 160◦E and 180◦), where low-salinity waters from the WPAC, due to the
normally intense rainfall there, meet high-salinity waters from the CPAC, due to the normally
strong trade winds and enhanced evaporation in the area. It is further illustrated in this work
that the position of this salinity front is different during EN and LN events.

On average between 14-30 months before the peak of EN intensified trade winds drive
anomalous enhanced clockwise (anti-clockwise) wind stress curl in the central north (south)
off-equatorial regions (Figure 1.4a,b), which drive an anomalous Sverdrup transport and merid-
ional convergence of mass towards the equator, especially in the CPAC and WPAC. About 21-28
months before the mature EN La Niña-like conditions are found in the equatorial Pacific, with
colder than normal surface temperatures in the EPAC and CPAC and warmer in the WPAC
(Figure 1.5a,b), where the thermocline is at its deepest and the subsurface temperature anoma-
lies are the most intense (Figure 1.6). The convection and precipitation typical for this region
are shifted further west, which also means that the salinity front at the eastern edge of the warm
pool is shifted westwards. This increases the zonal salinity contrast and the difference in the
upper ocean density. At the same time, the intensified trades in the CPAC also strengthen the
surface westward South Equatorial Current (SEC; Yu and McPhaden (1999)), especially in the
vicinity of the salinity front. This contributes for the occurrence of horizontal convergence in
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Figure 1.4: Composites of interannual monthly surface zonal and meridional wind stress anoma-
lies (in [Nm−2], arrows) and wind stress curl (in [Nm−3], shading) from the NCEP/NCAR
reanalysis (Kalnay et al., 1996) for a) 25, b) 20, c) 11 and d) 7 months before the winter peak
of EN. Composites are calculated for the EN events in the period 1978-2010.
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Figure 1.5: Composites of interannual monthly SST anomalies (in [◦C], shading) from the NOAA-
ERSST-V3, NOAA/OAR/ESRL PSD for a) 20, b) 15, c) 9 and d) 6 months before the winter
peak of EN. Composites are calculated for the EN events in the period 1978-2010. Contours
represent significance at the 90%, 95%, 99% and 99.99% levels.
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the upper layer of the ocean (up to 75 metres depth), and divergence below this depth explained
by the zonal current component and resulting from the strengthened eastward Equatorial Under-
current (EUC) in the CPAC, which is driven by the east-west pressure gradient in the equatorial
plane and directly affected by the strength of the easterly zonal wind stress (Ballester et al.,
2015). Collectively these processes contribute for an overall downwelling motion in the warm
pool and near the salinity front, which further increases the subsurface warm buildup there at
these early stages of EN generation (Petrova et al. (2016); Figure 1.6).

The above description summarizes the interplay between zonal wind stress forcing in the CPAC
and oceanic circulation and subsurface temperature responses in the WPAC at very long lead
times with respect to the mature phase of EN, on the order of 2.5 years. Petrova et al. (2016)
and the third study in the dissertation, Ballester et al. (2016a), further describe the mechanisms
of subsurface warming and eastward propagation at the later stages of EN development. The
piling up of warm water masses in the WPAC causes the warm pool to expand and to spread
towards the CPAC in the subsurface through the EUC and the positive zonal advection along
and below the thermocline. As a result of the upwelling in the CPAC due to the meridional
overturning cells (Ballester et al., 2016a), this warming then also occurs in the upper 50 metres
of the ocean about 15-17 months prior to the EN peak (Figure 1.5; Petrova et al. (2016)), where
it induces an area of low pressure and, hence, the occurrence of westerly wind anomalies at the
equator near the dateline some few months later (Figure 1.4c; McPhaden (2004)).

Such westerly wind anomalies play an important role for the coupling between the ocean and
the atmosphere (Eisenman et al., 2005), and accompany the majority of warm ENSO events
(McPhaden, 2004). Importantly, there is a deterministic component governing this anomalous
zonal atmospheric circulation (Tziperman and Yu, 2007; Gebbie and Tziperman, 2009). It leads
to an overall relaxation of the trade winds in the CPAC, to a decrease in the tilt of the thermo-
cline (Jin, 1997a), and consequently, to the further propagation of the accumulated warm water
masses towards the east through the geostrophic EUC and the eastward North Equatorial Coun-
tercurrent (NECC), which is driven by Sverdrup dynamics (Wyrtki, 1985). This is the onset of
the recharge ENSO phase discussed earlier (Jin, 1997a), when the maximum subsurface warming
occurs in the CPAC, unlike the previous stage of highest warming in the WPAC. This phase
starts about 16 months before the El Niño (Jin, 1997a) and its peak conditions occur at about 9
months before. After this point cold anomalies start to appear in the subsurface in the WPAC,
and an EN event grows in the EPAC. There is a weakening of the EUC in the WPAC (Figure
1.7), but enhancement in the EPAC, where warm subsurface anomalies have propagated along
the thermocline via the zonal advective feedback (Jin and An, 1999), and start to be upwelled to
the surface (Figure 1.7 ) by vertical currents and the Ekman pumping feedback (Jin et al., 2006).
This is also a time when the SEC is weakened along with the eastern Pacific coastal upwelling
and the western pacific downwelling (Ballester et al., 2016a). It is interesting to note that during
the mature EN stage (4-6 months before the peak) there is already a negative meridional heat
advection in the CPAC and EPAC in the proximity of the thermocline, which starts to weaken
the heat anomalies in the subsurface and to prepare the system for the reversal of the sign of
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the oscillation.
As seen above, the buildup and eastward propagation of heat in the equatorial Pacific neces-

sarily precede EN events, and the time between warm events is roughly determined by the time
needed to accumulate enough heat. Moreover, the amplitude of an event is in proportion to the
magnitude of the anomalous heat content prior to the event (McPhaden, 2004; Ballester et al.,
2016b).
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Figure 1.6: Composites of interannual monthly subsurface temperature anomalies between 50-500

metres from the Subsurface Temperature and Salinity Analyses by Ishii et al. (2005) depth at lead

times of 19, 21, 24 and 28 months ahead of the EN peak. Red boxes indicate regions for derivation of

precursors. Composites are with respect to all EN events in the period 1978-2012.
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Figure 1.7: As in Figure 1.6, but at lead times of 7, 9, 12 and 16 months ahead of the EN peak.
Red and green boxes indicate regions for derivation of precursors. Composites are with respect
to all EN events in the period 1978-2012.
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1.3 ENSO Predictability

ENSO has been recognized as being the leading source of interannual atmospheric variability,
and it is a main triggering mechanism for atmospheric teleconnections worldwide (Rasmusson
and Carpenter, 1982; Kiladis and Diaz, 1989). Therefore, forecasting warm and cold events long
before their occurrence is not only highly desirable because of the large-scale anomalous weather
patterns that they cause in different parts of the world, but also because of the vital role of such
forecasts for the overall seasonal forecasting endeavours globally (Goddard et al., 2001).

The evolution of ENSO events is predictable many months in advance mainly as a result of the
nature of the atmosphere-ocean coupling, which is strong in the tropical region (Sarachik and
Cane, 2010). There SST directly influence the atmospheric circulation, as the ocean supplies the
air above it with moisture through evaporation processes. The trades converge to the warmer
area in the WPAC, where moist air condenses and latent heat is released. These processes of
evaporation, condensation and release of latent heat control the Walker Circulation, and hence
the stronger diabatic heating in the tropics (Fedorov, 2008). Since the distribution of SST in the
tropical ocean there defines the statistical distribution of cloud heating on a monthly timescale,
in this way the slow dynamics of SST in the ocean can determine the evolution of the statistics
of the atmosphere (Shukla, 1981; Barnett et al., 1993). Moreover, as a result of the coupling,
the atmospheric heat fluxes also directly impact the evolution of the ocean surface temperature
(Gebbie and Tziperman, 2009). ENSO forecasts are in effect forecasts of the SST in the EPAC
or the equilibrium between the SST and the statistics of the atmosphere (Jin et al., 2008). Thus,
the slow variations of the tropical atmosphere are determined by changes in the boundary con-
ditions of the ocean and vice versa (Latif et al., 1999).

Apart from monitoring the SOI, the most common way for identifying ENSO events is by mea-
suring the monthly SST anomalies averaged in an area extending over the EPAC and the CPAC,
i.e. the Niño3.4 region (N34; [5◦N-5◦S, 170◦W-120◦W]). This is also the region of strongest SST
anomalies associated with EN and LN events (Figure 1.2c,d). There are several other tempera-
ture indices specified in different regions over the equatorial Pacific, which are used to distinguish
different types of events. The Niño1+2 index is defined in the immediate proximity of the South
American coast ([0◦-10◦S, 90◦W-80◦W]), where El Niño was first termed by the local Peruvian
population to refer to the ocean warming that occurs near Christmas time, as El Niño actually
means the Christ child. The Niño1+2 nowadays signals the so-called coastal El Niño events,
when SST warming occurs exclusively near the coast of South America. There are also the
Niño3 region ([5◦N-5◦S, 150◦W-90◦W]), which was first used to define ENSO events, but was
later replaced by N34 as a more appropriate one (Trenberth, 1997), as well as the Niño 4 region
([5◦N-5◦S, 160◦E-150◦W]) used to characterize better EN with peak SST anomalies occurring in
the CPAC (Kao and Yu, 2009). The Oceanic Niño Index (ONI) is also used. It is defined over
the same region as N34, and represents a three-month running mean of SST anomalies there. In
the thesis N34 is used throughout for analysis, modelling and simulation purposes.
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Figure 1.8: Multi Taper Method (MTM) power spectra for the observed N34 time series (black),
and predictions with the dynamic components model (Petrova et al., 2017) at 6 month lead time
(blue) and 24 month lead time (red). The solid lines indicate the power density, dotted lines
harmonic peaks and dashed lines confidence levels based on a red noise null hypothesis. The
red markers indicate the near-annual (NA), quasi-biannual (QB), quasi-quadrennial (QQ) and
decadal (D) modes of variability.
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The spectrum of the N34 reveals variability on interannual timescales with several dominant
peaks (Figure 1.8). A distinguished feature is its quasi-periodicity with a main quasi-quadrennial
and a quasi-biannual peak (Rasmusson and Carpenter, 1982; Kirtman and Zebiak, 1997). The
theoretical predictability of ENSO more than one year in advance is actually implied by these
two spectral peaks (Latif et al., 1999).

The theoretical predictability of the phenomenon depends on its mechanistic explanation. One
of the two leading paradigms for its physics suggests that it is due to a stable interaction between
the ocean and the atmosphere, representing a damped oscillation (Lengaigne et al., 2004). If this
theory is correct, ENSO predictability could not be extended much more than a year in advance,
which is the time needed for an initial disturbance of the coupled system to grow. According to
the alternative paradigm, however, ENSO arises due to unstable interactions between the ocean
and the atmosphere, and is rather a self-sustained oscillation (Cane et al., 1986; Chen et al.,
2004). Within this framework its predictability depends on the duration of time for which the
equatorial ocean thermocline retains a stable position, which represents to so-called memory
of the ocean (Neelin et al., 1998). In this case the evolution of the system could be predicted
much longer than a year in advance as is achieved in a retrospective mode by Barnett et al.
(1993), Chen et al. (2004), Petrova et al. (2016) and Gonzalez and Goddard (2016), and this
is true especially for the larger events, which are normally better predicted than the weaker
ones (Jin et al., 2008; Barnett et al., 1993; Chen et al., 2004). The theoretical understanding
of ENSO and its predictability have been considerably advanced as a result of the equatorial
Pacific monitoring and observing system deployed by the Tropical Ocean Global Atmosphere
(TOGA) Program (McPhaden and Yu, 1999; Latif et al., 1999). The studies included in this
dissertation and especially Petrova et al. (2017) add to the evidence by previous work that if
comprehensive subsurface tropical ocean information is utilized, ENSO is predictable at least a
cycle length in advance (Figure 1.8), i.e. years ahead rather than months (Cane et al., 1986;
Chen et al., 2004; Gonzalez and Goddard, 2016). It should be highlighted, however, that even
in this case there are factors that can still limit the predictability of individual events such as
random noise (Latif et al., 1999; McPhaden and Yu, 1999; Fedorov et al., 2003), which could
modulate the strength of the coupling between the tropical ocean and atmosphere (Kirtman
and Schopf, 1998); nonlinear interactions with the annual cycle (Jin et al., 1994; Tziperman
et al., 1994); the exponential growth of initial conditions errors (Chen et al., 1995); as well as
fluctuations of the mean state of the ocean on decadal timescales (Latif et al., 1999).

There are statistical and dynamical models for ENSO forecasting, as well as hybrid systems
that are typically composed of a dynamical ocean and a statistical atmosphere (Cane et al., 1986;
Jin et al., 2008; Barnston et al., 2012). The first dynamical model to correctly predict EN in
real time was the Zebiak-Cane intermediate complexity model (Zebiak and Cane, 1987), which
forecast the onset of the 1986/87 EN and set the beginning of operational ENSO predictions.
Forecast skill has not improved dramatically since then, and no forecasting strategy is proven to
clearly outperform the others, although General Circulation Models (GCMs) appear to have an
edge when predicting the boreal spring season and across this season. Still, they have no clear
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superiority when predicting the boreal winter season, which is when ENSO events peak (Barnston
et al., 2012). A number of models now produce real-time operational forecasts for the SST in the
N34, and these predictions are summarized monthly in the ENSO prediction plume (IRI, 2017).
Dynamical models normally release ensemble predictions and the ensemble mean is utilized as
a deterministic forecast, while statistical models typically produce one single forecast (Barnston
et al., 2012). The most standard measures of skill for such predictions are the correlation (corr)
between the predicted and the observed values for a long period of time, as well as the root
mean square error (rmse). Since corr measures the correspondence between the phase of the
forecast and the observations, but it does not account for the amplitude, it is not a sufficient
measure of skill, especially considering that all current models have problems with simulating
correctly the amplitude of the events (Sarachik and Cane, 2010). In this sense, the rmse is
an important additional metric for assessing model performance. In order to validate a given
forecast system, a number of retrospective forecasts are performed of past observations, and the
corr and rmse between the two are obtained and compared to those of other validated schemes.
This is also a way to identify persistent biases of the model and possibly correct the forecasts in
a post-processing procedure. A comparison of operational ENSO models has indicated that no
model is demonstrably better than the rest (Sarachik and Cane, 2010; Barnston et al., 2012),
and the best probability guess of future outcomes is obtained by combining the forecasts from
all individual models into multi-model ensembles (Jin et al., 2008), which reduces systematic
errors (Palmer et al., 2000). Therefore, the more model simulations are available, the better is
the overall forecast and its usefulness to potential end users.

As briefly mentioned above, there are a number of challenges for the ENSO prediction systems.
For example, the mean background state and the mean annual cycle represent important portions
of the interannual variability in the equatorial Pacific (Zebiak and Cane, 1987; Suarez and Schopf,
1988), which are often not well simulated by the existing models. There are errors in the basic
state, as well as the phase and amplitude of the annual cycle, especially with increasing lead
time, which also affect the forecast of the interannual variability (Jin et al., 2008). Moreover, a
clear relationship has been identified between the correct simulation of the annual cycle and the
phase-locking of ENSO to the annual cycle, and this especially concerns the amplitude variation
of the events, as there is a linear relationship between the intensity of ENSO events and the
intensity of the annual cycle in dynamical model simulations (Jin et al., 2008). There is a
pronounced annual periodicity in the seasonal cycle of the EPAC propagating westwards, and
a semi-annual periodicity in the WPAC. Another issue for instance is that EN and LN events
are typically better predicted by models than neutral conditions, and EN also tends to be more
predictable than LN, given that the amplitude of the cold phase is often underestimated in
simulations (Kirtman and Zebiak, 1997). The growing phase of the events is generally better
captured by models than the decaying phase (Jin et al., 2008), with operational models predicting
a continuance of SST anomalies after the end of the events, especially at the longer lead times
(Barnston et al., 2012). Such a feature is also evident in the forecasts shown in Petrova et al.
(2016) and Petrova et al. (2017). Overall, models tend to capture ENSO transition stages with
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delay, with a tendency toward persistence (Barnston et al., 2012). Since this appears to be a
systematic error for the majority of the schemes, it represents a problem that could potentially
be fixed by post-processing and bias corrections of the forecasts. The most plausible explanation
for this in the case of the warm events is the fact that the EPAC is warmest during spring due
to the annual cycle variability (Sarachik and Cane, 2010). Models, however, are often unable to
simulate the suppressed amplitude of the annual cycle during the EN phase, and thus tend to
extend the event until later in the calendar year instead of terminating it in spring.

The predictive capacity of models also varies from one decade to another (Balmaseda et al.,
1995; Kirtman and Schopf, 1998; Chen et al., 2004), and the reasons for this are as yet not well-
understood (Sarachik and Cane, 2010). The modulation of SST on decadal timescales represents
part of the natural variability in the tropical Pacific (see Figure 1.8), with some studies explaining
it through the interaction of the tropical and extratropical ocean, which produce variations in the
tropical thermocline (Gu and Philander, 1997). Others suggest that uncoupled atmospheric noise
could be the cause for decadal ENSO variability (Kirtman and Schopf, 1998).There is also global
warming, whose timescale is mixed with that of decadal variability. Usually, decades with high
interannual variability are also decades that are associated with relatively high predictability
when the system is controlled by the oscillatory behaviour described earlier, and when the
signal-to-noise ratio is high, which maximizes the model correlation skill (Barnston et al., 2012).
Conversely, decades with low interannual variability are associated with less predictability (Chen
et al., 2004), when the atmospheric noise is a dominating component (Kirtman and Schopf, 1998).
In this second case, it has been shown that the different level of predictability is independent of
the type of noise, and the noise in fact produces changes in the mean state of the tropics. This
also implies that the prescription of stationary climatology in models is not always appropriate,
because the mean background slowly changes (Barnett et al., 1993). However, this uncoupled
noise is not necessarily unpredictable itself, but represents variations that are different from
the main ENSO oscillator. In this sense, at least part of it could be predictable by improving
the prediction of external noise. During decades with high predictability some forecasts with a
coupled model have been shown to be skilful for lead times of up to 15-18 months, while during
decades with low predictability the same forecasts are only skilful for up to 5-6 months lead
(Balmaseda et al., 1995; Kirtman and Schopf, 1998). Petrova et al. (2017) has demonstrated
that the inclusion of a decadal cycle in the statistical prediction system described therein, and
thus accounting for some of the decadal variability (Figure 1.8), has led to better retrospective
forecasts of at least some of the historical ENSO events.

Forecasts issued during and before the Northern Hemisphere spring season are problematic for
all models (Barnston et al., 2012) - this represents the so-called ”spring predictability barrier”
(Webster, 1995). Reasons for this barrier are the low signal-to-noise ratio in spring (Goswami
and Shukla, 1991), and the fact that during this season the system loses part of its memory
(Zebiak and Cane, 1987). Moreover, SST anomalies are less pronounced in spring as a result
of the seasonal locking of ENSO (and the quasi-biannual oscillation in particular) to the annual
cycle (Clarke and van Gorder, 1999). This makes forecasts more difficult due to the higher



20
State of the art in El Niño Southern Oscillation Science (Introduction and

Motivation)

proportion of noise in the coupled system. In the observations there is a marked seasonality
of SST in the EPAC, with a peak in the variance in winter and a through in spring, which is
a well-established connection between the annual cycle and the interannual variability in the
region (Jin et al., 2008). This could further explain the drop in forecast skill in this season,
as well as the fact that it normally increases in the following season, especially in the case of
dynamical model predictions (Xue et al., 1994; Balmaseda et al., 1995). Results from some
earlier studies with dynamical models, however, indicate that the decrease in forecast skill in
spring is only modest as compared to the drop in persistence skill (Chen et al., 1995, 2004), and
that it is consistent with the seasonal minimum in signal variance at this time. Petrova et al.
(2017) reports similar results with a statistical dynamic components model, which support the
conclusion that the spring predictability barrier is not inherent to the climate system, but is
more likely model-dependent (Chen et al., 1995). Another study, Balmaseda et al. (1995), found
that this barrier is clearly present in some decades and much less prominent in others, claiming
that the major reason for this is a change in the seasonal dependence of ENSO from one period
to another. According to this view and the results in the study, it is more strongly locked to the
seasonal cycle in those decades when the spring barrier is present, with the transition between
cold and warm phases occurring mostly in spring.

As discussed in the previous sections, all ENSO events are preceded by anomalies in the
equatorial Pacific Ocean heat content (HC), and similarly to SST, the predictability of HC is
also seasonally dependent, with a winter barrier, rather than a spring one, weaker than for SST
and in agreement with their general lag relationship (Zebiak and Cane, 1987; Zebiak, 1989;
Balmaseda et al., 1995; McPhaden, 2003). As with SST the drop in HC forecast skill is much
more pronounced in some decades than in others, and is associated with lower subsurface variance
in boreal winter and thus increased sensitivity to noise (Xue et al., 1994). The fact that the
predictive skill drops in different times for the HC and SST means that the important forecast
information is not lost simultaneously on the ocean surface and in the subsurface, which suggests
that skill does not have to be totally lost as a result of seasonal dependence, especially considering
that correlations for warm water volume (WWV, a proxy for HC) are highest at 7-10 months lead
time starting in spring between February-May, and coinciding with the onset of ENSO events,
but when SST anomalies are less pronounced and ambiguous (McPhaden, 2003). This has very
good implications for the overall predictability of the phenomenon at medium to long lead times.
At the same time, some models demonstrate a drop in skill at a lead time of about 12 months
for the December, January, February (DJF) target season (Barnett et al., 1993), including the
model described in Petrova et al. (2017) (see Figure 3 therein), which indicates that the drop
in HC predictability in winter also affects the predictability of SST at this lead time. However,
the overall skill of models is shown to increase for lead times between 6-12 months when they
are fed with accurate HC variation information (Latif et al., 1999), which holds promise for the
theoretical long-lead predictability.
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1.4 ENSO Modelling

The components of a forecasting system are: observations, assimilation, analysis, initializa-
tion, forecast, and validation (Sarachik and Cane, 2010). Dynamical and statistical models differ
in the type of input and output information that they require and provide. A typical physical
ENSO model is built in terms of the partial differential equations representing the discretization
of the ocean-atmosphere system, uses observations of oceanic and atmospheric variables, and
initializing techniques in order to render precipitation, winds, SST and thermocline changes.
More comprehensive complex models also simulate the mean annual cycle, while some simpler
models prescribe it and calculate anomalies with respect to the observed climatology (Zebiak and
Cane, 1987). In such a basic ENSO model the dynamical quantities in the ocean are calculated
using the linear shallow water equations and then they are applied into an advective tempera-
ture equation (Zebiak, 1985). The shallow water approximation and equations also govern the
state of the atmosphere, so that they can be used to build a full ocean-atmosphere coupled
model (Zebiak, 1985; Sarachik and Cane, 2010). The most general form of the momentum and
continuity equations that represent the fluid motion are:

du

dt
− fv = −g∂h

∂x
+ F u +Du (1.1)

dv

dt
+ fu = −g∂h

∂y
+ F v +Dv (1.2)

∂h

∂t
+
∂(ηu)

∂x
+
∂(ηv)

∂y
= 0 (1.3)

and the total derivative for the respective quantities is defined as follows:

dα

dt
=
∂(α)

∂t
+
∂(uα)

∂x
+
∂(vα)

∂y
(1.4)

In the above equations u and v are the horizontal velocity components, f is the Coriolis force
term, h is the anomalous deviation of a pressure surface from its mean height position H in the
fluid, η = H + h and F is a forcing term that in the case of the ocean represents the component
of surface wind stress, while for the atmosphere it is an external momentum forcing. D is a
linear dissipation term. Conservation of mass could be used for the calculation of the vertical
velocity component at the base of the surface ocean layer, while in the case of the atmosphere a
vertical structure is assumed that excludes vertical energy propagation (Zebiak, 1985). Exten-
sive information about the main assumptions and detailed derivation of the equations can be
found in Zebiak (1985); Neelin et al. (1998); Sarachik and Cane (2010) and others.

Statistical models, on the other hand, typically rely on some form of regression (Penland and
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Magorian, 1993; Xue et al., 1994; Clarke and van Gorder, 2003), neural networks (Tangang et al.,
1997) or analogues (Van den Dool, 2007), use area-averaged SST, SLP, wind stress, and inte-
grated HC as input to predict the SST in one of the equatorial ENSO regions, most commonly
the N34 (Barnston et al., 2012). As discussed earlier, both types of modelling strategies are
not devoid of problems. In the case of dynamical models they are caused by high-frequency
atmospheric noise, initialization errors due to data analysis and assimilation that grow with
simulation time, as well as biases as a result of incorrect numerical parametrizations. In the
case of statistical models atmospheric noise is also a problem, along with the need for long data
records in order to infer stable relationships between the predictors and the predictand, and
the coarser spatial and temporal resolution of the variables used, i.e. area-averaged monthly
data. In general terms, both types of models manage to reproduce the overall ENSO variability
reasonably well at short and medium lead times, with some problems and discrepancies that
arise due to reasons described above. However, long-lead forecasts on the order of more than
one year of EN and LN events are still scarce, and there are none at the operational level. At the
same time the climatic impact of ENSO is far-reaching and large-scale teleconnections (Kiladis
and Diaz, 1989; Rodó et al., 2006), and the affected communities could benefit immensely from
forecasts of the events longer time in advance.

In recent years the efforts of the ENSO modelling community have been concentrated on the
development and improvements of more complex dynamical models. Statistical models at the
same time have been left behind (Barnston et al., 2012), and systematically underfunded due to
the assumption that they have reached their optimal skill level. In this dissertation it is demon-
strated that it is just the opposite, as statistical forecasting has yet vast unexplored potential
also at the very long lead times of several years. In a statistical prediction framework the main
objective is to identify a set of reliable precursors that would optimally forecast the evolution of
the predictand variable of interest. As discussed in the previous sections, it has been suggested
by earlier work that the evolution of ENSO cannot be forecast without having information about
the upper ocean HC, and the long-lead experimental forecasts of the phenomenon suggest the
important role of the subsurface ocean, which has a substantial thermal inertia (Cane et al.,
1986).

As mentioned earlier, SST in the N34 tend to lag equatorial HC by some months, and thus
fluctuations in HC are generally regarded as a good precursor of the ENSO events (McPhaden,
2003). Similarly to Chen et al. (2004); Petrova et al. (2016); ? and Petrova et al. (2017) have
reached the conclusion that atmospheric noise is responsible for irregularities in the exact onset,
termination and amplitude of EN and LN, but the overall dynamical features of the events are
governed by the state of the subsurface ocean. In addition, wind bursts occurring before ENSO
are to a large extent controlled by the oceanic dynamics and are predictable in this sense (Chen
et al., 2004; Gebbie and Tziperman, 2009). Thus, a good ENSO forecasting system needs to
necessarily incorporate properly the relevant information from the ocean internal dynamics, as
well as the surface atmospheric dynamics. In addition, quieter periods when the interannual
variability is low could also be predicted, if a forecasting system is fed with the most relevant
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data information (Chen et al., 2004), which has to be carefully selected since the background
state is more dominant in such periods.

As described in Section 1.1.2, an initial increase of the south-easterly trade winds more than
two years ahead of an El Niño drives the accumulation of warm water mass in the far western Pa-
cific Ocean. Then months later, as a result of the coupling mechanism and the positive feedback
responses of the tropical ocean and atmosphere, a decrease in the equatorial trade winds leads
to a surge eastward of the accumulated warm water. This process warms the normally cooler
subsurface water in the EPAC, and upwelling and zonal advection in the region cause the SST
there to warm. The first simple linear ocean models from the 1970s and 1980s were generally
able to reproduce these fluctuations in the equatorial thermocline only with forcing from the ob-
served equatorial zonal wind anomalies during ENSO (Zebiak, 1985). These early results proved
the importance of the changes in the equatorial subsurface thermal structure and zonal winds
for El Niño generation. Thus, the novel forecasting model described in Petrova et al. (2016)
and developed in the dissertation is also designed taking into account these earlier findings. In
particular, this study identified from composite analysis of subsurface temperature (Figure 1.9)
and zonal wind anomalies the WPAC as the region where the first warming associated with the
origination of EN events occurs. It also showed the potential of these long-lead patterns of the
subsurface temperature and surface wind stress in the WPAC and at a later stage in the CPAC
as promising predictors for ENSO.

There are a couple of innovative approaches in this work that distinguish the use of precur-
sors in Petrova et al. (2016) from earlier statistical modelling strategies. The first one is the
definition of specific regions (”hot spots”) for extraction of the predictor variables based on the
dynamical processes occurring in the ocean-atmosphere system prior to EN. Since the warm
anomalies are concentrated in particular areas in the subsurface, especially at the very long lead
times (Figure 1.9), the traditional approach in statistical forecasting of using integrated mea-
sures of equatorial HC is not appropriate to successfully detect these fundamental early local
processes. Therefore, using specific regions and depths, which is possible due to the availability
of the Tropical Atmosphere Ocean-Triangle Trans-Ocean Buoy Network (TAO-TRITON) in the
tropics (McPhaden et al., 1998), has allowed the vast extension in time of the predictive capac-
ity of the forecasting model (Petrova et al., 2017). The TOGA Program and the placement of
a high-resolution monitoring system in the equatorial Pacific was primarily driven by the fact
that the very strong 1982/83 EN was not only unpredicted, but it was also noticed very late
in its evolution (McPhaden et al., 1998). One of the main goals of the Program was to make
possible the regular prediction of ENSO by operational and experimental forecasting systems,
something that was already accomplished to a certain degree for the dynamical modelling of
the phenomenon by the prominent 1997/98 EN (Kirtman and Schopf, 1998). For statistical
modelling, though, the resources of the observing system have remained largely unexploited,
as a longer reporting period for the data sets is typically required (Barnston et al., 2012). In
Petrova et al. (2017) it is advocated that the data sets of detailed subsurface temperature are
now sufficiently long to make use of them for long-lead forecasting. Moreover, it is recommended
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that other statistical schemes should be updated in a similar manner to apply the subsurface
information in a more efficient and target-oriented way. The second innovation of the statistical
forecasting approach is the inclusion of different precursors at different lead times in agreement
with the general evolution of a warm event described earlier. In addition to taking into a detailed
account the EN dynamics, the selection of variables is also made based on rigorous statistical
fitting criteria. Thus, depending on the time when a particular forecast is started, different

predictors are added to the core model configuration that will be explained next.
In the recent decades structural time series modelling and state space approaches have gained

a lot of attention and applications, first in the area of engineering, and later in that of eco-
nomics and econometrics. They have deservingly been established as highly useful forecasting
tools in these fields, due to their advantageous features. One such feature is the formulation
of the time series model in terms of components that have straightforward interpretations, for
example trend, seasonal cycle and cycles on other relevant timescales (Harvey and Koopman,
2000). The inclusion of regression precursor variables in such configurations is also effortless and
flexible. Furthermore, they are especially suited for modelling phenomena that is characterized
by multiple variability modes, mixed frequencies and non-linearities (Harvey et al., 1998; Durbin
and Koopman, 2012). ENSO is just such a phenomenon. Therefore, in Petrova et al. (2016)
such a univariate structural time series model is developed with several dynamic components
and regression precursor variables from the tropical ocean and atmosphere as described earlier in
this Chapter. The dynamic components are stochastic functions of time, driven by independent
disturbances, and extracted from the N34 time series using the Kalman Filter (Kalman, 1960).
Forecasts and unknown parameter estimations are also generated with the Kalman Filter. The
different components are first modelled separately and then put together in a single model using
state space techniques (Petrova et al., 2016). The main assumption of the state-space approach
is that the evolution in time of the system of interest is determined by an unobserved series of
vectors, collectively the state-space vector, which contains the unknown parameters associated
with the dynamic components and the regression variables (Durbin and Koopman, 2012). The
state-space analysis is applied in order to extract the properties of this vector from the existing
time series observations of reality, and this information is used for forecasting.

A very important aspect of time series modelling is to discover the physical laws that trigger
its generation, which precludes a good understanding of the underlying dynamical processes.
Since ENSO physics is now relatively well-understood, it is expected that a successful statisti-
cal model of the phenomenon incorporates the important dynamics that was described in the
previous sections. Therefore, in order to account for as much of the ENSO variability as is
needed to predict its future evolution, the following dynamic components are included in the
proposed statistical model: trend, seasonal, three cycles, noise and various regression precursors
as described previously (Petrova et al., 2016). A trend is necessary as there are slow changes
in the mean background of the tropical ocean-atmosphere system. Proper representation of the
seasonality and of the seasonally varying coupling between the atmosphere and the ocean is
crucial for successful forecasting, as well (Barnett et al., 1993). For instance, dynamical models
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Figure 1.9: Hovmöller diagrams showing composites of interannual surface and subsurface tem-
perature anomalies (in [◦C], shading) from the Subsurface Temperature and Salinity Analyses
by Ishii et al. (2005) between 0-500 metres depth. Red boxes indicate significant lag times of
the precursors. Composites are with respect to all EN events in the period 1978-2012. Data is
processed with a low-pass Butterworth filter, cut-off frequency 18, order 10.
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with shifted and underscored mean annual cycle tend to simulate ENSO with shifts in its phase
and with wrong amplitude, especially at the longer lead times (Jin et al., 2008). In the first
simulation study with the model, Petrova et al. (2016), it became clear that seasonality was
not sufficiently well reproduced, and there were some problems with the phase and amplitude
of some of the ENSO events. Therefore, in the follow-up study, Petrova et al. (2017), this is-
sue is addressed and seasonality is instead modelled with two independent time-varying cyclical
components. Another cycle is also incorporated so that four cycle components are intended
to capture the quasi-biannual, quasi-quadrennial and other dominant oscillatory modes in the
tropical Pacific that have been shown to play major role in the formation of ENSO, such as
its near-annual (An and Jin, 2004; An and Choi, 2009; Fashé and Dewitte, 2013),and decadal
modulations, for example (Kleeman et al., 1999; Yeh and Kirtman, 2005), (Figure 1.8). Finally,
since statistical models usually reduce the variance of the data they analyse (Barnett et al.,
1993), an independent noise term is also included in the system. However, a portion of the
variability appears to remain unaccounted for, as the spectra of forecasts and observations in
Figure 1.8 reveal that the magnitude of variability is systematically underestimated also at the
short lead time of 6 months.

Regardless, the shape of the variability of both the long- and short-term forecasts is in very
good agreement with the observations and indicate a high level of forecasting performance. Al-
though a rigorous direct intercomparison of this model, which constitutes a main development of
the thesis, with the operational model forecasts is not possible, due to the fact that only exper-
imental forecasts have been performed with the dynamic components model, still an imperfect
parallel with other models is illustrative of the work presented here. In Table 1 are displayed
corr with observations and rmse for the model and the same metrics for the best operational
dynamical and statistical models as assessed by Barnston et al. (2012). It is worth highlighting
that operational forecasts only extend to 8 months ahead, and longer lead times are currently
not included in the forecasting plume (IRI, 2017). The values in Table 1 are for all seasons
pulled together, and they suggest that the model performance is at least as good as that of
the high-level dynamical models. However, this is a comparison only in very relative and not
absolute terms. Our model is favoured by the fact that, although forecasts are made without
any use of data from the predicted period, still they have not been issued in real time. At the
same time, the operational models are also favoured by the shorter period over which they have
been validated for the purposes of this study (Barnston et al., 2012). At the longer lead times
at least up to 24 months corr values for our model plateau at about 0.6, while rmse values at
about 0.8 (Figure 3 in Petrova et al. (2017), and predictions at this level are skilful (Barnston
et al., 2012). Still, we remark that this is not the optimal skill of the dynamic components model
as a fixed period is used for the calibration and forecasting in this case, while the real predictive
power is reflected in Figure 1 of Petrova et al. (2017), where the corr at 24 months lead is 0.81
and components are continuously re-estimated whenever new information is available. For a
comparison at these longer leads, Chen et al. (2004) reports corr values ∼ 0.6 and rmse ∼ 0.7
with the Lamont-Doherty Earth Observatory (LDEO) dynamical model for lead months up to
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12, while Clarke and van Gorder (2003) reports corr ∼ 0.6 for lead months up to 10 with the
Florida State University (FSU) regression model.

Table 1.1: Correlation and root mean square error between observed and predicted values of the
N34 Index as functions of lead time in months. Values are given for the dynamic components
model (DCM) as in Figure 3 in Petrova et al. (2017) and the best dynamical and statistical
models as displayed in Figure 6 and Figure 9 in Barnston et al. (2012).

corr rmse
Lead DCM Best dyn. Best stat. DCM Best dyn. Best stat.
time (1994-2015) (2002-2011) (2002-2011) (1994-2015) (2002-2011) (2002-2011)

1 0.97 ∼ 0.95 ∼ 0.90 0.26 ∼ 0.40 ∼ 0.55
2 0.92 ∼ 0.92 ∼ 0.80 0.41 ∼ 0.50 ∼ 0.63
3 0.87 ∼ 0.90 ∼ 0.75 0.53 ∼ 0.60 ∼ 0.71
4 0.80 ∼ 0.80 ∼ 0.68 0.61 ∼ 0.82 ∼ 0.76
5 0.74 ∼ 0.68 ∼ 0.60 0.69 ∼ 0.86 ∼ 0.80
6 0.70 ∼ 0.69 ∼ 0.50 0.73 ∼ 0.90 ∼ 0.85
7 0.67 ∼ 0.70 ∼ 0.40 0.77 ∼ 0.83 ∼ 0.90
8 0.63 ∼ 0.71 ∼ 0.30 0.80 ∼ 0.87 ∼ 0.93
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1.5 ENSO Forecasts and Climate Services

Seasonal climate forecasts, in that account ENSO forecasts, are increasingly important in
human life as climate at these timescales affects the planning of a great many of our activities.
For example, it has a very high impact in the area of agriculture and food and water security,
clean air, energy, and especially the renewable energy sector, transport, leisure, and human
health (Dutton, 2002). Ultimately, it is a determining factor for our very existence. Fortunately,
advancements in technology now provide opportunities for observations, modelling and comput-
ing capabilities that allow more and more credible predictions of atmosphere-ocean events. This
increase of scientific skill enables a more quantitative and rigorous approach to the assessment
of climate risk, and thus drives the evolution of the field of climate services where climate data
is translated into specific tools and products in help of the public and decision makers. Climate
services are in fact becoming more spread-out and diversified, not only as a result of the rapid
development of technology, but also due to the increasing demand for such services in view of
climate change. At the same time, in order to ensure the success of these services, there should
be cooperation efforts on the part of the scientific, public and private sectors. For example, the
health community encounters difficulties when struggling to access and interpret climate science
information (Ballester et al., 2016c). Similarly, the climate community does not fully under-
stand the needs of public health professionals and the authorities. Therefore, multi-disciplinary
research should be promoted, with scientists from different fields collaborating to come up with
the best possible climate services to answer this demand and achieve progress in this sphere.
Key to this goal is the provision of accurate and relevant climate information, and the role of
scientists is to provide decision makers or people at risk with reliable probabilistic climate infor-
mation that would allow the management of resources and opportunities (Dutton, 2002).

The Global Framework for Climate Services (GFCS) is a mechanism for coordinated action
that has set out to ensure smoother communication between the different professional areas,
and to promote the development of trustworthy and sustainable climate services and tools at
different timescales - from months to decades. One of the goals of GFCS is to extend the lead
times for prevention and/or disaster-preparedness in cases of extreme events, disease outbreaks
and other emergencies (GFCS, 2017). Climate information is provided by national and interna-
tional scientific centres and institutions, and constitutes datasets of climatic variables such as
temperature, precipitation, wind, pressure, soil moisture, SST, etc., along with risk-assessment
maps and future projections and forecasts. Within the Framework, the main purpose of this
information is a scientifically-supported and more effective decision-making process and better
management of climate-related risk. One of the components of GFCS is Research, Modelling
and Prediction, which aims to bring forward the area of climate simulation and forecasting. In
order for the Framework to be properly implemented in this respect, more localized climate
forecasting research and applications are required, and priority is given to developing countries
that are highly vulnerable to climate variability (GFCS, 2017).
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In this context, past, current and future information regarding ENSO events can be highly
beneficial. Past information, for example, could provide users with the idea of what are the
possible climatic conditions in the tropical Pacific during any given year, i.e. what is the cli-
mate variability, and what is the potential duration of anomalous conditions based on previous
occurrences. This knowledge could be applied to prepare for any possible situation - EN, LN or
normal conditions - or to adapt to the most probable and expected conditions, which is more
efficient in terms of resource planning (Sarachik and Cane, 2010). The most common users of
this kind of information are the nations in the vicinity of the equatorial Pacific, since the di-
rect effect of ENSO events there is well-known and fairly consistent (Rasmusson and Carpenter,
1982). In addition, records of the past are also indicative of decadal and longer timescale vari-
ability, which could have implications about the frequency of cold and warm phases of ENSO,
as already discussed. Finally, the track of past ENSO events allows for the construction of fore-
cast systems, initialization techniques and validation of predictions to be made. The real-time
information about the situation in the tropical Pacific provided by the monitoring system, on
the other hand, raises the awareness of scientists as they know that a cold or warm event is
underway several months in advance even when no explicit forecasting system is in operation.
A typical example is the progression of the 1997/98 EN, which was followed in detail for almost
a year before its peak (McPhaden et al., 1998). The tremendous benefits of infrastructure such
as the observational array network, however, becomes immediately obvious when considering
the kind of climate services and resource preservation that could arise from knowing the SST
in the EPAC a couple of years in advance. The implications are for agricultural planning and
insurance, water-management, fisheries, health, food aid, etc. Since the teleconnections of ENSO
are now fairly well understood (Rasmusson and Carpenter, 1982; Ropelewski and Halpert, 1987;
Kiladis and Diaz, 1989; Rodó et al., 2006), it is expected that the information from ENSO pre-
dictions would provide insight into the temperature and precipitation patterns in a number of
regions throughout the globe. This emphasizes the role of ENSO in ensemble seasonal forecast-
ing (Stockdale et al., 2011). An inherent problem of this kind of forecasts, however, is the fact
that they are probabilistic (Goddard et al., 2001), which means that users should be aware of
how to use the uncertain information in an educated and efficient way. Probabilistic seasonal
climate forecasts could also be combined with risk management models and strategies that could
then be used to avoid any unnecessary costs (Dutton, 2002). Therefore, although some of the
negative direct effects of extreme ENSO events cannot be avoided, measures could still be taken
in a timely manner in order to reduce drastically the main impacts on human life, as well as to
avoid heavy financial losses.

The most cost-effective application of ENSO forecasts is enabled by making them relevant
to the users on a regional level and targeting them at their local needs (Sarachik and Cane,
2010). One way to do this is to use the ENSO information within regional and local forecasting
models of various kinds, such as infectious disease models for example. The last two studies
included in this dissertation discuss this type of applications (Appendix 1 and 2). A connection
has previously been shown between ENSO and interannual variability in dengue transmission in
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southern coastal Ecuador through its influence on local precipitation and temperature rates. In
fact, Ecuador is one of the countries in the tropics most heavily affected by ENSO (Bendix and
Lauer, 1992; Moran-Tejeda et al., 2016). The first of the pair of studies explores the idea of ap-
plying long-lead forecasts of equatorial Pacific SST in the N34 within a dengue prediction model
to evaluate if epidemics in the province of El Oro in Ecuador could be predicted well in advance
using climate information. The ENSO forecasting model described earlier in the dissertation is
used to predict past EN events about 2.5 years ahead, which provides a lead time of 2 years for
the dengue model. In this way, it is shown that long-lead El Niño information could theoretically
enhance long-lead predictions of dengue incidence in Ecuador and other tropical and subtropical
countries. This could dramatically improve resource planning initiatives in such countries and
remove some of the financial burden that they experience during dengue epidemics.

The second study, Lowe et al. (2017) (Appendix 2), attempts an operational forecast of
dengue incidence in southern coastal Ecuador in 2016 using real-time seasonal climate forecasts
in the region along with forecasts of El Niño produced with the prediction model discussed in
the thesis. The resulting forecast of dengue incidence in El Oro is issued up to 10 months in
advance, which is a relevant time scale for the decision-making process by public health officials
in the country. The real-time forecasts are assessed retrospectively at the end of 2016 when the
observational data became available. The predictions with climate forecast data are more accu-
rate than those relying simply on benchmark risk thresholds (Lowe et al., 2017), and correctly
simulate the timing of the peak of dengue in March 2016. The amplitude is also well-predicted
in relative terms, indicating a very high chance of exceeding the mean of dengue incidence for
the last 5 years.

The two studies represent important steps towards the design of an operational climate service
for the health sector in Ecuador and the introduction of an early warning system for dengue
epidemics in the region (Figure 1.10).
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Figure 1.10: Schematic of a climate service tool for the health sector in El Oro, Ecuador. Shown
is an international collaboration between climate and health scientists, as well as local public
health authorities.
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Chapter 2

Discussion and Conclusions

The studies included in this dissertation are dedicated to the advancement of the theoretical
understanding and knowledge about the ENSO phenomenon. In particular, they are focused
on unravelling the dynamical mechanisms leading to the accumulation and storage of heat in
the WPAC ocean subsurface, as well as the propagation of this heat towards the CPAC and the
growth of ENSO events in the EPAC. The implications of these subsurface and surface equatorial
processes for the long-lead predictability of ENSO, as well as for the intensity and frequency of
the events are also investigated. A new ENSO prediction framework is developed as a result,
which incorporates these physical processes through a new dynamic components model and the
addition of specially designed precursors. The forecast scheme is shown to be successful at very
long-lead times of more than two years ahead of the winter peaks of the warm events. As a
final chapter in this thesis, EN forecasts are implemented within a dengue prediction model to
enhance the forecasts of dengue epidemics in southern coastal Ecuador. Discussed is, therefore,
a prospect of a climate service tool (an early warning system) for the health sector.

In the first two studies the role of the WPAC as a fundamental area for the memory, origin
and oscillatory nature of ENSO is analysed in detail. As the main equatorial region of deep
atmospheric convection, and thus a major source of atmospheric teleconnections, it is not only
a key domain for the local equatorial physical processes, but also has a large impact on the
climate worldwide. As a primary development in this dissertation, it is shown that the onset
of EN events is associated with strong trades and upper ocean warming first in the far western
equatorial Pacific and some months after in the CPAC, and that this warming starts long before
the actual events - at least 30 months earlier - with meridional and vertical convergence of mass in
the subsurface. The validity and consistency of these results is confirmed by means of a number
of data assimilation products. Moreover, it is demonstrated that the entrainment processes
lead to slightly different intensity and exact areas of warming at different depth levels in the
ocean, and that the warming is not restricted within the upper layer above the thermocline, but
anomalies are present also at greater depths at least down to 500 metres. On the other hand, an
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overall basinwide increase of HC does not occur until much later in the development of the events,
i.e. about 9 months before the EN peak. Hence, the consideration of isolated heat patches at
different depths as separate precursors of the events is considered for the first time in the second
study of the dissertation, and this methodology is proved to strikingly increase the predictability
of ENSO in a statistical dynamic components model. Therein, successful predictions are made
more than two years in advance. Therefore, it is proved that zonally integrated HC traditionally
used in statistical forecasting schemes is not an optimal precursor and could instead be limiting
the real potential of such systems.

The third study further analyses the complex spatial and temporal structure of the heat
buildup in the CPAC and its propagation eastward during the recharge and mature phases of
EN. It is clarified that the warming tendency in the CPAC mainly results from the intensification
of the EUC, which advects the original subsurface warming from the WPAC eastward along
the thermocline. This process normally starts very early in the generation of the EN events,
only a couple of months after the heat buildup begins in the WPAC (in the range between
25-36 months in advance). The peak of warm subsurface anomalies is identified at about 21
months ahead. In agreement with these findings, in Petrova et al. (2016) early precursors of
the events in the subsurface ocean are defined in two general regions that span the WPAC and
CPAC (Figure 2.1a). Since these predictors are oceanic features, they are conventionally more
persistent and their time series are impacted to a lesser degree by the unreliable and shorter
timescales of atmospheric noise. Several months later (between 6 and 15 months ahead), the
EUC decreases in intensity in the WPAC and increases in the EPAC due to the subsidence of
the trades at the surface and the occurrence of westerly winds. These westerly anomalies also
have substantial impact on the timing and intensity of the warm events (Levine and McPhaden,
2016), (Eisenman et al., 2005), and are therefore also used as precursors at medium to short
lead times (Figure 2.1b). Thus, the EUC advects the warm waters to the EPAC and they start
to be upwelled to the surface and to warm the SST there. During the peak of the recharge stage
zonal convergence and downwelling in the WPAC is decreased due to a decrease of the SEC
and the surface westerly wind anomalies, which leads to consistent cold anomalies in the WPAC
subsurface that are used as precursors at lead times shorter than 10 months. Another consistent
cold anomaly in the northern off-equatorial region is found to anticipate EN by about 6-9 months
in the second study of this dissertation and thus it is also defined as a precursor in the dynamic
components model. In the third study it is shown that this anomaly in fact results from an
inter-hemispheric asymmetry in the ocean vertical velocity, with upwelling in the Northern and
downwelling in the Southern Hemisphere (Ballester et al., 2016b). Finally, the RossBell dipole
defined in the extratropics in the Southern Ocean (Ballester et al., 2011) is also confirmed as
a statistically significant precursor within the dynamics component model framework at lead
times of 8-9 months, which is compatible with the previous results of Ballester et al. (2011).
Its role as a tracer for EN events is important, considering that it is not directly affected by
the ocean-atmosphere coupling in the equatorial Pacific. Preliminary results included here (see
Appendix 3) point out that the RossBell dipole is generated by disturbances in the atmosphere
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Figure 2.1: Schematic diagrams showing the processes and precursor regions in the tropical
Pacific at lag- a) 21 and b) 9 months with respect to the peak of El Niño conditions, and corre-
sponding to the early subsurface warming in the WPAC and CPAC, and the peak of subsurface
heat content preceding EN.
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in the extratropics. To study this effect better a similar atmospheric RossBell dipole is defined,
which is shown to be partially driven by the ENSO forcing in the tropics and the annual cycle of
the winds in the southern Pacific region. Further research is needed to consolidate these findings.

All these comprehensive results in the first three studies of the dissertation are not only valu-
able for the definition of ENSO precursors to be used in long-lead statistical forecasting, but
could also be applied in the validation and improvement of intermediate and complex dynamical
models that still fail to simulate some of the main features of ENSO (Barnston et al., 2012). By
incorporating precursory covariates designed as a result of this analysis of coherent sequence of
patterns starting in the WPAC, gradually moving towards the CPAC and then eastward to the
EPAC, the forecasting scheme developed in the second study is shown to successfully predict the
main EN events in the period 1996-2015 at least 29 months in advance. Up to our knowledge:
1.) forecasts at this long lead time have not been documented before, and precur-
sory signals have neither been traced in specific subsurface regions, nor below the
thermocline; 2.) moreover, the model predictive skill measured by standard met-
rics indicates that it outperforms other statistical models, and easily compares to
some of the best dynamical ones; 3.) results there also demonstrate that the use of
suitable subsurface information leads to the overcoming of the spring predictability
barrier, 4.) while the use of specific regions as well as information from the surface,
i.e. SST and wind stress, leads to the overcoming of the winter barrier associated
with the predictability of equatorial HC; 5.) the simplicity of the model from a
computational point of view renders yet another advantage to it. Its flexibility pro-
vided by the state space approach and the re-estimation of component parameters with every
piece of new information also ensures that the idiosyncrasies of individual events could be cap-
tured, especially by the time/frequency-varying cyclical components, and this usually represents
a problem for statistical techniques. For example, the 2014/15 EN did not develop as a strong
event partly because the atmosphere did not respond accordingly to the ocean warming and
there was a strong easterly burst in the beginning of the summer in 2014 (Hu and Fedorov,
2000; Levine and McPhaden, 2016), while the usual westerlies preceding EN failed to appear
afterwards. This is a typical example when atmospheric noise forcing significantly affects the
amplitude of the event. Still, the dynamic components model correctly predicted this marginal
EN event, since it incorporates the information from the atmosphere in the form of wind stress
predictors. Because all components are estimated together in a dynamic way, specific precursors
contribute to the accurate estimation of these varying frequencies of the cycle components in
the case of every individual event.
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2.1 Superimposed Frequencies of the Cyclical Compo-

nents of ENSO

In a theoretical experiment, we could extend idealized time-invariant versions of the main
frequency modes involved in the ENSO physics, as estimated with the dynamic components
model (Figure 2.2). It can be observed that a number of the ENSO events coincide with simul-
taneous peaks of these idealized cyclical modes. In essence, this is a Fourier superposition of
several waves of a particular phase relation, which results into focusing of the energy of the dif-
ferent modes, and thus into a sharp positive or negative peak through constructive interference.
Such superposition is observed in this idealized framework for example in 1986/87, 1997/98,
2002/03, 2009/10 (Figure 2.2a,b), which are all officially recognized as EN years (CPC, 2017),
and similarly for LN years in 1985/86, 1988/89, 1995/96, 1998/01, 2010/12. When the idealized
decadal mode is also included (Figure 2.2b), peaks associated with the overlapping of energy
modes coincide with some of the other ENSO events. For instance, simultaneous peaks of the
2-year cycle and the 4-year cycle are expected to peak in 1982/83. At the same time the decadal
cycle peaks in 1982, which is the year when a prominent EN event actually occurred (Figure
2.2b). In addition, in 1991/92 there is a coincidental peak of the 5-year cycle and the decadal
cycle, and this is also an official EN event. The decadal cycle remains in its peak phase until
1995, while the 4-year cycle peaks in 1994/95 when the 2-year cycle is at its rising phase as well
and a weak El Niño is also documented. Notably, this particular positive phase of the decadal
cycle corresponds to prolonged warm conditions in the EPAC between 1990 and 1995. A simi-
lar situation occurs during the next positive phase of the decadal cycle between 2002-2007. In
the beginning of 2005 the decadal peak is superimposed onto a peak of the 2-year cycle and a
growing phase of the 4-year cycle, and 2004/05 is defined as a weak EN event. Then in 2006/07
the 2-year cycle is again on the rise together with the 5-year cycle, while the decadal is still in
its positive phase, and this is another EN event in the official records (CPC, 2017). The next
decadal cycle positive phase starts in 2015 and is expected to peak in 2017. A similar decadal
mode and entrance into a warm phase in 2015 is also found in Ramesh et al. (2016).

It is evident that these superposition inter-dependencies do not have a linear effect on the
amplitude of the respective events, which evolve in a non-linear way. A super-event might occur
when all of the discussed cycles peak together at the same time, as it is in the case of the 1997/98
EN event. Furthermore, there are also phase shifts of the main cyclical modes as a result of
the modulation of the decadal cycle as for the 2015/16 EN when the frequency of the 5-year
cycle is locked to that of the decadal cycle and its peak is delayed. In fact, it is the role of
the predictor covariates to signal such phase and amplitude shifts and account for the variance
in these idealized cyclical components through the dynamic estimation of parameters based on
new observations. These features place the unique statistical modelling technique described here
on the same plane with dynamical schemes, since the system could update itself as a result of
changes in the physical process that describe the state of the atmosphere-ocean coupled system.
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iñ
a

(ligh
t

b
lu

e
lin

es)
even

ts
from

th
e

ob
servation

al
record

are
in

d
icated

.
W

ave
am

p
litu

d
es

are
n
ot

realistic.



2.1 Superimposed Frequencies of the Cyclical Components of ENSO 39

In light of the key modulation of cyclical components that has been found, in Petrova et al.
(2017) the model is upgraded with an explicit additional decadal cycle component together with
time-varying seasonal and annual cycles. Essentially, this study addresses and solves the ma-
jority of problems associated with the model that arose and were summarized as future work
in Petrova et al. (2016). As expected, these improvements have resulted into further increase
of the model skill and better performance metrics (see for example Figure 3 of Petrova et al.
(2017)). In addition, the whole N34 time series from 1970 to 2016 is predicted 2 years ahead.
Previous studies have only reported forecasts of individual EN events at such a long lead time
(Chen et al., 2004; Gonzalez and Goddard, 2016), but not of neutral or LN years, which are
normally harder to predict. This testifies that the model is not prone to produce false alarms. A
major discovery is the dramatic improvement of overall skill after 1994, which is the year when
the observing system in the tropical Pacific was fully deployed. The change is outstanding and
cannot be simply explained by the variability in ENSO predictability itself. Moreover, it un-
equivocally corresponds to the period of the continuous positioning of the array network. Since
the model depends heavily on subsurface data from the equatorial Pacific Ocean, the provision
of such high-quality three dimensional data is crucial for its success. As seen in the paper, its
availability has direct implications about the impact and significance that the precursors have
on the predictions, and the model performance improves gradually with the evolution of the
TAO-TRITON observational array and with the enrichment of the data records describing the
ocean subsurface. Improvements in the regularity of surface data streaming also undoubtedly
contribute to the boosted performance of the model. For the first time it is demonstrated that
not only dynamical prediction systems (Stockdale et al., 2011), but also statistical models can
benefit greatly from the constant and more accurate subsurface and surface data in the tropics for
the correct modelling and prediction of ENSO. Therefore, this study has the potential to become
a reference of paramount importance for the long-lead ENSO prediction and predictability, hav-
ing implications for the overall provision of accurate seasonal-to-interannual climate forecasts.
Furthermore, it strongly reinforces the complementary role of statistical ENSO forecasting. A
second prominent finding of this study is that there is only a minor decrease in the skill of the
model for forecasts issued during and beyond the preceding spring season, as well as the one in
the year before the event, which supports the hypothesis proposed by previous work that this is
not an inherent limit for ENSO predictability, but is rather a constraint conditioned upon the
design and specificities of the forecasting schemes.

By and large, the results of the study not only push forward the theoretical potential for
long-lead forecasting of the phenomenon, but also provide key evidence for the capacity of sta-
tistical long-term prediction that has so far been largely underestimated by the ENSO scientific
community. In particular it is proven that long-lead statistical predictions are achievable when
state-of-the-art models are adapted to incorporate the subsurface information in a more selective
and less integrative way. These types of forecasts are also much faster to run computationally
than those produced with complex physical models. Furthermore, the results highlight the huge
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benefits of extensive climate monitoring systems, and the view that they make possible major
advancements in both theoretical and practical climate science some decades later is strongly
supported here.

In addition to isolating the different mechanisms involved in the buildup and propagation of
heat prior to EN, the dissertation also explores the sensitivity of the event timing and intensity
to the actual intensity of the heat buildup. In the fourth study, a nonlinear dependency between
the two is found for the first time at the very long lead time of 21 months - the peak of warm
subsurface anomalies preceding EN in the WPAC and CPAC as described earlier. Through
numerical experiments with a GCM it is verified that a large increase of HC there at this time
(by ≥ 80%) leads to warm SST anomalies over the whole equatorial basin in the winter one year
earlier, which is also a pre-condition for the occurrence of more energetic deterministic westerly
wind anomalies (Gebbie and Tziperman, 2009), and thus an extreme EN event the following
winter. This scenario is in fact similar to the 2014/15 very weak EN when warm SST anomalies
were present basinwide, and it was followed by the very strong 2015/16 EN. In the experiments,
the strong EN is also followed by a strong LN the year after, unlike the weak LN that happened
in 2016/2017. The explanation for this might be related to a modulation by the positive peak
phase of the decadal mode, or perhaps to climate change, but this is beyond the scope of this
research.

On the other hand, a substantial decrease in the HC at this time (by ≥ 80%) sets the initiation
of a new recharge of heat in the WPAC, a weak LN in the winter before the event in the EPAC,
and then a delay by one year of the EN in agreement with the seasonal phase-locking of ENSO.
Furthermore, a decrease/increase of the HC by 40% does not result into changes in the timing
of the event, but only into a decrease/increase of the EN amplitude by about 30%. It is also
interesting that although in general the larger is the initial HC, the larger is the amplitude of
the following warm event, this relationship is again not linear as an increase by 100% of the HC
in the experiments results into an amplitude increase of only about 1 ◦C. This study as well as
the previous ones substantiates the theory for self-sustainability and long-lead predictability of
ENSO of more than one year, since it demonstrates that apart from the established association
between tropical ocean HC and EN about 9 months before, such a significant association also
holds 21 months before (Ballester et al., 2016b).

On average, the physical mechanisms described here are reverse for the early generation and
development of the cold phase of the oscillation. However, some important asymmetries exist,
especially in regards to the shorter time frame needed for the growing of LN that immediately
follows a strong EN. In addition, some EN episodes do not seem to be directly preceded by LN
or even LN-like conditions. Finally, by convention LN anomalies in the EPAC are predominantly
of smaller amplitude than the warm events. These asymmetries will be studied in more detail
in the future, and specific predictor variables will be designed with the aim of improving the LN
forecasts. Some of the possible reasons for these differences might be related to the dynamic
heating of the ocean or to the interdecadal modulation of ENSO. A question open to research
is the actual origin of the ENSO fluctuation on decadal timescales. There are a few competing
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theories: from mid-latitudinal temperature anomalies propagating to the equatorial region along
the thermocline through advection processes, to decadal wind stress anomalies within the tropics
modulating the thermocline (Ramesh et al., 2016), or to nonlinear effects due to the fact that
the tropical ocean-atmosphere system is chaotic (Timmermann and Jin, 2003). Considering that
this low-frequency mode not only has an important role to play in ENSO dynamics, but also
has a modulating effect on the global mean surface temperature (Meehl et al., 2011), it would
be pertinent to study its physical mechanism further in the future. An interesting result is that
this mode is reproduced with the Zebiak-Cane model, which has as a domain only the tropical
Pacific (Ramesh et al., 2016). This implies that whatever the exact dynamical mechanism is,
it originates within the tropical region itself. Another possible avenue for future research is a
study that outlines the limits of predictability with the dynamic components model developed
in the dissertation. A study with a decadal ENSO forecasting system has suggested a possible
predictability window extending up to 4 years ahead, albeit with necessary trend and bias cor-
rections (Gonzalez and Goddard, 2016). An interesting outcome in this study, which we would
like to test with the dynamic components model, is that the strongest events are not always
predicted better than the weaker ones. This assertion clearly runs against previous results (e.g.
Chen et al. (2004)).

Knowledge about the SST in the equatorial Pacific a year or more in advance could be of
huge benefit to many countries in the world. This information could be utilised in weather
forecasting, as well as seasonal climate predictions, annual planning of agriculture and fishing
activities, storm and flood preparedness, organization of public health response and vaccination
campaigns for fighting climate-sensitive diseases, and overall resource and state budget plan-
ning. In particular, it appears of considerable interest to the developing countries that directly
border the area of major changes associated with ENSO, e.g. Peru and Ecuador, whose climate
is particularly affected by the interannual ENSO variability. Thus, the final two studies of the
dissertation demonstrate the possibility for the development of a climate-driven early warning
system for dengue outbreaks in El Oro province in Ecuador. In the first of the pair of studies the
ENSO dynamic components forecasting model is used to predict in retrospect the timing and
amplitude of the prominent 1997/98 and 2009/10 EN events 2.5 years in advance. The predicted
N34 is then used to drive a dengue incidence model, which successfully forecasts the two biggest
recorded outbreaks of dengue in the region in 1998 and 2010 at least 30 months ahead (Figure
2.3). The role of ENSO as a precursor for dengue derives from its direct impact on the climate
in El Oro, in particular its predictive capacity for the increase of minimum temperature and
precipitation following El Niño events. These two variables at the same time are key drivers
of mosquito population dynamics. The identified mechanistic explanation of the inter-linkage
can be explained as follows: the normal climatic patterns in southern coastal Ecuador in boreal
winter/spring (i.e. seasonal maximum in temperature and precipitation) are enhanced due to El
Niño, and as a result, the dengue incidence (also with a seasonal maximum in spring) tends to be
enhanced during El Niño years. It is thus demonstrated that the prediction window for dengue
in the area could theoretically be extended much further in time than traditionally considered.
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a)
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Figure 2.3: Posterior predictive distribution of dengue cases (base-10 logarithmic scale) for El
Oro province, Ecuador for March a) 1998 and b) 2010 using forecast Oceanic Niño Index (3-
month running mean N34) values for November-December-January at lead times of 30 months
with respect to the peak in dengue. The posterior predictive mean (dashed line), 95% credible
intervals of the predictive distribution (dotted lines) and observed dengue cases (arrow) are
indicated.
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While decision-makers customarily use forecast information for planning purposes only a few
months before an epidemic occurs, the findings in this study show that it is possible to opti-
mize public health budgets by planning a couple of years in advance. Moreover, the uncertainty
related to the forecasts could be largely decreased by validating the predictions gradually and
stepwise in real time, and thus refining the available information. This is emphasized by the fact
that both the EN and dengue predictions are shown to converge to the observations uniformly
with decreasing lead time. This is especially relevant when considering the limiting factors of
this research, namely the admission that not all epidemics are driven by climate, that climate
variables impact the disease in a nonlinear way, and that ENSO teleconnections are transient in
nature and may change in the future with the progression of global warming.

The last study further explores the potential for an early warning system by proposing a ten-
tative prototype (Lowe et al., 2017). N34 and seasonal climate forecasts are incorporated into
an improved version of the dengue model, and dengue incidence in southern coastal Ecuador
is predicted in real time for up to 10 months in the future. Dengue prediction studies usually
use the observed climatic variables and are in this way restricted to only a few months lead
time. Here a first step is made towards increasing the lead time in an operational framework
with the inclusion of predicted climate precursors. Forecasts were issued on 1 January 2016 for
all months until October 2016, and then validated at the end of 2016 when the epidemiological
data became available. The predictions capture the peak of dengue incidence in March, and
detect the very high chance of exceeding the mean incidence for the previous five years. They
also correctly foresee the decrease below the mean of the number of cases during the second half
of the year. Importantly, information from the ENSO and the seasonal climate forecasts not
only extends the predictive capacity of the dengue model to longer lead times, but also improve
the timing of peak incidence as compared to estimates based on the seasonal averages from the
previous years, which foresee a peak in June rather than in March. As far as we are aware, this
is the first study in which a dengue prediction utilising operational climate forecast information
is performed in real time rather than in retrospective mode.

The pair of studies are in line with the recommendations of the World Health Organization
to use climate forecasts to improve dengue outbreak predictions (Kuhn et al., 2005). Moreover,
they are of direct usefulness for the public health sector in Ecuador in light of their potential to
help authorities to optimise their available resources, especially in the planning and prevention
phases when dealing with a dengue outbreak. The results further suggest that climate informa-
tion should be included in the official surveillance activities of the country, given that even only
awareness about a forthcoming EN event could improve their overall preparedness in regards to
the timing and magnitude of an epidemic. Although policy makers in the tropics are very aware
of the modulating effect of climate and ENSO in particular on the dynamics of diseases such as
dengue, climate forecast information is not being exploited systematically yet in their prevention
and mitigation efforts. Thus, the research work presented here implies that the collaboration
between the meteorological and health services in Ecuador can now be extended further with a
new climate service tool for health. Our goal for the future is to try to make it fully operational.
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Future research could also identify the extent to which large-scale global teleconnections could
be mapped applying the long-lead ENSO forecasts performed with the dynamic components
model. Considering that ENSO is the most powerful generator of tropospheric interannual vari-
ability (Rasmusson and Carpenter, 1982; Ropelewski and Halpert, 1987), such an evaluation of
the skill of SST forecasts in the EPAC to predict climate in various parts of the globe based on
well-known physical mechanisms could be of tremendous value for seasonal forecasting systems,
as well as for local climate monitoring and surveillance activities. As a further matter, more
areas where ENSO forecasts could be incorporated into infectious disease or other types of risk
models could be pinpointed as a result of such prospective scientific exploration with the aim of
saving lives, ensuring better economic development and protecting the environment.
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Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude.

Scientific Reports, doi:10.1002/2016JC011718 (in press)

Impact factor 5.228 in 2015 (first quartile).

The applicant contributed significantly to this publication by discussing the design of the
study and the results, and putting them in the context of the existing literature on ENSO
predictability and recent El Niño events. No other co-author has used or plans to use any of the
results presented in this article for a PhD dissertation.

Article 5

Petrova D., Ballester J., Koopman S.M., Rodó X.
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(1) California Institute of Technology, Pasadena, California, United States
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Abstracto - Summary in Spanish

A pesar del progreso constante en el entendimiento de la naturaleza de El Niño-Oscilación
Sur (ENSO) en el pasado durante décadas, siguen pendientes interrogantes sobre los mecanismos
exactos que explican la acumulación de calor que conduce al El Niño (EN). Aqúı utilizamos un
conjunto de productos de asimilación de océanos y atmósferas para identificar mecanismos que
son consistentemente identificados por todos los conjuntos de datos y que contribuyen a la
acumulación de calor en el Paćıfico occidental 18 a 24 meses antes de la aparición de eventos
EN. Se encontró que la advección de calor meridional hacia el este, debido a la convergencia de
la masa subsuperficial del ecuador y el transporte a lo largo de la corriente submarina ecuatorial,
contribuye al calentamiento subsuperficial hacia los 170◦E-150◦W. En el warm pool, en cambio,
la convergencia horizontal superficial y el movimiento descendente tienen un papel principal en el
calentamiento subsuperficial. Los resultados obtenidos destacan una fuerte transición dinámica
hacia los 170◦E cerca del nivel de la termoclina.
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Abstract Despite steady progress in the understanding of El Niño–Southern Oscillation (ENSO) in the past
decades, questions remain on the exact mechanisms explaining the heat buildup leading to the onset of
El Niño (EN) events. Here we use an ensemble of ocean and atmosphere assimilation products to identify
mechanisms that are consistently identified by all the data sets and that contribute to the heat buildup in the
western Pacific 18 to 24 months before the onset of EN events. Meridional and eastward heat advection
due to equatorward subsurface mass convergence and transport along the equatorial undercurrent are
found to contribute to the subsurface warming at 170°E–150°W. In the warm pool, instead, surface horizontal
convergence and downwelling motion have a leading role in subsurface warming. The picture emerging
from our results highlights a sharp dynamical transition at 170°E near the level of the thermocline.

1. Introduction

El Niño–Southern Oscillation (ENSO) is the most energetic climate signal after the seasonal cycle, the major
source of interannual variability worldwide and a dominant driver of climate teleconnections [Ballester et al.,
2013]. Its prominent amplitude in the tropical Pacific is essentially explained by the positive Bjerknes feedback
[Bjerknes, 1969; Wyrtki, 1975], which involves a strong coupling between the Walker circulation, the zonal
gradient of sea surface temperature and the longitudinal tilt of the thermocline [Ballester et al., 2011]. Two
main theories have been invoked to bound the amplitude and reverse the sign of interannual anomalies: the
delayed oscillator theory, which explains this reversal through differential propagation speed of wind-induced
oceanic Kelvin and Rossby waves [Battisti, 1988; Schopf and Suarez, 1988;Wang, 2002; Fedorov and Brown, 2009];
and the recharge oscillator, which emphasizes the time delay between anomalies in longitudinally averaged
thermocline depth and eastern Pacific sea surface temperature [Jin, 1997a, 1997b;Meinen andMcPhaden, 2000].

The western Pacific is a key region for understanding the oscillatory nature of ENSO and the generation of
EN and La Niña (LN) events. It is characterized by the warm pool, an upper ocean area of very warm and
well-mixed waters (supporting information Figures S1b and S2b), surface horizontal current convergence
and subsurface divergence (supporting information Figure S3b) and therefore downwelling motion. This
region represents the main energy source for deep atmospheric convection and basin-wide teleconnections
[Picaut et al., 1996], and as such, it modulates both the climate of the planet and the physical properties and
dynamical processes occurring locally. The equatorial Pacific is characterized by a sharp upper ocean zonal
salinity front near the warm pool edge around 160°E–180°E (supporting information Figure S1b), which
results from the convergence of zonally advected low- (high-) salinity water masses from the western
(central) Pacific (supporting information Figure S3b) [Bosc et al., 2009]. The longitudinal contrast in surface
salinity is in turn explained by both the intense thermally driven atmospheric convection and rainfall to
the west (supporting information Figure S4b) and the strong trade winds and evaporation to the east
(supporting information Figure S5b).

The interannual zonal migration of the Pacific warm pool is well known to be associated with the displacement
of the areas of deep atmospheric convection, active precipitation, strong trade winds, and enhanced evaporation
[Singh et al., 2011]. These relationships explain the intimate link between ENSO variability and the zonal
thermohaline structure of the upper equatorial Pacific, with increased (decreased) zonal contrast of temperature
and salinity during LN (EN) events, when the area of maximum precipitation is enhanced in the western
Pacific (is shifted to the central Pacific) and the trade winds and westward surface currents are strengthened
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(relaxed) in the central Pacific (supporting information Figures S1, S2, S4, and S5). These associations
determine the intensity and vertical extension of surface horizontal current convergence and downwelling
motion in the warm pool, as well as the zonal position and vertical tilt of local isopycnals through simultaneous
changes in both the warm pool edge and the salinity front (supporting information Figures S1 and S3).

2. Methods

Outgoing longwave radiation, latent heat flux and wind stress data are derived from the NCEP/NCAR reanalysis
reanalysis [Kalnay et al., 1996] and precipitation is from the Global Precipitation Climatology Project version 2.2
(GPCP v2.2) Combined Precipitation Data Set [Adler et al., 2003]. Ocean variables are obtained from five
assimilation products: GECCO, ORAS4, NEMOVAR-COMBINE, SODA2.1.6, and SODA2.2.6 [Köhl and Stammer,
2008; Balmaseda et al., 2008, 2010, 2013; Carton and Giese, 2008]. Vertical velocity is diagnosed by integrating
horizontal divergence down from the surface, with surface values assumed to be equal to the time tendency of
sea surface height.

A 13 term running average (1/24, 1/12,…, 1/12,…, 1/12, 1/24) is used to calculate the interannual component of
detrended monthly variables. EN events are chosen according to the classification of the Climate Prediction
Center for the common period 1961–2001 of the assimilation data sets: December 1963, 1965, 1968, 1972,
1976, 1982, 1986, 1990, and 1997 [Climate Prediction Center, 2013]. In those cases in which EN conditions are
observed in the tropical Pacific for two consecutive boreal winters (i.e.,1968/1969, 1976/1977, 1986/1987,
and 1990/1991), only the first year is considered for the calculation of the composite anomalies, given that our
main objective here is the description of the onset of these events. The 1994 event was excluded from the
analyses because it was the continuation of a previous warm event starting in 1990, with warm sea surface
temperature anomalies persisting in the central and eastern tropical Pacific for almost 6 years [Trenberth and
Hoar, 1996]. A similar criterion is used for the selection of LN years: December 1964, 1970, 1973, 1975, 1984,
1988, 1995, and 1998.

The temperature tendency equation is analyzed with regard to the contribution of the zonal (Uadv),
meridional (Vadv), and vertical (Wadv) heat advection components. These terms are expressed as

Uadv ′ ¼ �u ∂θ
′

∂x
� u′

∂θ
∂x
� u′

∂θ′
∂x
þu′ ∂θ

′

∂x
; (1)

Vadv ′ ¼ �v ∂θ
′

∂y
� v ′

∂θ
∂y
� v ′

∂θ′
∂y
þv ′ ∂θ

′

∂y
; and (2)

Wadv ′ ¼ �w ∂θ′

∂z
� w ′

∂θ
∂z
� w ′

∂θ′

∂z
þw ′

∂θ′

∂z
; (3)

where the overbar and the prime denote the decomposition of potential temperature (θ) and the zonal (u),
meridional (v), and vertical (w) current velocities into their climatology and the nonclimatological anomalies,
respectively.

3. Results

Figure 1 shows the longitude-depth composite of equatorial potential temperature and its time tendency
before EN events, averaged for the ensemble of assimilation products. Note that the stippling denotes areas
where anomalies are consistent among all assimilation products. The initial accumulation of subsurface warm
waters in the western Pacific (Figure 1a) and the subsequent eastward movement along the equatorial
thermocline (Figures 1b–1d) characterize the onset of EN events [Jin, 1997a, 1997b]. This propagation links
opposite phases of the tilting mode at lags �21 and +00 (Figures 1a and 1d) with a transition period of
increased zonally integrated equatorial subsurface heat content at lag �09 [Meinen and McPhaden, 2000]
(Figure 1c). After reaching the upper eastern equatorial Pacific, the released heat is rapidly amplified by the
Bjerknes feedback, leading to the fast growth of an EN event [Ramesh and Murtugudde, 2013].

The present study describes the ocean-atmosphere mechanisms explaining this initial subsurface
warming in the western equatorial Pacific, with special emphasis on the spatial characterization of the
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relative role that different processes
play in this heat buildup. To this aim,
Figure 2 shows the longitude-depth
composites of ocean temperature,
salinity, zonal velocity, and zonal,
horizontal, and meridional divergence
of ocean currents in the equatorial
Pacific at 21 months before the
mature phase of EN, while Figure 3
depicts the contribution of zonal,
meridional, and vertical heat
advection to the temperature
tendency leading to the anomalies
occurring at this lag.

On average, the peak of interannual
LN-like conditions is found in the
upper equatorial ocean at lag �21,
with colder-than-normal waters
in the central and eastern Pacific
(contours in Figure 2). The
subsequent shift of convection and
precipitation to the far western
Pacific increases the surface salinity
in the easternmost edge of the
climatological warm pool near
160°E–180°E (shading in Figure 2a),
sharpening the zonal differences in
surface salinity near the warm pool
edge and the salinity front. Changes
in both temperature and salinity
increase the zonal contrast in upper
ocean density and the local tilt
of the isopycnals. At the same
time, the enhanced trade winds in
the central Pacific strengthen the
westward south equatorial current
near the warm pool edge and the
salinity front (Figure 2b). This results
in anomalous surface zonal (0–60m)
and horizontal (0–75m) convergence
in the western equatorial Pacific
(shading in Figures 2c and 2d). The
surface buoyancy loss, additional
isopycnal tilting and enhanced
surface westward circulation and

horizontal current convergence result into the intensification of the downwelling motion, which contributes to
the growth of the subsurface warm buildup.

The strengthening of the trades during LN-like conditions is also associated with the enhancement of the
clockwise (counterclockwise) wind stress curl in the central off-equatorial north (south) Pacific, which
together with the rise in dynamic height due to the accumulation of warm waters in the western Pacific,
drives anomalous geostrophic Sverdrup transport toward the equator (shading in Figure 2e) [Wyrtki, 1981].
This subsurface-intensified meridional convergence is particularly strong in the western and central Pacific,
where the strongest interannual ENSO-like zonal wind stress anomalies are found (cf. with supporting

Figure 1. Evolution of equatorial temperature and its tendency during
the onset of El Niño events. Multiproduct average of potential temperature
(°C, contours) and its time tendency (°C/yr, shading) averaged over the
equatorial band (2°S–2°N), and shown for lags 21 (a), 15 (b), 09 (c), 00, and (d)
months before the major El Niño events. The temperature contour interval is
0.25°C, with solid (dashed) lines depicting positive (negative) anomalies. The
purple (cyan) stippling denotes areas where shading (contour) anomalies have
the same sign and magnitude larger than ±0.025°C/month (±0.25°C) for all
members of the ensemble.
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information Figure 5d). It is important to note that the meridional Sverdrup subsurface convergence is
already present in the western and central Pacific at lag �30, when incipient LN-like conditions start to
reinforce the trade winds (not shown). In the upper Ekman layer, the stronger-than-normal easterly wind
stress generates anomalous meridional Ekman divergence (shading in Figure 2e). This configuration with
surface meridional divergence and subsurface convergence results into an area of anomalous upper ocean
upwelling motion to the east of the dateline (shading in Figure 2d). In the warm pool, anomalous zonal
currents are strongly convergent in the surface and divergent in the subsurface (shading in Figure 2c). These
zonal signals are locally stronger than the expected meridional Ekman-induced surface divergence and
the meridional Sverdrup subsurface convergence, therefore inducing anomalous local downward motion to
the west of 170°E (shading in Figure 2d).

The mechanisms described in Figure 2 are consistently observed in all the assimilation products considered
in this study (supporting information Figure S6). Interestingly, the magnitude of surface temperature, salinity,
and current anomalies and the associated subsurface warming vary coherently between products, so that
the stronger these anomalies, the warmer the subsurface buildup. For example, the interproduct correlation
between surface salinity (156°–166°E, 0–50m) and subsurface potential temperature (156°–166°E, 100–130m)
is 0.98 (p< 0.001), with a regression coefficient of 3.91°Cper g/kg. The only exception is GECCO, which
underestimates the zonal surface convergence (subsurface divergence) in the warm pool compared to other
products, and does not produce the patterns of meridional surface Ekman divergence (subsurface Sverdrup
convergence) in the western and central equatorial Pacific observed in the other assimilation data sets.
Interestingly, this is the assimilation product with the weakest subsurface heat buildup. The fact that GECCO
is nevertheless able to reproduce the vertical structure of horizontal divergence in the warm pool, and
therefore, the associated downwelling motion suggests that the contribution by the subsurface meridional
mass convergence and subsurface eastward advection might be underestimated. The associated spread in the
simulation of meridional divergence across the different assimilation products allows a rough estimate of
the relative dependency between these variables in the western equatorial Pacific. Thus, the interproduct
correlation between meridional upper ocean divergence (156°–166°E, 0–200m) and subsurface potential

Figure 2. Multiproduct average of equatorial variables during the heat buildup leading to El Niño events. Potential
temperature (°C, contours), (a) salinity (g/kg), (b) zonal velocity (m/s), and (c) zonal, (d) horizontal, and (e) meridional
current divergence (10�6 1/s). Composite anomalies are averaged over the equatorial band (2°S–2°N), and shown for lag
21 months before the major El Niño events. The temperature contour interval is 0.25°C, with solid (dashed) lines depicting
positive (negative) anomalies. The purple (cyan) stippling denotes areas where shading (contour) anomalies have the same
sign for all the members of the ensemble.
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temperature (156°–166°E, 100–130m) is
�0.90 (p< 0.001), with a regression
coefficient of �3.36 · 107°Cper 1/s. Instead,
surface horizontal convergence (156°–166°
E, 20–60m) is consistently observed in all
the assimilation products, with a mean
relationship of �4.38 · 107°Cper 1/s with
subsurface potential temperature.

The analysis of the temperature tendency
equation reveals that the sum of the zonal
and vertical advection terms explains a
large fraction of the spatial structure of
the tendency in surface and subsurface
heat anomalies in the equatorial Pacific
(cf. shading and contours in Figures 3a and
3e). Vertical advection alone determines
the subsurface warming to the west of 170°
E (Figure 3c). Instead, to the east of the
sharp transition at 170°E, the largest
contribution comes from the combination
of the zonal (Figure 3b) and vertical
(Figure 3c) advection components
(Figure 3e), as a result of the strengthening
of the equatorial undercurrent and
the advection of incipient subsurface
temperature anomalies from the western
to the central Pacific. Nevertheless, the
meridional advection of heat is already
contributing to the warming at the level
of the thermocline to the east of 170°E
(Figure 3d), even if at this early stage of the
ENSO oscillation the thermocline has a
tendency toward shallower depths in the
eastern Pacific (contours in Figure 3).
Note that to the west of 170°E, where the
subsurface equatorward convergence of
mass is as strong as in the central Pacific,
the meridional advection of heat is weak
because the meridional temperature
gradient at the equator is small (not shown).

4. Summary and Discussion

The present work shows that the
enhancement of the trade winds in the
central equatorial Pacific increases the
intensity of the westward circulation of
the south equatorial current [Yu and
McPhaden, 1999], strengthening the
surface zonal and thus horizontal current
convergence and downwelling motion

near the anomalously tilted warm pool edge and salinity front. Additionally, we show that the vertical
advection of heat plays a key role in the redistribution of water masses in the warm pool. Zonal and
vertical currents are indeed intimately connected through the energy balance, because a significant

Figure 3. Multiproduct average of heat advection preceding the heat
buildup leading to El Niño events. Tendency in potential temperature
(°C/yr, contours) and zonal (Figures 3a, 3b, and 3e),meridional (Figures 3a
and 3d), and vertical (Figures 3a, 3c, and 3e) heat advection (°C/yr).
Composite anomalies are averaged over the equatorial band (2°S–2°N),
and shown for lag 30months before themajor El Niño events. Note that
this lag shows the temperature tendency that determines the anomalies
that are later observed at lag �21. The contour interval is 0.25°C/yr,
with solid (dashed) lines depicting positive (negative) anomalies. The
stippling denotes areas where shading anomalies have the same sign
for all the members of the ensemble.
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fraction of the wind power (whose
interannual signal is dominated by the
zonal component) is converted into
buoyancy power [Brown and Fedorov,
2010]. This transfer explains how
the energy supplied by enhanced
trade winds to the westward south
equatorial current in the central Pacific
is converted into vertical mass fluxes
in the western Pacific that distort
local ocean isopycnals and deepen
the thermocline [Brown et al., 2011].

In this regard, results presented here
provide a comprehensive description
of the interaction between wind
stress forcing in the central Pacific,
oceanic circulation in the warm pool,
and subsurface temperature and
thermocline depth in the western
equatorial Pacific starting about 2 years
before the peak of EN. Figure 4
summarizes the relevant anomalies
in horizontal current divergence for
two representative equatorial locations
to the west of the dateline. Near
the warm pool edge and salinity
front (i.e., 157.5°E, Figure 4a), we find
downwelling motion from an upper

layer (0–75m) with horizontal convergence to a subsurface layer (75–190m) with horizontal divergence. The
decomposition of horizontal divergence into its zonal and meridional components reveals how at these
long lead times different mechanisms contribute in an intricate way to the subsurface heat buildup. On
the one hand, horizontal convergence near the surface (0–75m) is to a large extent explained by surface
(0–60m) zonal convergence and to a lower extent by subsurface (40–75m) meridional convergence. On the
other hand, the subsurface layer (75–190m) of horizontal divergence is almost entirely explained by the
zonal component, characterized by the strengthening of the equatorial undercurrent in the central Pacific.
Near the dateline (i.e., 175°E, Figure 4b), vertical profiles of horizontal divergence reveal a different regime,
dominated by surface (0–60m) zonal and meridional divergence and subsurface (60–190m) zonal and
meridional convergence.

These results are based on an ensemble of ocean assimilation products and to the extent these products can
be regarded as faithfully capturing the observed dynamics, the anomalies that are consistently simulated
by all the data sets can be used to validate previous modeling studies. For instance, Yu and Mechoso [2001]
used a coupled ocean-atmosphere general circulation model to show that vertical advection contributes to
the subsurface (80–145m) cooling during the mature phase of El Niño (see their Figure 18c). For the sake
of this discussion, we will here assume opposite anomalies for LN conditions, which would correspond
to our results in Figure 3c. Despite the similarities with our results, the subsurface cooling due to vertical
advection in Yu and Mechoso [2001] occurs in a broad longitudinal band extending from the western
boundary to 150°W, while in the analysis products the subsurface warming due to vertical advection is
confined to a very narrow range to the west of 170°E. Coherently, the distribution of horizontal divergence
inferred from the assimilation products also shows a sharp transition at 170°E from surface (subsurface)
horizontal convergence (divergence) to the west and divergence (convergence) to the east. The spatial
characterization emerging from this work might prove useful in determining the relative role of the different
processes involved in the generation of the heat buildup in the western Pacific, and ultimately in improving
the predictability of ENSO at long lead times beyond the spring barrier.

Figure 4. Vertical profiles of equatorial current divergence during the
heat buildup leading to El Niño events. Multiproduct average of zonal
(red), horizontal (green), and meridional (red) current divergence (1/s) at
longitudes (a) 157.5°E and (b) 175°E, averaged over the equatorial band
(2°S–2°N), and shown for lag 21 months before the major El Niño events.
Dots denote depths where anomalies have the same sign for all the
members of the multiproduct ensemble.
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Abstracto - Summary in Spanish

El Niño (EN) es una caracteŕıstica dominante de la variabilidad del clima en escalas de
tiempo interanuales que impulsa cambios en el clima a lo largo del globo, y tiene consecuencias
naturales y socioeconómicas ampliamente difundidas. En este sentido, su pronóstico es una tarea
importante, y las predicciones se emiten de manera regular por una amplia gama de esquemas de
predicción y centros climáticos en todo el mundo. Este estudio explora un nuevo método para la
previsión de EN. Sin embargo, la técnica estad́ıstica ventajosa de modelado de series temporales
con componentes no observados, también conocido como modelado de series temporales estruc-
turales, no se ha aplicado para la predicción de El Niño. Por lo tanto, hemos desarrollado un
modelo en el que el análisis estad́ıstico, incluyendo la estimación de parámetros y la predicción, se
basa en los métodos de espacio-estado, e incluye el conocido filtro de Kalman. La caracteŕıstica
distintiva de este modelo dinámico es la descomposición de una serie temporal en una gama de
componentes estocásticamente variables en el tiempo, tales como nivel (o tendencia), estacional,
ciclos de diferentes frecuencias, irregular y los efectos de regresión incorporados como covariables
explicativas. Estos componentes se modelan por separado y en última instancia combinados en
un único esquema de previsión. Modelos de predicción estad́ısticas habituales de EN usan esen-
cialmente SST y el estrés del viento en el Paćıfico ecuatorial. Además de esto, introducimos un
nuevo dominio de variables de regresión que explican el estado de la temperatura subterránea del
océano en el Paćıfico ecuatorial central y occidental, motivado por nuestro análisis, aśı como por
la investigación reciente y clásica, mostrando que procesos subsuperficiales y la acumulación de
calor son fundamentales para el génesis de EN. Una caracteŕıstica importante del esquema es que
los diferentes predictores de regresión se utilizan en diferentes meses de antelación, capturando
aśı la evolución dinámica del sistema y haciendo pronósticos más eficientes. El nuevo modelo ha
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sido probado con la predicción de todos los eventos calientes ocurridos en el peŕıodo 1996-2015.
Las previsiones retrospectivas de estos eventos se hicieron con mucho tiempo de antelación de
al menos dos años y medio. Por lo tanto, el presente estudio demuestra que el ĺımite teórico
de la predicción de ENSO debeŕıa ser mucho más largo de la comúnmente aceptada ”Barrera
de Primavera”. La alta correspondencia entre las previsiones y las observaciones indica que el
modelo propuesto supera todos los modelos estad́ısticos operacionales y se comporta de manera
comparable a los mejores modelos dinámicos utilizados para la predicción EN. Aśı, la nueva
manera en que el esquema de modelización se ha estructurado también podŕıa mejorar otros
sistemas de modelización estad́ısticos y dinámicos.
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and regression effects incorporated as explanatory covariates. 
These components are modeled separately and ultimately 
combined in a single forecasting scheme. Customary statisti-
cal models for EN prediction essentially use SST and wind 
stress in the equatorial Pacific. In addition to these, we intro-
duce a new domain of regression variables accounting for the 
state of the subsurface ocean temperature in the western and 
central equatorial Pacific, motivated by our analysis, as well 
as by recent and classical research, showing that subsurface 
processes and heat accumulation there are fundamental for the 
genesis of EN. An important feature of the scheme is that dif-
ferent regression predictors are used at different lead months, 
thus capturing the dynamical evolution of the system and 
rendering more efficient forecasts. The new model has been 
tested with the prediction of all warm events that occurred in 
the period 1996–2015. Retrospective forecasts of these events 
were made for long lead times of at least two and a half years. 
Hence, the present study demonstrates that the theoretical limit 
of ENSO prediction should be sought much longer than the 
commonly accepted “Spring Barrier”. The high correspond-
ence between the forecasts and observations indicates that the 
proposed model outperforms all current operational statistical 
models, and behaves comparably to the best dynamical mod-
els used for EN prediction. Thus, the novel way in which the 
modeling scheme has been structured could also be used for 
improving other statistical and dynamical modeling systems.

Keywords El Niño Southern Oscillation · Prediction · 
Predictability · Subsurface dynamics · Time series

1 Introduction

The equatorial Pacific region, and especially the west-
ern equatorial Pacific (WPAC), is fundamental for the 

Abstract El Niño (EN) is a dominant feature of climate vari-
ability on inter-annual time scales driving changes in the cli-
mate throughout the globe, and having wide-spread natural 
and socio-economic consequences. In this sense, its forecast 
is an important task, and predictions are issued on a regular 
basis by a wide array of prediction schemes and climate cen-
tres around the world. This study explores a novel method 
for EN forecasting. In the state-of-the-art the advantageous 
statistical technique of unobserved components time series 
modeling, also known as structural time series modeling, has 
not been applied. Therefore, we have developed such a model 
where the statistical analysis, including parameter estimation 
and forecasting, is based on state space methods, and includes 
the celebrated Kalman filter. The distinguishing feature of this 
dynamic model is the decomposition of a time series into a 
range of stochastically time-varying components such as level 
(or trend), seasonal, cycles of different frequencies, irregular, 
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modulation of the weather patterns worldwide through 
changes in the surface-boundary condition and the ther-
mal heating of the atmosphere, while the signal of El Niño 
Southern Oscillation (ENSO) variability in this region is 
the strongest after the seasonal cycle (Sarachik and Cane 
2010). Therefore, it is not surprising that ENSO is a sub-
ject of intense scientific research and schemes for its pre-
diction are plentiful with various rates of success (Barn-
ston et al. 2012). At the same time, the limitations of its 
predictability are debated, with some studies arguing that 
high-frequency atmospheric noise prevents accurate fore-
casts to be made at long lead times (Penland 1996; Thomp-
son and Battisti 2000, 2001; Fedorov et al. 2003). Others, 
instead, imply that EN is to a larger extent the result of an 
internal self-sustained dynamics, which allows for its pre-
diction well ahead of its typical December peak (Zebiak 
and Cane 1987; Goswami and Shukla 1991; Jin et al. 1994; 
Tziperman et al. 1994; Chen et al. 2004).

It is interesting that despite the major improvements of 
dynamical models, initialization techniques, and the longer 
and more accurate data sets available for statistical predic-
tions, verification of the real-time ENSO prediction skills 
during 2002–2011 indicates skills somewhat lower than 
those found for the less advanced models of the 1980s and 
1990s (Barnston et al. 2012). In addition, the so-called 
spring barrier continues to represent a major difficulty for 
all types of ENSO forecasting models, and their skill for 
predictions made in the months March, April, May is still 
non-significant. A potential explanation could lie in the 
seasonal cycle, because during boreal spring the tropical 
Pacific is warmest and this seasonal warming is erroneously 
taken by the models for the growing phase of EN (Sarachik 
and Cane 2010). Moreover, the low signal-to-noise ratio in 
spring also accounts for the lower prediction skill of model 
forecasts issued in these months (Torrence and Webster 
1998). Thus, advances in the understanding of the dynami-
cal mechanisms involved in the initiation of El Niño and the 
transition to La Niña, as well as the introduction of new and 
improved ENSO prediction models remain necessary.

The majority of the existing statistical forecasting 
schemes are based on sea surface temperature, sea level 
pressure, and wind stress data in the equatorial Pacific 
(Barnston and Ropelewski 1992; Penland and Magorian 
1993; Xue et al. 1994; Kondrashov et al. 2005). Data sets 
directly capturing subsurface temperature changes in the 
tropical Pacific region, however, have not been incorpo-
rated in the existing empirical models. As three-dimen-
sional observations of the tropical Pacific (TAO-TRITON 
data) are only available since the 1990s, and as the sta-
tistical models used for operational ENSO forecasting 
have remained predominantly unchanged over the last 
10–15 years, the subsurface indicators that play a funda-
mental role in ENSO variability have not been included in 

the existing forecasting skills (Barnston et al. 2012). At the 
same time, several studies have already highlighted the sig-
nificance of the accumulation of heat in the subsurface of 
the western tropical Pacific for the onset of EN (Ramesh 
and Murtugudde 2013; Ballester et al. 2015).

Wyrtki 1975 has proposed a theory, later further developed 
in the dynamical recharge-discharge oscillatory theory by Jin 
(1997a, b), according to which an intensification of the trade 
winds in the central equatorial Pacific leads to the accumula-
tion of heat in the western tropical Pacific subsurface. Then, 
with the relaxation of the trade winds and the occurrence of 
westerly anomalies in the western/central tropical Pacific, 
this heat is released and allowed to move to the east during 
the growing phase of EN. What has not been explicitly dis-
cussed in this theory, though, is that the propagation of the 
warm waters/heat towards the east occurs mainly in the sub-
surface near the thermocline (Ramesh and Murtugudde 2013; 
Ballester et al. 2015), and warm anomalies appear on the sur-
face in the eastern equatorial Pacific only at a later stage of this 
growing phase. Moreover, warm anomalies in the subsurface 
(down to 400–500 m depth) occur on average as early in the 
WPAC as 26–30 months prior to the peak of El Niño, and are 
present there at different levels of depth up to 10–11 months 
before the peak, when the heat starts to be advected eastwards.

These patterns at longer lags demonstrate that subsur-
face temperature and surface wind stress indices in the 
WPAC and the central Pacific (CPAC) could be promising 
as regression predictor variables for EN. At the same time, 
sea surface temperature anomalies (SSTAs) there exist 
at lags 15–17 months, but they are short-lived and not as 
strong in magnitude as the subsurface anomalies, so their 
role as predictors could be more limited.

Considering the above, in the present study we pro-
pose a statistical unobserved component time series model 
for El Niño forecasting based on wind stress, surface and 
subsurface ocean temperatures in the western and central 
tropical Pacific. The lead/lag times for these variables are 
between 30 and 0 months prior to the peak of EN, and as 
it is customary, predictions are made for the SSTs in the 
Niño 3.4 region [5◦N–5◦S, 170◦W–120◦W, (Barnston et al. 
1997); black time series in Fig. 1a]. Section 2 of this manu-
script describes the data sets and statistical methods used 
for the analysis; in Sect. 3 we give a detailed explanation of 
the proposed ENSO modeling technique, while in Sect. 4 
we clarify how the model is applied; in Sect. 5 we present 
some forecasting results, and then we end with a discussion 
of the results in Sect. 6, and conclusions in Sect. 7.

2  Data and statistical analysis

Wind stress data has been derived from the NCEP/NCAR 
reanalysis (Kalnay et al. 1996). Sea surface temperature 
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is the NOAA-ERSST-V3 before 1982 and the NOAA-OI-
SST-V2 data afterwards, provided by the NOAA/OAR/
ESRL PSD (www.esrl.noaa.gov/psd/). Subsurface tempera-
ture data before 2012 is from the Subsurface Temperature 
And Salinity Analyses by Ishii et al. (2005), archived at the 
National Center for Atmospheric Research, Computational 
and Information Systems Laboratory (www.rda.ucar.edu/
datasets/ds285.3/), and from the Hadley Centre EN4.0.2 
analyses data (Good et al. 2013) afterwards. The EN 
events used for the composite anomalies are based on the 
definition of the Climate Prediction Center for the period 
1978–2012: December 1982, 1991, 1997, 2002, 2006, 2009 
(CPC 2015). The 1986–1987 event was excluded from the 
composite calculations because the peak of this event was 
in September–October rather than in December–January. 
However, calculations with this event included do not pro-
duce significantly different results, and the temperature and 
zonal wind anomalies at the respective lag times are quali-
tatively the same (not shown).

A Multi Taper Method (MTM) was used for the spec-
trum density estimation and signal reconstruction of the 
N3.4 time series shown in Fig. 2. MTM is a nonparamet-
ric method that reduces the variance of spectral estimates 

through the use of a small set of orthogonal tapers, which 
are multiplied by the data to minimize spectral leakage 
(Ghil et al. 2002).

A recursive Butterworth procedure was used (Moron 
and Plaut 2003; Ballester et al. 2011) to filter SST and 
windstress data, so that only frequencies corresponding to 
periods of 14–18 months (Fig. 3), 24–28 months (Fig. 4), 
and 46–63 months (Fig. 5) have been kept. A Butterworth 
filter was also applied to remove high-frequency variabil-
ity and thus filter out the annual cycle in the composites 
of sea surface and subsurface temperatures, and windstress 
anomalies in Figs. 6, 7 and 8.

Complex Orthogonal Function (CEOF) analyses was 
applied to the area-weighted filtered SSTAs and windstress 
anomalies in the equatorial Pacific (Figs. 3, 4, 5). This tech-
nique decomposes variability into real and imaginary spa-
tial patterns that are amplified by real and imaginary time-
varying coefficients, respectively. The patterns represent 
the main modes of variability of the data as a function of 
the phase (φ) in periodic spatial coefficients and periodic 
temporal scores (Ballester et al. 2011). The temporal scores 
were correlated with the filtered spatio-temporal SSTAs 
and windstress anomalies in the tropical Pacific area.
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Fig. 1  Components graphics of the model. Shown are temperature (◦C) time series of the a level and regression components together with the 
N3.4 index, b the seasonal component, and the three cycle components of periods: c 1.5, d 2.5, e 4.5 years
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3  Model

Structural time series models are formulated in terms of 
unobserved components of interest that could be directly 
interpreted (Harvey 1989). For example, unobserved 
components may represent time series features such as 

trend, seasonal and cycles. This type of models can also 
be extended naturally with regression effects. In this way, 
they are able to provide a description of the salient fea-
tures of a given time series and, at the same time, a basis 
for making predictions of future observations (Harvey and 
Shephard 1993). Moreover, time series models based on 
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Fig. 2  a Multi Taper Method (MTM) power spectra for the observed 
N3.4 time series. The solid line indicates the power density and 
dashed lines the respective confidence level (CL) based on a red 
noise null hypothesis. The red indicators correspond to the near-

annual, biannual, and quasi-quadrennial ENSO modes of variability. 
Reconstructed components from the multitaper decomposition in a, 
corresponding to the b seasonal, c near-annual, d biannual, e quasi-
quadrennial modes
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unobserved components are particularly effective when 
complex features are present in the time series, such as 
mixed frequencies, multiple modes of variability of the 
time series, outliers, structural breaks and nonlinear and/
or non-Gaussian processes (Tong 1990; Harvey et al. 
1998).

The flexibility provided by this modeling approach 
makes it a suitable framework for treating time series with 
complex features and nonlinearities (Durbin and Koopman 
2012), common in the climate system and in ENSO in par-
ticular. The linear univariate unobserved components time 
series model that we consider is given by

Fig. 3  Pearson correlations between the temporal scores of the first 
CEOF modes of filtered SSTs and surface wind stress anomalies, and 
filtered spatio-temporal SST anomalies and wind stress anomalies in 
the equatorial Pacific region. A Butterworth filter has been applied 
to the SST and wind stress data sets, so that only frequencies corre-

sponding to periods between 14 and 18 months (associated with the 
near-annual mode of variability) have been kept. Panels correspond to 
the respective phases of the CEOF shown on the figure. Shaded areas 
indicate significant anomalies
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where yt represents observations on a single variable y, 
in this case the monthly N3.4 index at time t; µt is a level 
component that we specify as a random walk process; γt is 
a seasonal component with seasonal length S = 12; ψ1t, ψ2t 
and ψ3t are three cycle components with different parameter 

(1)yt = µt + γt + ψ1t + ψ2t + ψ3t + x′tδ + εt
values for frequency �, persistence ϕψ and variance σ 2

κ ; x′tδ 
represents a predictor regression variable based on covari-
ate vector xt and coefficient vector δ; and εt is the remainder 
irregular term. The trend, seasonal, and cycle components 
are modeled by linear dynamic stochastic processes, which 
depend on disturbances (Harvey and Koopman 2000). For 
more information the reader is referred to Harvey (1989) 

Fig. 4  Same as Fig. 3, but the Butterworth filter has been applied so that only frequencies corresponding to periods between 24 and 28 months 
(associated with the biannual mode of variability) have been kept
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and Durbin and Koopman (2012). The components are for-
mulated in a flexible way as stochastic functions of time. 
The disturbances driving the components are independent 
of each other.

This structural time series model can be represented in 
state space form (Durbin and Koopman 2012), and relies 
on the state and disturbance vectors as given by

where we assume that the dimension of the regression coef-
ficient vector δ is k × 1. The corresponding system matrices 
and details of the state space representation of the model 
are given in Appendix 1. The state vector contains the 

αt =
(

µt , γt , γt−1, . . . , γt−10,ψ1t ,ψ
+
1t
,ψ2t ,ψ

+
2t
,ψ3t ,ψ

+
3t
, δ′

)′
,

ǫt =
(

εt , ηt ,ωt , κ1t , κ
+
1t
, κ2t , κ

+
2t
, κ3t , κ

+
3t

)′
,

Fig. 5  Same as Fig. 3, but the Butterworth filter has been applied so that only frequencies corresponding to periods between 46 and 63 months 
(associated with the low-frequency mode of variability) have been kept
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components, auxiliary variables necessary for the dynamic 
formulations of the components, and the regression coef-
ficient vector. The disturbance vector ǫt contains all the 
disturbances required for the linear stochastic functions of 
the components. All unknown disturbance variances need 
to be estimated together with the discount factor ϕψ ,j and 
cycle frequencies �c,j for j = 1, 2, 3, for the three cycles. 
For the estimation of the variances, we consider log-trans-
formations to enforce positive values only. The restrictions 

0 < ϕψ ,j < 1 and 0 < �c,j < π, for j = 1, 2, 3, are also 
enforced via transformations.

The unknown parameters are collected in the 12× 1 
parameter vector θ that is given by

where

θ =
(

aε , aη , aω , aκ ,1 , aκ ,2 , aκ ,3 , bψ ,1 , bψ ,2 , bψ ,3 , d1 , d2 , d3
)′
,

σℓ = exp(aℓ), ϕψ ,j = exp(bψ ,j)/[1+ exp(bψ ,j)],

�c,j = 2π/[2+ exp(dj)],

Fig. 6  Composites of surface 
zonal wind stress (Nm−2, 
arrows) anomalies with respect 
to all EN events in the period 
1978–2012. Shown are anoma-
lies a 24, b 13, c 7 months 
before the winter peak of EN. 
The red boxes indicate the three 
zonal wind stress regions from 
Table 1—a Region I, b Region 
II, c Region III
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for ℓ = ε, η,ω, {κ , j} and j = 1, 2, 3. Estimation is car-
ried out via the numerical maximization of the likeli-
hood function with respect to the transformed parameters. 

Steady state is reached after weak convergence relative to 
1e–007.

The statistical treatment of the model relies heavily on 
the celebrated Kalman Filter (Kalman 1960), which ena-
bles the signal extraction of the components, likelihood 
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the period 1978–2012 in Region I (see Table 2). Data is filtered using 
a low-pass Butterworth filter (cut-off frequency 18, order 10)
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Region II (see Table 2)
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evaluation, and forecasting. A general treatment of state 
space modeling is presented in Durbin and Koopman 
(2012). For our specific model, we provide the details in 
Appendix 1. All estimations and forecasts are generated 
by STAMP, SsfPack and OxMetrics (Koopman et al. 2008, 
2010; Doornik 2013). The dynamic formulations of the 
components, together with the regression effects, are dis-
cussed next.

3.1  Level component (long‑term variability), µt

The level component is modeled as a random walk process 
and is given by

where NID(0, σ 2) refers to a normally independently dis-
tributed series with mean zero and variance σ 2. The dis-
turbance series ηt is serially independent and mutually 
independent of all other disturbance series related to yt. 
The initial trend µ1 is for simplicity treated as an unknown 
coefficient that needs to be estimated together with the 
unknown variance σ 2

η . This component is included in the 
model to account for the long-term fluctuations of the N3.4 
time series around its mean, assuming that it is stationary 
(see Fig. 1a). A simple interpretation is that the level at the 
current step is equal to the level in the previous step plus a 
white noise disturbance (Harvey 1989).

3.2  Seasonal component, γt

To account for the monthly variation in the annual cycle 
of the N3.4 time series, the component γt is included in 
the model. More specifically, γt represents the seasonal 
effect at time t that is associated with season s = s(t) for 
s = 1, . . . , S, where S is the seasonal length (S = 12 for 
monthly data). In particular, we adopt the notation

if we need to emphasize that γt represents the seasonal 
effect for season s.

We use a seasonal pattern that is fixed over time (see 
Fig. 1b), i.e. we have a set of S seasonal effects γ1, . . . , γS 
which are taken as unknown coefficients that need to be 
estimated together with the other coefficients in the model. 
The seasonal effects must have the property that they sum 
to zero over the full year to make sure that they are not con-
founded with the trend component, that is

The seasonal pattern could also change slowly over time, 
by relaxing the summing-to-zero requirement with a sto-
chastic equation

(2)µt+1 = µt + ηt , ηt ∼ NID
(

0, σ 2
η

)

,

γt = γ
[s]
t ,

(3)γ1 + · · · + γS = 0, γt = γt−S , t = S + 1, . . . , n.

In the present study the disturbance variance ωt = 0. In this 
way we have S − 1 unknown seasonal coefficients that need 
to be estimated by the Kalman Filter.

There is a marked seasonal cycle in the tropical Pacific, 
which has a substantial impact on the ENSO cycle and the 
evolution of its phases (Tziperman et al. 1997; Krishnamur-
thy et al. 2015). This effect is known as phase-locking to the 
annual cycle (Rasmusson and Carpenter 1982; An and Choi 
2009; Stein et al. 2011), as ENSO phases normally grow in 
the boreal summer and autumn and the peak of the associ-
ated anomaly is in the winter months of December, January 
and February (DJF; Sarachik and Cane 2010). Thus, includ-
ing an annual cycle component in the forecasting model is 
necessary for the correct seasonal development of the signal 
and, therefore, for a more accurate prediction. It is in fact a 
fundamental part of the ENSO dynamics, especially as the 
atmospheric conditions should be appropriate in order for 
an initial surface and subsurface ocean temperature pertur-
bation to grow and propagate. The seasonal variations of the 
atmospheric convergence zones modulate unstable ocean-
atmosphere interactions (Philander 1989), which in turn 
favour the development of EN or LN.

3.3  Cycle components, ψit

In order to account for interannual variability present in the 
ENSO phenomenon (Fig. 2), we further include a number 
of additional cycle components. A stochastic formulation 
of a cycle component can be based on a time-varying trigo-
nometric process, but with frequency �c associated with the 
typical length of a cycle. We have

where the discount factor 0 < ϕψ < 1 is introduced to 
enforce a stationary process for the stochastic cycle com-
ponent. The disturbances and the initial conditions for the 
cycle variables are given by

where the disturbances κt and κ+t  are serially independent 
and mutually independent, also with respect to disturbances 
that are associated with other components. The coeffi-
cients ϕψ, �c and σ 2

κ  are unknown and need to be estimated 
together with the other parameters. This stochastic cycle 
specification is further discussed by Harvey (1989).

Generally, the ENSO oscillation is said to have a period 
of between 2 and 7 years. As we already pointed out, sea-
sonality has an important role in the evolution of the overall 

(4)γt+1 = −γt − · · · − γt−S+2 + ωt , ωt ∼ NID(0, σ 2
ω),

(5)

(

ψt+1

ψ+
t+1

)

= ϕψ

[

cos �c sin �c
− sin �c cos �c

](

ψt

ψ+
t

)

+

(

κt
κ+t

)

,

(

κt

κ+
t

)

∼ NID(0, σ 2
κ I2),

(

ψ1

ψ+
1

)

∼ NID

(

0,
σ 2
κ

1− ϕ2
ψ

I2

)

,
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irregular cycle (Tziperman et al. 1997; An and Choi 2009). 
At the same time, several other inter-annual spectral peaks 
at different time scales can be noted in Fig. 2a, showing the 
power density spectrum of the entire N3.4 time series. It will 
be demonstrated in the next sections that the modes of vari-
ability that correspond to these spectral peaks are key not 
only for understanding ENSO, but also for its simulation.

3.3.1  Near‑annual cycle component, ψ1t

Previous studies have identified one significant signal at a 
frequency close to the annual cycle, recognized as a sepa-
rate coupled mode of variability of the equatorial Pacific 
ocean-atmosphere system (Zebiak 1985; Neelin 1990; 
Mantua and Battisti 1995; Jiang et al. 1995; Fedorov and 
Philander 2001; Jin et al. 2003). Its relevance to the evolu-
tion of the ENSO cycle and its prediction has been demon-
strated especially by Jin et al. (2003), where this mode is 
called a “near-annual” mode and defined to have a period 
of 12–18 months. It is characterized by a westward prop-
agation of SST and zonal wind stress anomalies from the 
eastern equatorial Pacific (EPAC) to the WPAC (Fig. 3). 
These anomalies are similar to patterns of the mean annual 
cycle in the EPAC, but enhanced and propagating all the 
way to the western boundary (Mantua and Battisti 1995; 
Jin et al. 2003). Westward coupled modes of this kind, 
driven by near-surface advective processes (mostly anoma-
lous zonal advection of mean temperature gradients), have 
also been identified in the tropical Pacific in the theoretical 
work of Philander et al. (1984); Gill (1985); Neelin (1991), 
and some others. In the present model we too found that the 
period of one of the cycle components estimated with the 
Kalman Filter is approximately 1.5 years (16–18 months). 
The graphical representation of this cycle is shown in the 
time series in Fig. 1c.

This near-annual mode has been shown to be modulated 
both by the annual cycle and ENSO. It has been hypoth-
esized by Jiang et al. (1995) that it is produced through the 
nonlinear resonance of the low-frequency ENSO mode, 
which is discussed later, with the annual cycle. Then, its 
interaction with the main ENSO cycle and its phase-lock-
ing with the mean annual cycle result in fluctuations in its 
amplitude, which was low in the late 1980s, for example, 
and then increased in the second half of the 1990s (Jin et al. 
2003; Fig. 1c). When its period is close to 12 months (i.e. 
to the annual cycle), phase- and frequency-locking likely 
occur and lead to the greater amplitude of the mode, and to 
near-annual LN-like events (as between 1996 and 2004, see 
Figs. 1c, 3d, e, i, j; Jin et al. 2003). However, the contin-
ued long warm background period taking place in the tropi-
cal Pacific during 1985–1991 (due to ENSO variability, 
Fig. 1e) has resulted in the lower frequency of this mode, 
reducing the opportunity for its non-linear phase-locking 

with the main oceanic Rossby mode (Mantua and Bat-
tisti 1995), and leading to “mini El Niño events” that have 
occurred between all major EN events in that period (Jin 
et al. 2003; Figs. 1c, 3a, b, f, g).

Thus, this fast mode of variability has important impli-
cations for the evolution of ENSO, and hence, for the 
accurate prediction of EN and LN events. Therefore, its 
inclusion into the proposed prediction scheme could signif-
icantly improve the model performance and skill. In fact, it 
has been demonstrated by Mantua and Battisti (1995) that 
the irregularity of ENSO reproduced by the Zebiak–Cane 
(ZC) model (Zebiak 1985) is due to a large extent to the 
presence of a “mobile mode” with similar characteristic 
features as the near-annual mode discussed here.

3.3.2  Quasi‑biannual cycle component, ψ2t

A number of studies have discussed a biannual/quasi-bian-
nual (QB) (24–28 months period) component of ENSO 
variability (Trenberth 1976; Rasmusson and Carpenter 1982; 
Lau and Shen 1988; Yasunari 1989; Rasmusson et al. 1990; 
Jiang et al. 1995), which has been detected in both the equa-
torial surface zonal wind and SSTs. Rasmusson et al. (1990) 
discovered through an SVD analysis of the zonal winds 
in the tropics a biannual cycle characterized by consist-
ent eastward-propagating anomalies across the WPAC and 
the CPAC. In the EPAC it was found to have a meridional 
propagation also affecting local SSTs. Moreover, a strong 
and close relationship between the biannual components of 
the zonal winds in the WPAC and the SST time series in the 
EPAC was demonstrated. From this analysis, the conclusion 
has been reached that all well-defined warm phases of ENSO 
coincide with a distinctive warm phase of the biannual mode.

Similarly to the fast-frequency component, the biannual 
oscillation also tends to be phase-locked to the annual cycle 
(Rasmusson et al. 1990). Typically associated with it are 
westerly wind anomalies in the WPAC (between 130◦ and 
160◦E) and north of the Equator in March–April of the first 
year of the cycle (Fig. 4f, g). These patterns progress east-
ward and peak by September–October near the date line, 
moving south of the Equator by that time, testifying for a 
meridional displacement (Fig. 4h, i). After October they 
propagate to the EPAC and begin to disappear. Then, by 
November easterlies start to form west of 130◦E and north 
of the Equator. These develop in DJF and move towards the 
east (Fig. 4j). By March–April of the second year a reversal 
of the wind pattern is at place.

The evolution of SSTs in the biannual mode, on the other 
hand, develops from near neutral anomalies in March–
April (Fig. 4a) to a typical ENSO-like structure in Septem-
ber–October of the first year of the cycle (Fig. 4b). In the 
second year, the SSTA pattern is reversed and the opposite 
phase of the ENSO-like structure develops (Fig. 4d, e). In 
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this way, equatorial negative (positive) SSTAs in the CPAC 
and EPAC are preceded by easterly (westerly) surface zonal 
wind anomalies in the WPAC and CPAC (Fig. 4).

Thus, the estimation of a period close to 2 years 
(between 26 and 30 months; Fig. 1d) for the second cycle 
component of the proposed model corresponds to this mode 
of variability of the equatorial Pacific ocean-atmosphere 
system. Importantly, the phase evolution and amplitude of 
this cycle apear to be approximately regular (see Fig. 1d). 
On the other hand, Rasmusson et al. (1990) has noted that 
even though the cycle is regular, the amplitude and phase of 
the mode are subject to low-frequency changes, which will 
be discussed later in this manuscript. In any case, the QB 
mode has been shown to be a fundamental element of the 
ENSO dynamics, essential for its prediction (Rasmusson 
et al. 1990; Jiang et al. 1993, 1995).

3.3.3  Low‑frequency cycle component, ψ3t

The main period of ENSO has been established to be 
between 4 and 5 years, which, as expected, corresponds 
to the most pronounced spike in the power spectral den-
sity of the N3.4 time series (Fig. 2a). Moreover, as shown 
by Jiang et al. (1995), the dominant mode of variability of 
SSTs and surface zonal winds in the tropical Pacific is a 
low-frequency oscillation with a period of approximately 
46–63 months. It has been referred to in the literature as the 
low-frequency ENSO mode (Rasmusson et al. 1990), or as 
the quasi-quadrennial (QQ) mode of variability (Jiang et al. 
1995).

For SST the QQ component represents an eastward 
propagating oscillation with maximum anomalies close 
to 120◦W (Fig. 5b, e). For the zonal wind it represents an 
oscillation with an eastward propagation in the WPAC 
and with maximum anomalies close to 170◦E (Fig. 5f, i). 
Actually, its spatial characteristics for both SST and zonal 
wind closely resemble the main spatial characteristics of 
the biannual mode (Figs. 4, 5). Most El Niño events have 
been found to correspond to the warm phases of these two 
modes (Jiang et al. 1995), a few correspond to only that 
of the QQ mode, while warm years in the time series that 
were not termed as warm events officially have been shown 
to correspond to a warm phase of the biannual cycle alone, 
but out-of-phase low frequency component (Rasmusson 
et al. 1990).

Thus, the third cycle included in the model coincides 
with this main oscillatory mode, and its estimated period 
is about 52–56 months. Unlike the biannual cycle, its 
phase and amplitude are clearly irregular and time-varying 
(Fig. 1e).

The robustness of the analysis about the significance 
of these modes of variability holds both in the case of 
using raw data or anomalies (Jiang et al. 1995). Our 

results confirm this, as the estimated frequencies of the 
three cycle components were the same regardless of filter-
ing the mean annual cycle (not shown). As can be seen in 
Fig. 2, they are associated with the main frequency signals 
in the spectrum of the N3.4 time series (also see Fig. 1). 
We then assume that these are fundamental time scales of 
the ENSO phenomenon, and that its irregularity could be 
to a large degree explained in terms of the relative phase 
positions and amplitudes of the three cycle components 
described here.

3.4  Regression variables, x′
t
δ

Additionally, we have included a set of explanatory vari-
ables in the model for capturing specific dynamic varia-
tions in the time series, not explained by the components 
discussed above. Such variables could also be used to allow 
for outliers and breaks in the model, or to account for part 
of the seasonality of the dependent variable in case it is not 
fully captured by the seasonal component. In fact, it has 
been proposed that there is a partial 2:1 phase synchroni-
zation of ENSO to the annual cycle, and that El Niño is 
typically associated with a weaker annual cycle (Stein et al. 
2011). Since the seasonal component here has been esti-
mated as fixed, i.e. with constant amplitude and periodicity 
(Sect. 3.2; Fig. 1b), we incorporate regression variables that 
not only aim to explain more variability in the N3.4 time 
series, but also to model more subtle seasonal fluctuations.

Thus, we extend the decomposition with a multiple 
regression effect x′tδ for t = 1, . . . , n (grey time series in 
Fig. 1a), where xt is a K × 1 vector of predetermined covar-
iates and δ is a K × 1 vector of regression coefficients. Ele-
ments of δ could also be allowed to change over time. How-
ever, as we want to establish stable relationships between 
the dependent variable and a set of explanatory variables, 
δ is kept constant for the full sample length or, for at least, 
a large part of the sample. Therefore, for the present study 
we have kept the coefficients δ fixed in time, and we will 
explore the time-varying case in a future study.

In very general terms, ENSO represents the alterna-
tion of heat buildup and release from the equatorial region 
(Wyrtki 1985; Zebiak 1989; Jin 1997a). The forcing of the 
zonal wind causes fluctuations in this heat content through 
Kelvin and Rossby wave dynamics, and SSTs are affected 
by these waves through downwelling and upwelling pro-
cesses (Ballester et al. 2015). SST anomalies, on the other 
hand, influence the atmosphere and result in anomalies in 
the zonal wind patterns—the so-called Bjerknes feedback 
(Bjerknes 1969). Therefore, we can say that ENSO could 
be deemed predictable due to the intrinsic ocean variabil-
ity, as well as the deterministic wind-driven ocean dynam-
ics and the resulting equatorial heat content redistribution 
(McPhaden 2004). Based on this assumption, we use zonal 
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equatorial wind stress, and surface and subsurface ocean 
temperature as regression variables in our model. It should 
be noted that some of these covariates can be highly cor-
related between each other, and when including a number 
of them, the problem of co-linearity can occur. In this situa-
tion, the estimation may be based on inversions of matrices 
that are close to singularity (reduced rank matrices). In our 
approach for model configuration we account for co-line-
arity by an appropriate selection strategy that we discuss in 
the next Sect. 4.

3.4.1  Equatorial wind stress

Tropical wind stress is among the main drivers of surface 
and subsurface temperature anomalies in the equatorial 
Pacific. Wyrtki (1975) was the first to hypothesize that El 
Niño is preceded by abnormally strong southeasterly trade 
winds in the CPAC, more precisely between 180◦E and 220◦

E, starting approximately 2 years before the event (Fig. 6a). 
Moreover, such anomalies in the zonal wind component 
represent one of the factors preceding the occurrence of an 
EN that has an essential role in the triggering of its whole 
mechanism (Wyrtki 1975; Jin 1997a; Ballester et al. 2015). 
Thus, following our analysis (Fig. 6), as well as previous 
studies (Wyrtki 1975; McPhaden 2004; Sarachik and Cane 
2010), we have chosen two regions in the CPAC to calcu-
late zonal wind stress indices and obtain time series to be 
used as regression variables in the proposed model (Fig. 6a, 
b; Regions I and II in Table 1). It is interesting to note that 
one of these regions (Region II) is located entirely in the 
Southern Hemisphere, as this is the area of maximum east-
erly zonal wind anomalies at about 11–14 months before 
the boreal peak of EN (Fig. 6b). This is also in agreement 
with the results of McGregor et al. (2012), where it is 
shown that the zonal wind anomalies suddenly shift south-
ward at the end of the calendar year.

The strengthening of the westward surface trade winds, 
on the other hand, increases the intensity of the westward 
circulation of the South Equatorial Current (SEC; Yu and 
McPhaden 1999), which deepens the thermocline in the 
WPAC (Sarachik and Cane 2010). This process piles up 
warm water at those latitudes and accumulates heat, which 
often leads to the spreading of the warm pool toward the 
CPAC (both on the surface and in the subsurface). The 
warming induces an area of anomalous low surface pres-
sure, over which westerly wind anomalies tend to appear 
at the Equator near the date line (Fig. 6c; McPhaden 2004). 

In fact, SST-modulated westerly wind anomalies are criti-
cal for the ocean-atmosphere coupling before a warm event 
(Eisenman et al. 2005), and have occurred prior to every 
significant El Niño in the last several decades (Fig. 6c; 
McPhaden 2004). As mentioned earlier (Sect. 3.3.2) and 
shown by other studies (Tziperman and Yu 2007; Geb-
bie and Tziperman 2009), there is a deterministic portion 
of these anomalies, which is in interplay with the biennial 
ENSO cycle of SSTs, and could be used as a precursor for 
it (Gebbie and Tziperman 2009). Therefore, another critical 
region for the model is located over the easternmost part 
of the WPAC and over the CPAC (see Fig. 6c; Region III 
in Table 1). Over this region we average zonal wind stress 
to obtain a time series used as a regression variable at short 
lead times (5–8 months before the typical December peak).

3.4.2  Equatorial Pacific surface and subsurface 
temperatures

The western Pacific plays a fundamental role in the oscil-
latory behaviour of ENSO and in the generation of warm 
and cold phases. It is where the warm pool develops—an 
upper-ocean area of very warm and well-mixed waters, 
surface horizontal current convergence and subsurface 
divergence, and therefore downwelling motion (Brown and 
Fedorov 2010; Ballester et al. 2015). As mentioned ear-
lier and shown by Wyrtki (1975), and Jin (1997a, b), the 
abnormally strong trade winds increase the east–west slope 
of sea level in the CPAC, intensify the westward SEC, and 
accumulate warm water (heat buildup) in the surface and 
subsurface WPAC region (Ballester et al. 2016). Right after 
a relaxation of the trades, this stored warm water would be 
allowed to move eastward through the Equatorial Under-
current (EUC) and the North Equatorial Countercurrent 
(NECC) in a dynamically consistent way (Jin 1997a; Bal-
lester et al. 2016), and to lead to an EN event in the EPAC 
(Wyrtki 1985; Ramesh and Murtugudde 2013).

Substantial heat content increase along the equa-
tor has preceded all El Niños since 1980 by at least two 
seasons, and it is a necessary condition for its occur-
rence (McPhaden 2004). In addition, it has been shown 
by Ramesh and Murtugudde (2013) that regardless of the 
regime shifts in the tropics, the buildup of warm water in 
the WPAC (Fig. 7) and the onset of its eastward displace-
ment has remained unchanged, always starting at a par-
ticular stage of the cycle—about 18–20 months before 
the peak (Fig. 8), when the heat buildup in the WPAC has 

Table 1  Regions over which zonal wind stress is averaged to obtain time series used as predictor regression variables in the model

Regression variable Region I Region II Region III

Zonal wind stress [180e− 220e] × [4s− 4n] [180e− 210e] × [10s− 0] [160e− 200e] × [0− 10n]
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grown substantially (Fig. 7). This is also the time when the 
subsurface anomalies begin to appear on the surface in the 
far western Pacific (Fig. 8a), and start to weaken the trades 
(see previous Sect. 3.4.1).

In this way, a variable that accounts for this heat buildup 
and the onset of its eastward migration could be used as 
a precursor for EN. Based on this mechanism we defined 
two sets of regions over which to average surface and 
subsurface temperatures in the WPAC/CPAC and obtain 
time series indices for regression variables (Table 2). The 
first set of regions corresponds to the early subsurface 
warming in the WPAC (between latitudes 12◦S and 8◦

N; Fig. 7; Table 2). As can be seen in Fig. 7a–c anoma-
lous warming of the subsurface exists on average as early 
as 25–30 months prior to the typical peak of EN in boreal 
winter, at depths between 150 and 400 m.

The second set of regions corresponds to the onset of 
the advection of warm water eastward along and below the 
thermocline, and the subsidence of the trades on the sur-
face (Figs. 6, 8). During this stage the warm pool extends 
towards the CPAC in the subsurface (100–300 m depth) 
through the strengthened EUC (Ballester et al. 2016), 
therefore, this set of regions is located closer to the CPAC 
(see Fig. 8; Table 2). Warm anomalies start to appear in 
these regions at approximately 25 months or even before 
(Fig. 8b, c), intensify and stay there until about 8–9 months 
prior to the peak of EN, when they are further advected 
eastwards to enter the EPAC (Fig. 8a). At the same time, 
cold anomalies start to develop in the WPAC region 
instead, corresponding to the onset and rapid develop-
ment of an EN event (Figs. 7, 8). This coincides with the 
occurrence of westerly wind anomalies as discussed earlier, 
which trigger upwelling Rossby waves and decrease the 
subsurface temperature in the WPAC due to shoaling of the 
thermocline there (McPhaden 2004). Thus, the temperature 
indices averaged over the first set of regions are also used 

as regression variables during the mature phase, when there 
are strong cold anomalies in the WPAC (lead/lag times 0–9, 
Fig. 7a–c; Yu and Mechoso 2001).

Equatorward subsurface (100 m depth and below) 
advection from the northern off-equatorial region at this 
time (5–9 months before the EN peak) due to anoma-
lous upwelling between 5◦N and 10◦N and downwelling 
between 3◦S and 1◦S, also results into an area of strong 
cold anomalies in the box [140◦E–210◦E] × [5◦N–10◦N] 
(Supplementary Figure 1). This inter-hemispheric asymme-
try has also been found by McGregor et al. (2012), where it 
is revealed in the EOF2 of the integrated upper ocean heat 
content and shown to lead the typical EN pattern (EOF1) 
by about 8–9 months. These vertical velocity anomalies 
and inter-hemispheric asymmetry result from the latitudinal 
distribution of zonal (Yu and Mechoso 2001) and meridi-
onal (McGregor et al. 2012) wind stress anomalies. Hence, 
we calculate a temperature time series from this box and 
use it as a regression variable in the model at the corre-
sponding significant lead/lag times to further account for 
the dynamical processes happening before an El Niño, and 
improve the overall forecast skill of the model.

4  Model configuration

Based on the recharge-discharge oscillatory theory (Jin 
1997a), and as discussed previously, the buildup of heat at 
the equatorial Pacific is a prerequisite for El Niño, and the 
event itself discharges this excess heat poleward. In addi-
tion, the time between two consecutive events could gener-
ally be determined by the time needed for the tropical ocean 
to accumulate enough heat, and normally the amplitude of 
the event is in a direct proportion to the magnitude of the 
excessive heat content (McPhaden 2004). The component 
configuration of our structural model is then synchronized 

Table 2  Regions over which 
surface and subsurface 
temperatures are averaged 
to obtain time series used as 
predictor regression variables in 
the model

Regression variable Region I Region II

SST WPAC [140e− 160e] × [5s− 5n]

SST WPAC2 [140e− 180e] × [10s− 5n]

SST WPAC3 [120e− 170e] × [10s− 5n]

SST WPAC4 [140e− 160e] × [10s− 0]

Temperature at 50 m depth [120e− 170e] × [10s− 5n]

Temperature at 100 m depth “cold” [140e− 210e] × [5n− 10n]

Temperature at 100 m depth [120e− 140e] × [10s− 5n] [150e− 180e] × [7s− 7n]

Temperature at 150 m depth [120e− 140e] × [10s− 5n] [150e− 180e] × [7s− 7n]

Temperature at 200 m depth [120e− 140e] × [10s− 7n] [150e− 180e] × [7s− 7n]

Temperature at 250 m depth [120e− 140e] × [7s− 7n] [140e− 170e] × [7s− 7n]

Temperature at 300 m depth [120e− 140e] × [7s− 7n] [160e− 200e] × [10s− 3n]

Temperature at 400 m depth [120e− 140e] × [5s− 5n] [150e− 170e] × [10s− 0]

Temperature at 500 m depth [120e− 140e] × [5s− 5n] [150e− 170e] × [10s− 0]
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with these assumptions about the warm buildup in the 
WPAC and its migration eastwards.

It has been shown that the correct representation of 
the feedback between SST and westerly winds has a 
high impact on the dynamical regime of ENSO (Geb-
bie and Tziperman 2009). The correct inclusion of the 
SSTs, subsurface temperature, and zonal wind stress time 
series at the respective lead/lag times of importance of 
these variables could lead to a more accurate forecast. In 
this way, using the dynamics of EN described earlier (see 
Sects. 3.4.1, 3.4.2; Figs. 6, 7, 8), as well as rigorous sta-
tistical indicators for goodness of fit (see Harvey 1989 
for details), such as the prediction error variance (pev), 
the prediction error mean deviation (pemd), the informa-
tion criteria Akaike (AIC) and Bayesian Schwartz (BIC), 
and the coefficient of determination (Rs2) (see Tables 3, 
4, 5, 6 in Appendix 2), we have configured the model in 
such a way that the different regression variables are only 
used at their respective monthly lead/lag times of dynami-
cal relevance (see Tables 7, 8 in Appendix 2). These lead/
lag times have also been determined based on the esti-
mated coefficients and p values of the explanatory covari-
ates (Tables 3, 4, 5, 6 in Appendix 2; Harvey 1989). The 
core of the model described in Sect. 3 is kept constant, but 
the regression variables given by x′tδ are varied depend-
ing on the time before the peak when a forecast is started. 
The selection of regression variables also depends on the 
amount of co-linearity that is encountered in the regres-
sion. When several explanatory covariates have been 
selected for one lead/lag time during the fitting procedure 
(and they are all significant), we only use one or two of 
them when we perform the actual forecasts, only the ones 
that are the most significant for the particular forecasting 
event. In this way we avoid co-linearity in the estimation 
and forecasting procedures.

As seen in Tables 7 and 8 in Appendix 2, for every lead/
lag time the most statistically relevant predictors (zonal 
wind stress or temperature at specific depths in Regions I, 
II or III) are added to the model. These variables are associ-
ated with low p values when fitted at these specific lead/lag 
times, and the overall coefficient of determination of the 
model R2, as well as the coefficient of determination based 
on differences around seasonal means Rs2, increase when 
these particular variables are included (see Tables 3, 4, 5 
and 6 in Appendix 2). Additionally, the main anomalies of 
the covariates at the respective lead/lag times are also taken 
into consideration (the composite anomalies shown in 
Figs. 6, 7, 8) when determining the model configuration. In 
summary, depending on the relative time before the poten-
tial peak of EN that a forecast is started, different regres-
sion variables are added to the model, in order to enhance 
its forecasting performance.

5  Forecasting results

In order to test and cross-validate the proposed prediction 
scheme we attempted to forecast all El Niños that occurred 
in the period 1996–2015 at long (20–34 months), medium 
(10–19 months), and short (3–9 months) lead times 
(Figs. 9, 10). EN events were chosen according to the clas-
sification of the Climate Prediction Center for the period 
1996–2015: December 1997, 2002, 2006, 2009, 2014 (CPC 
2015). As a final test, we proceeded with an experiment, 
in which we predicted the whole ENSO time series in the 
period 1982–2014 (Fig. 10).

5.1  Forecasts of individual El Niño events

Long-lead (20–34 months in advance; magenta, light blue, 
dark green and beige curves in Fig. 9) forecasts of the 
five events are shown in Fig. 9a–e. Some shifts and mis-
matches in the exact onset and magnitude of the events can 
be noticed, but their occurrences are properly forecast, and 
an indication for a developing El Niño is clearly present 
even at these very long lead times. The 21 months ahead 
predictions (beige curves in Fig. 9a–e) already represent 
the events very well in terms of timing and amplitude. It 
is important to note that at 26 months lead the peak of 
the 1997/98 EN is predicted to reach an anomaly of +2◦

C (dark green curve in Fig. 9a and blue curve in Supple-
mentary Figure 2; Table 9), and that an event of extreme 
magnitude is foreseen more than 2 years in advance, long 
before the appearance of a series of westerly wind bursts 
in early 1997, assumed by some studies to be the prime 
reason for the strength of this El Niño (McPhaden and Yu 
1999). This is in support of the theory proposed by Chen 
et al. (2004) that the evolution especially of the big events 
is to a greater extent determined by the initial condition of 
the ocean, and the atmospheric forcing is rather a second-
ary modulator or consequence. In addition, the 2014/15 
weak EN is forecast with high accuracy 24 months ahead 
(dark green curve in Fig. 9e, black curve in Supplementary 
Figure 2; Table 9 in Appendix 2), while a large number of 
the operational models failed and predicted an extreme 
event similar in size to the 1997/98 one (McPhaden et al. 
2014; Glantz 2015).

Medium-range (10–19 months in advance; red, blue 
and green curves in Fig. 9) forecasts of the same events 
are depicted in Fig. 9f–j. It is evident that for some of the 
events the forecast improves as the lead time becomes 
shorter, as in the case of the 2002/03 and 2009/10 El Niños 
(Fig. 9g, i). For the 1997/98, the 2006/07 and the 2014/15 
events the skill of the model remains similar (Fig. 9f, h, e). 
Again, we want to highlight the accurate prediction of the 
2014 EN at 16–17 months lead time (blue curve in Fig. 9j; 
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Long-lead time (20-34) Medium-lead time (10-19) Short-lead time (3-9)

1997/98

2002/03

2006/07

2009/10

2014/15

Fig. 9  Time series of area-averaged sea surface temperature (◦C) 
anomalies in the Niño 3.4 region. Shown are forecasts of the a, f, k 
1997/98, b, g, l 2002/03, c, h, m 2006/07, d, i, n 2009/10, and e, j, 
o 2014/15 EN events, starting 29–34 (magenta in a and d), 27–28 
(light blue in b–e), 24–26 (dark green in a–c and e), 21–22 (beige 

in a–e), 17–19 (red in f–j), 13–16 (blue in f–j), 11–12 (green in f–j), 
8–9 (velvet in k–o), 6 (dark blue in k–o), and 3–5 (dark yellow in 
k–o) months before the peak of El Niño, respectively. Vertical dotted 
lines indicate the month in which the respective forecasts are started. 
Observations are in black
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Table 9), and the consistency of the forecast indicating a 
minor event (black curve in Supplementary Figure 2) 
instead of a major one.

As expected, the overall performance of the model is 
improved at short lead times (3–6 months; dark blue and 
dark yellow curves in Fig. 9k–o). The peak of the tem-
perature anomaly is already accurately forecast in all five 
cases (Table 9; Supplementary Figure 2). An interesting 
feature is that most events (the 1997/98, the 2002/03, and 
the 2009/10) are better forecast 12–14 months in advance 
than 9–11 months ahead (velvet curves in Fig. 9k–o, 
blue, red and yellow curves in Supplementary Figure 2; 
Table 9). We relate this issue to the fact that 8–9 months 
before a typical boreal winter peak is the time of the spring 
barrier, when the signal to noise-ratio is lower and when 
most models tend to lose their predictability skills (Barn-
ston et al. 2012). This result confirms that some El Niños 
are more reliably forecast at medium- and long-lead times 
(Izumo et al. 2014), rather than at shorter ones, something 

that could seem counterintuitive and calls for further 
investigation.

Table 9 and Supplementary Figure 2 summarize the 
results for the prediction of the target month of January for 
the five EN cases. Roughly one year and a half to two years 
in advance the forecasts successfully indicate whether 
the respective event is expected to be strong, moderate 
or weak. Moreover, for some lead months the tempera-
ture anomaly value of the prediction is almost exactly the 
same as the value in the observations—for instance 12–14 
and 21–23 months ahead of the 2002/03 event, 27 months 
ahead of the 2006/07 event, and 6–8 and 12–14 months 
ahead of the 2009/10 event.

Finally, a feature to be noted is that even at short lead 
times the the evolution of the temperature anomaly dur-
ing some of the events, for instance the 2002/03 and the 
2006/07, appears slightly lagged by 1–2 months in the 
model than in the observations (Fig. 9b, g, l, c, h, m, 
respectively). This delay could be linked to the fact that in 
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Fig. 10  a Retrospective forecast of the EN3.4 time series in the 
period 1983–2014. The EN3.4 observation is in red and the model 
prediction at 6 months lead time is in blue. Scatterplots of the EN3.4 

time series observation against forecast at b 3, c 6, d 18 months lead 
time. The respective regression coefficients are 0.70, 0.45 and 0.30
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the current configuration of the model the seasonal cycle 
has been estimated as a non-varying fixed cycle with a 
seasonal peak in the months of April–May (Fig. 1b). Even 
though in general terms this representation is correct, we 
know that in reality the seasonality varies especially in EN 
years. In the present scheme we attempted to model this 
additional variability through the regression explanatory 
covariates and the near-annual cycle component, however, 
this issue should be better addressed in the future. Thus, 
one avenue for improvement would be to test the model 
with a time-varying seasonal component, which we expect 
to result in an even more accurate evolution and timing of 
the predicted events.

So far it has been shown how the proposed model is 
highly skillful in forecasting the warm phase of ENSO, of 
those El Niños that occurred in the last 20 years. In the next 
subsection we demonstrate its potential to predict the over-
all phenomenon, including neutral years.

5.2  ENSO time series forecast

The proposed forecasting scheme has been especially tar-
geted at the prediction of both the timing and magnitude 
of El Niño events, and in the previous subsection its skill 
in that respect was shown. In the present study the regres-
sion covariates used in the model and described earlier 
(Sect. 3.4) have been incorporated with the aim to improve 
the forecast of the warm phase of the oscillation, without 
considering the cold LN phase. Indeed, the rest of the com-
ponents of the model are formulated in such a way as to 
address the prediction of the entire ENSO phenomenon. 
Therefore, it is expected that the model is also skillful at 
predicting neutral and LN years, albeit with less precision.

In Fig. 10a a forecast across the whole interval span-
ning 1983–2014 at 6 months lead time can be seen. The 
data between 1952–1982 was used for the estimation of 
the model components, and then prediction was attempted 
for the remaining period. This forecast is more complex 
than the ones presented in the previous subsection when 
components were estimated on the basis of the available 
observations prior to every warm event. Instead here, gen-
eral conditions for the fitting period are applied, and not 
specific ones related to each ENSO event. In addition, 
most of this fitting interval covers a time before the ENSO 
regime shift in 1977 (Hare and Mantua 2000), while the 
forecast is made for the years after this shift. As expected 
the model is capable of predicting all EN events and neu-
tral years in the period, but some of the LN events are 
missed, for example the cold ones occurring in the years 
2000 and 2008.

From the scatterplots of the observed Niño 3.4 index 
against forecasts at lead times of 3, 6 and 18 months 
(Fig. 10b–d) it becomes clear that the model has 

correctly predicted the LN events of extreme amplitude 
at a lead time of 3 months (Fig. 10b). With its current 
formulation, however, the cold anomalies exceeding 
–2 ◦C cannot be captured at a lead time of 6 months 
(Fig. 10c), while at the longer lead time of 18 months 
anomalies exceeding –1 ◦C are missed (Fig. 10d). Fur-
thermore, the positive skewness coefficients of 0.43 
and 0.45 for the forecast time series in Fig. 10c and d, 
respectively, indicate an asymmetry of the probability 
distribution functions with longer tail toward the warm 
ENSO events. In reality, the rapid termination of El Niño 
after boreal winter is on average followed by the devel-
opment of La Niña in the following year (Fig. 1a; Bal-
lester et al. 2015). In these cases the ocean dynamics fol-
lows a different pattern than a symmetric pattern (with 
opposite sign) to the one that precedes El Niño. The 
eastward propagation of the subsurface cold anomalies 
and their surface appearance in the EPAC occur faster, 
for example. More aspects of the asymmetry between the 
two ENSO phases have been discussed in detail by Kang 
and Kug (2002), An and Jin (2004), An and Choi (2009), 
Yu et al. (2011) and Ballester et al. (2015). Therefore, 
the current predictor regression variables of the model 
cannot properly signal the development of some of the 
LN events. Hence, specific regression covariates related 
to the dynamics and playing a role during and before La 
Niña will be added to the modeling scheme in the future 
with the objective to improve the representation of the 
cold ENSO phase.

In Table 10 the correlation between forecasts and obser-
vations, as well as root mean square error (RMSE) are 
given as functions of lead time for a number of lead times 
and for all seasons combined. These are indicative of the 
high skill of the proposed model to predict the Niño3.4 
index. For lead times of 3 and 6 months the correlation is 
0.86 and 0.68, respectively, which compares to the best 
two operational dynamical models described in Barnston 
et al. (2012) (see Figure 6 in Barnston et al. 2012). The 
RMSE for the same lead times are 0.54 and 0.77, respec-
tively, and thus for this particular measure of skill and lead 
times the model outperforms all other operational models 
(see Figure 9 in Barnston et al. 2012). A more detailed and 
extensive comparison with existing ENSO models will be 
provided in a follow-up study.

6  Discussion

The results presented in the previous section suggest that 
the structural time series model (Sect. 3) described in this 
study outperforms the statistical ENSO models included in 
the cross-validation exercise, and it is comparable to some 
of the most accurate dynamical models. Our prediction 
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scheme successfully goes beyond the spring barrier, and 
also through the one after that, which is an implication for 
the much longer predictability limit of ENSO than gener-
ally accepted. This result, to our knowledge, has only been 
accomplished by Chen et al. (2004) so far. Still, we report 
forecasts started two and a half years before the boreal EN 
peak, which is even longer than the lead time of the pre-
dictions shown therein. Also, in Chen et al. (2004) a com-
plete account of the reasons underlying this performance is 
not provided, while here a dynamical understanding of the 
EN-associated processes accompanies the definition of our 
model structure and regional covariates.

Additionally, we want to highlight the simplicity of the 
proposed prediction scheme, as it uses readily available 
data directly as input—monthly values of SSTs, subsurface 
ocean temperature in the vicinity of the equatorial Pacific, 
and zonal wind stress; and it does not require extensive 
computations. Therefore, our model appears to have a clear 
advantage over the more complicated statistical schemes, 
as well as over the computationally more expensive dynam-
ical models. We would also like to discuss one important 
advantage that is especially due to the state space approach 
applied here.

Two of the forecast events in Fig. 9 were unusual in the 
respect that the frequencies of the three cycle components 
estimated with the Kalman Filter were different. In the case 
of the 2006/07 event (Supplementary Figure 3), the quasi-
biannual and quasi-quadrennial cycles were preserved, 
but the third cycle was estimated to have a frequency 
associated with decadal scales of variability [Supplemen-
tary Figure 3(c)]. Actually, when the model was fixed as 
described in Sect. 3 and shown in Fig. 1, the event was 
shifted and forecast for the next year 2007/08 (not shown). 
This confirms the important role of the decadal tropical 
Pacific variability in the modulation of the ENSO ampli-
tude, which was reported by previous studies (Kleeman 
et al. 1999; Yeh and Kirtman 2004, 2005). As the model in 
its current configuration has only three cycle components, 
we cannot deduce whether the near-annual cycle compo-
nent still has a vital contribution to the evolution of this 
event.

In Supplementary Figure 3(a), however, it can be seen 
that the estimated 2-year oscillation is not regular as in 
Fig. 1d. We have plotted together the cycles from Fig. 1c 
and d (the near-annual and the biannual oscillations), and 
we superimposed the irregular quasi-biannual compo-
nent from Supplementary Figure 3(a) (see Supplementary 
Figure 4). The irregular 2-year cycle appears to result from 
the convolution of the other two cycles. This could explain 
the occasional shift in the amplitude and phase of the oth-
erwise regular biannual cycle, which was mentioned earlier 

(see Sect. 3.3.2). In fact, it has been difficult to clearly 
isolate the peaks in the spectrum of both zonal wind and 
SSTs associated with the oscillations at periods of 16–18 
and 24–28 months in the analysis done by Rasmusson et al. 
(1990) and Jiang et al. (1995), favouring this kind of con-
clusion. In any case, a model configuration in which both 
cycles are present in an explicit way would most probably 
result into an even more precise forecast of the 2006/07 El 
Niño, but this is not in the scope of the present article.

The other event, for which the frequencies of the cycle 
components were estimated differently was the prominent 
1997/98 event. In the case of this El Niño, which is also 
the most extreme on record, the quasi-biannual cycle was 
calculated as for the 2006/07 event [see Supplementary 
Figures 3(a) and 5(a)], while the other two cycle frequen-
cies corresponded to periods of 43–45 and 62–65 months 
[Supplementary Figure 5(b), (c)]. In this way, the event is 
characterized by a “double” or “split” quasi-quadrennial 
cycle. In order to shed more light onto this distinction, 
we examined these two cycles in more detail. In Supple-
mentary Figure 5 we can clearly see that the cycle with 
65 months period has its peak in 1992/93 [Supplementary 
Figure 5(c)], while the one with 45 months peaks in 1991 
[Supplementary Figure 5(b)]. On the one hand, in 1991/92 
there was an official El Niño event. On the other hand, the 
year 1993 was indeed exceptionally warm (Fig. 1a). These 
two cycles then peak coincidentally in 1998, which pre-
conditions an event of higher magnitude. It should also be 
taken into consideration that the prediction of the 1997/98 
event is made by fitting the data between 1982 and 1995, 
which is a short period of time when only one event of sim-
ilar, but still lower magnitude, occurred. Thus, the model 
has performed very well by forecasting this exceptional 
event.

These preliminary results lead to the conclusion that 
at least some of the bigger and more extreme EN events 
occur as a result of the superposition of these two cycles 
in combination with the quasi-biannual cycle, the near-
annual cycle and/or a cycle on decadal timescales. A 
recent study (Chen et al. 2015) classified EN events into 
three different categories—extremely strong ones, weak 
warm events reminiscent of the “warm pool El Niño”, and 
the canonical ones with moderate warming in the cen-
tral/eastern equatorial Pacific. Thus, taking into account 
this classification, we presume that on average for the 
canonical events, the cycles that have an important role 
in EN development are the ones discussed in Sect. 3 and 
shown in Fig. 1. On the other hand, for the more specific 
smaller events, and for the very extreme ones, the dynam-
ical mechanisms seem to be complicated by the effect 
of additional cycles superimposed over these basic ones. 
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Considering the results presented here, we believe that the 
parameter re-estimation of the various model components, 
and especially of the three cycle frequencies, based on 
the observational data prior to each event, is crucial for 
the accurate forecasting of El Niño. Hence, the long-lead 
time prediction capabilities of our scheme come from the 
correct representation of the ocean-atmosphere system at 
each stage of its evolution. The fact that the state space 
form and the Kalman Filter allow for the unknown param-
eter re-estimation whenever an updated information about 
the coupled system becomes available is a fundamental 
advantage of our model.

7  Concluding remarks and future directions

A new ENSO forecasting scheme has been developed, 
based on structural unobserved components time series 
modeling with a state space approach. The unknown 
parameters of the unobserved components are re-estimated 
before every event, thus rendering the unique flexibility 
of the model. Regression variables especially designed to 
account for ocean surface and subsurface anomalous pro-
cesses at the equatorial Pacific prior to individual El Niño 
events are incorporated at their specific time of relevancy. 
Since all unknown parameters are calculated together in a 
dynamic way, the addition of these covariates also affects 
the estimation of all the other model components in an 
efficient way, helping for the correct update of the whole 
system.

The model has been tested and cross-validated through 
the retrospective forecasts of the El Niños events in the 
recent period 1996–2015, and it has successfully pre-
dicted all the events that occurred at both long lead times 
(2 years and a half in advance), as well as at shorter lead 
times before and after the spring predictability barrier. 
Essentially, the model has accurately forecast a mod-
erate EN for the end of 2014/beginning of 2015, unlike 
the majority of the operational models that warned of 
an event of substantial magnitude similar to that of the 
1997/98 one.

A direct conclusion of high relevance is that the pre-
dictability limit of ENSO could be extended to at least two 
and a half years before the El Niño peak. Our study also 
clearly demonstrates that there is still room for improve-
ment in the prediction of ENSO, not only in the forecast-
ing of the cold phase of the oscillation, but also in that of 

EN itself. One immediate avenue for future work should 
be the inclusion of explanatory covariates especially 
aimed at improving the prediction of LN events, by taking 
into account the La Niña specific dynamics. Another area 
for improvement would be the transformation of the mod-
eling scheme, so that all the important cycles discussed 
here - the additional quasi-quadrennial cycle, the decadal 
cycle, as well as independent near-annual and biannual 
cycles, could be separately incorporated in it. Finally, spe-
cial attention should be paid to the incorporation of sea-
sonality as discussed in Sect. 5, by changing the seasonal 
component of the model from being fixed to a time-vary-
ing one. 
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Appendix 1

The linear Gaussian state space model form that we have 
used is as in de Jong (1991), that is:

for t = 1, . . . , n, and where ǫt is a vector of serially inde-
pendent disturbance series. The m× 1 state vector αt con-
tains the unobserved components and their associated 
variables.

The measurement equation is the first equation in (6) and 
it relates the observation yt to the state vector αt through 
the signal Ztαt. The transition equation is the second equa-
tion in (6) and it is used to formulate the dynamic processes 
of the unobserved components in a companion form. The 
deterministic matrices Tt, Zt, Ht and Gt, are time-invariant 
except the matrix Zt, and referred to as system matrices that 
are sparse and known:

(6)yt = Ztαt + Gtǫt , αt+1 = Ttαt + Htǫt , ǫt ∼ NID(0, I),

αt =
(

µt , γt , γt−1, . . . , γt−10,ψ1t ,ψ
+
1t
,ψ2t ,ψ

+
2t
,ψ3t ,ψ

+
3t
, δ′

)′
,

ǫt =
(

εt , ηt ,ωt , κ1t , κ
+
1t
, κ2t , κ

+
2t
, κ3t , κ

+
3t

)′
,
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 p(1) q(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − q(1) p(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 p(2) q(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 − q(2) p(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 p(3) q(3) 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − q(3) p(3) 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 p(4) q(4) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − q(4) p(4) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 p(5) q(5) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − q(5) p(5) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c(1) s(1) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 − s(1) c(1) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) s(2) 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − s(2) c(2) 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(3) s(3) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − s(3) c(3) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ik
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0 0 0 σκ ,1 0 0 0 0 0
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,

Zt =
�

1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 x′t

�

,

Gt =

�

σε 0 0 0 0 0 0 0 0

�

,

between 0 and 35 months. Based on the in-sample estima-
tions for each of these fittings (the sample spanned the data 
from January 1982 to December 2012), the p value (an 
indicator of statistical significance, showing the probabil-
ity that the coefficient of the predictor is equal to zero, and 
thus that the predictor does not add value), the significance 
level (SL) based on it (SL = 90% for p ≤ 0.10, SL = 95% 
for p ≤ 0.05, SL = 99% for p ≤ 0.01), and the Rs2 value 
(modified coefficient of determination based on seasonal 
means—the ratio between the variance explained by the 
model and the variance of the seasonally differenced time 
series), were used to determine significance of the regres-
sion variable at the respective lag time. The significant val-
ues obtained in this way are summarized in the following 
Tables 3, 4, 5 and 6.       

where 0k is a k × 1 vector of zeros, Ik is a k × 1 vec-
tor of ones, p(i) = cos �i and q(i) = sin �i for �i = 2π i

S
, 

i = 1, 2, . . . , ⌊ S
2
⌋; c(j) = ϕψ ,j cos �c,j and s(j) = ϕψ ,j sin �c,j 

for j = 1, 2, 3.

Appendix 2

Every explanatory regression variable that has been used 
in the analysis (surface temperature, subsurface tempera-
ture at different depth levels and regions, and zonal wind 
stress at different regions) has been tested separately with 
the model described in Sect. 3 during the fitting proce-
dure. In this way each variable was fitted at every lag time 
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Table 3  Diagnostics of wind 
stress predictor regression 
variables

Regression variable Time series region Lag (months) Coefficient p value (SL) Rs
2

Zonal wind stress Region I 7 −2.80 0.07 (90 %) 0.3220

8 −3.91 0.01 (99 %) 0.3110

9 3.87 0.01 (99 %) 0.3125

16 3.75 0.02 (95 %) 0.3048

20 −4.24 0.01 (99 %) 0.3167

21 4.05 0.01 (99 %) 0.3141

25 2.73 0.10 (90 %) 0.3119

27 4.77 0.00 (99 %) 0.3229

28 −3.75 0.02 (95 %) 0.3038

29 2.94 0.08 (90 %) 0.3007

30 −2.56 0.13 (<90 %) 0.3042

Region II 13 3.08 0.04 (95%) 0.3036

25 3.07 0.04 (95 %) 0.3151

27 4.83 0.00 (99 %) 0.3254

28 −4.17 0.01 (99 %) 0.3080

30 −4.46 0.01 (99 %) 0.3122

Region III 7 −2.20 0.10 (90%) 0.3045

8 −3.24 0.01 (99 %) 0.3105

15 −6.15 0.00 (99 %) 0.3455

16 3.42 0.01 (99 %) 0.3072

19 −4.83 0.01 (99 %) 0.3304

20 −6.19 0.00 (99 %) 0.3402

28 −2.18 0.10 (90 %) 0.3025

Table 4  Diagnostics of surface 
and subsurface temperature 
predictor regression variables

Regression variable Time series region Lag (months) Coefficient p value (SL) Rs
2

SST WPAC 2 −0.14 0.02 (95 %) 0.2981

14 −0.15 0.02 (95 %) 0.2898

15 0.17 0.01 (99 %) 0.2888

17 0.11 0.07 (90 %) 0.2716

WPAC2 2 −0.20 0.01 (99 %) 0.3004

14 −0.18 0.03 (95 %) 0.2882

15 0.20 0.01 (99 %) 0.2878

17 0.16 0.04 (95 %) 0.2759

WPAC3 2 −0.28 0.00 (99 %) 0.3118

15 0.21 0.01 (99 %) 0.2889

17 0.12 0.13 (<90 %) 0.2725

WPAC4 2 −0.24 0.00 (99 %) 0.3218

5 0.15 0.01 (99 %) 0.2922

15 0.16 0.00 (99 %) 0.2940

17 0.10 0.08 (90 %) 0.2739

Temperature at 50 m depth Region I 2 −0.45 0.00 (99 %) 0.3466

3 −0.27 0.04 (95 %) 0.3352

14 −0.20 0.13 (<90 %) 0.3232

17 0.26 0.06 (90 %) 0.3079

19 −0.19 0.15 (<90 %) 0.3092

3.2 Improving the long-lead predictability of El Niño 81



Improving the long-lead predictability of El Niño using a novel forecasting scheme based. . .

1 3

Table 5  Diagnostics of 
subsurface temperature 
predictor regression variables

Regression variable Time series region Lag (months) Coefficient p value (SL) Rs
2

Temperature at 150 m depth Region I 2 −0.17 0.00 (99 %) 0.3135

3 −0.16 0.00 (99 %) 0.3102

8 −0.17 0.00 (99 %) 0.3121

9 −0.12 0.03 (95 %) 0.2968

10 −0.14 0.01 (99 %) 0.2994

19 −0.11 0.05 (95 %) 0.2861

26 −0.10 0.06 (90 %) 0.2957

Region II 4 0.08 0.05 (95 %) 0.3252

5 0.11 0.01 (99 %) 0.3294

10 0.06 0.14 (<90 %) 0.3196

14 0.07 0.09 (90 %) 0.3225

22 −0.07 0.09 (90 %) 0.2815

25 0.08 0.05 (95 %) 0.3142

35 −0.07 0.09 (90 %) 0.3211

36 −0.08 0.05 (95 %) 0.3267

Temperature at 200 m depth Region I 8 −0.14 0.04 (95 %) 0.3315

9 −0.18 0.01 (99 %) 0.3296

10 −0.13 0.07 (90 %) 0.3234

19 −0.14 0.04 (95 %) 0.3127

20 −0.12 0.09 (90 %) 0.3104

Region II 3 0.14 0.01 (99 %) 0.3392

4 0.17 0.00 (99 %) 0.3363

5 0.16 0.00 (99 %) 0.3344

Regression variable Time series region Lag (months) Coefficient p value (SL) Rs
2

Temperature at 100 m depth Region I 2 −0.23 0.00 (99 %) 0.3512

3 −0.19 0.00 (99 %) 0.3435

6 −0.10 0.07 (90 %) 0.3341

7 −0.11 0.05 (95 %) 0.3349

8 −0.13 0.02 (95 %) 0.3331

10 −0.11 0.05 (95 %) 0.3239

19 −0.16 0.01 (99 %) 0.3181

20 −0.10 0.07 (90 %) 0.3108

35 −0.15 0.02 (95 %) 0.3275

Region II 2 −0.14 0.04 (95 %) 0.3069

4 −0.13 0.05 (95 %) 0.2981

7 0.13 0.05 (95 %) 0.3061

9 0.15 0.03 (95 %) 0.2680

13 0.16 0.02 (95 %) 0.2886

22 −0.21 0.00 (99 %) 0.2953

25 0.22 0.00 (99 %) 0.2879

26 0.15 0.03 (95 %) 0.2878

35 −0.17 0.02 (95 %) 0.2956

36 0.11 0.10 (90 %) 0.2953

Temperature at 100 m depth  
“cold”

Region I 6 0.07 0.08 (90 %) 0.2907

8 −0.09 0.02 (95 %) 0.2930

9 −0.07 0.08 (90 %) 0.2827

26 0.06 0.09 (90 %) 0.2798

Table 4  continued
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Table 6  Diagnostics of 
subsurface temperature 
predictor regression variables

Regression variable Time series region Lag (months) Coefficient p value (SL) Rs
2

Temperature at 300 m depth Region I 9 −0.27 0.07 (90 %) 0.3240

24 0.25 0.10 (90 %) 0.3078

27 −0.25 0.10 (90 %) 0.3200

28 −0.35 0.02 (95 %) 0.3170

29 0.28 0.07 (90 %) 0.3163

34 −0.24 0.12 (<90 %) 0.3179

35 −0.44 0.00 (99 %) 0.3321

Region II 2 0.31 0.12 (<90 %) 0.3185

4 0.53 0.01 (99 %) 0.3182

6 0.44 0.03 (95 %) 0.3025

17 0.45 0.03 (95 %) 0.3023

32 −0.35 0.09 (90 %) 0.3211

Temperature at 400 m depth Region I 17 −0.32 0.12 (<90 %) 0.3077

24 0.32 0.12 (<90 %) 0.2850

28 −0.32 0.12 (<90 %) 0.2843

29 0.38 0.07 (90 %) 0.3038

Region II 10 −0.38 0.10 (90 %) 0.3215

12 −0.41 0.08 (90 %) 0.3240

15 0.38 0.10 (90 %) 0.3088

29 −0.49 0.04 (95 %) 0.3033

Regression variable Time series region Lag (months) Coefficient p value (SL) Rs
2

13 0.08 0.14 (<90 %) 0.3197

14 0.12 0.03 (95 %) 0.3256

35 −0.09 0.11 (<90 %) 0.3209

36 −0.11 0.04 (95 %) 0.3284

Temperature at 250 m depth Region I 5 0.19 0.04 (95 %) 0.3272

6 0.15 0.10 (90 %) 0.3343

8 −0.29 0.00 (99 %) 0.3428

9 −0.20 0.03 (95 %) 0.3269

12 0.19 0.05 (95 %) 0.3217

24 0.15 0.10 (90 %) 0.3079

28 −0.26 0.04 (95 %) 0.3492

29 0.18 0.10 (90 %) 0.2818

35 −0.15 0.10 (90 %) 0.3212

Region II 5 0.39 0.00 (99 %) 0.3380

11 −0.22 0.07 (90 %) 0.3227

13 0.20 0.11 (<90 %) 0.3210

21 −0.39 0.00 (99 %) 0.2859

27 −0.27 0.03 (95 %) 0.3239

34 −0.28 0.02 (95 %) 0.3234

Table 5  continued
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Table 7  Predictor regression variables added to the model at lead times between 17 and 36 months, based on the criteria and results shown in 
Tables 3–6

Lag/Lead Regression variables

36 Temperature at 500 m depth Region I, temperature at 100, 150, 200 m depth Region II

35 Temperature at 100, 250, 300 m depth Region I, temperature at 100, 150, 200 m depth Region II

34 Temperature at 250 m depth Region II

32 Temperature at 300 m depth Region II

30 Zonal wind stress Region I and II

29 Temperature at 250, 300, 400 m depth Region I

28 Temperature at 250, 300, 400 m depth Region I, zonal wind stress Region I and III

27 Temperature at 300 m depth Region I, temperature at 250 m depth Region II, zonal wind stress Region I and II

26 Temperature at 100 m depth Region “cold”, temperature at 150 m depth Region I, temperature at 100 m depth Region II

25 Temperature at 100, 150 m depth Region II, zonal wind stress Region I and II

24 Temperature at 250, 300, 400 m depth Region I

22 Temperature at 100, 150 m depth Region II

21 Temperature at 250 m depth Region II, zonal wind stress Region I

20 Temperature at 100, 200 m depth Region I, zonal wind stress Region I and III

19 Temperature at 50, 100, 150, 200 m depth Region I, zonal wind stress Region III

17 SST WPAC, WPAC2, WPAC3, WPAC4, temperature at 50, 400 m depth Region I, temperature at 300, 500 m depth Region II

Regression variable Time series region Lag (months) Coefficient p value (SL) Rs
2

Temperature at 500 m depth Region I 2 −0.60 0.07 (90 %) 0.3192

3 −0.58 0.08 (90 %) 0.3202

6 0.74 0.02 (95 %) 0.3080

10 −0.68 0.04 (95 %) 0.3109

11 −0.74 0.02 (95 %) 0.3124

36 −0.49 0.14 (<90 %) 0.3156

Region II 4 0.77 0.01 (99 %) 0.3164

5 1.24 0.00 (99 %) 0.2648

6 0.90 0.00 (99 %) 0.3432

10 −0.78 0.01 (99 %) 0.3298

11 −1.22 0.00 (99 %) 0.3416

12 −0.50 0.11 (<90 %) 0.3222

15 0.65 0.04 (95 %) 0.3244

17 0.60 0.05 (95 %) 0.3122

Table 4  continued

84 Publications



D. Petrova et al.

1 3

Table 8  Predictor regression variables added to the model at lead times between 0 and 15 months, based on the criteria and results shown in 
Tables 3–6

Lag/Lead Regression variables

15 SST WPAC, WPAC2, WPAC3, WPAC4, temperature at 250, 400, 500 m depth Region II, zonal wind stress Region III

14 SST WPAC, WPAC2, Temperature at 50 m depth, temperature at 150, 200 m depth Region II

13 Temperature at 100, 200, 250 m depth Region II

12 Temperature at 250 m depth Region I, temperature at 400, 500 m depth Region II

11 Temperature at 500 m depth Region I, temperature at 250, 500 m depth Region II, zonal wind stress Region II

10 Temperature at 100, 150, 200, 500 m depth Region I, temperature at 150, 400, 500 m depth Region II

9 Temperature at 150, 200, 250, 300 m depth Region I, temperature 100 m depth Region II, temperature at 100 m depth Region “cold”

8 Temperature at 100 m depth Region “cold”, temperature at 100, 150, 200, 250 m, depth Region I, zonal wind stress Region I and III

7 Temperature at 100 m depth Region I and II, zonal wind stress Region I and III

6 Temperature at 100 m depth Region “cold”, temperature at 100, 250, 500 m depth Region I, temperature at 300, 500 m depth Region 
II

5 SST WPAC4, Temperature at 250 m, depth Region I, temperature at 150, 200, 250, 500 m depth Region II

4 Temperature at 100, 150, 200, 300, 500 m depth Region II

3 Temperature at 50 m depth, temperature at 100, 150, 500 m depth Region I, temperature at 200 m depth Region II

2 SST WPAC, WPAC2, WPAC3, WPAC4, temperature at 50 m depth, temperature at 100 m depth Region I and II, temperature at 150, 
500 m depth Region I, temperature at 300 m depth Region II

1 SST WPAC, WPAC3, WPAC4, temperature at 50 m depth, temperature at 100, 150, 200, 250, 300, 400 m depth Region I and II, 
500 m depth Region II

0 SST WPAC2, temperature at 50 m depth, temperature at 100, 150, 200, 250 m depth Region I and II, temperature at 300, 400, 500 m 
depth Region II

Table 9  Predictions of the 
January target month for all EN 
events shown in Fig. 9

Given in brackets is the probability that the respective value would occur based on a kernel normal prob-
ability density estimation of the N3.4 index with bandwidth of the kernel smoothing window h = 0.2704. 
Events are categorized as: strong/extreme (0–9 %), moderate (10–24 %), weak (25–35 %). The category 
of the event is predicted (bolditalic), or an adjacent category is predicted instead (italic). The observation 
values are in bold

Lead month 1997–1998 2002–2003 2006–2007 2009–2010 2014–2015

27–29 1.420 (10 %) 0.644 (28 %) 0.645 (28 %) 0.950 (19 %) 0.223 (41 %)

24–26 2.000 (4 %) 0.784 (24 %) 0.602 (29 %) 1.162 (15 %) 0.549 (32 %)

21–23 1.401 (11 %) 1.187 (14 %) 0.628 (29 %) 1.186 (14 %) 0.506 (34 %)

18–20 1.792 (6 %) 0.971 (19 %) 0.5386 (32 %) 1.165 (15 %) 0.354 (38 %)

15–17 1.544 (9 %) 0.758 (24 %) 0.639 (28 %) 1.262 (13 %) 0.565 (31 %)

12–14 1.377 (11 %) 1.110 (15 %) 0.682 (27 %) 1.457 (10 %) 0.351 (38 %)

9–11 1.305 (12 %) 0.969 (19 %) 0.642 (28 %) 1.257 (13 %) 0.519 (33 %)

6–8 2.006 (4 %) 1.138 (15 %) 0.718 (26 %) 1.446 (10 %) 0.500 (34 %)

3–5 2.503 (3 %) 1.394 (11 %) 0.727 (25 %) 1.564 (9 %) 0.613 (30 %)

Obs. 2.494 (3 %) 1.146 (15 %) 0.645 (28 %) 1.463 (10 %) 0.622 (30 %)
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Abstracto - Summary in Spanish

La naturaleza oscilatoria de El Niño-Oscilación del Sur resulta de una intrincada super-
posición de balances de cuasi-equilibrios y procesos de desequilibrio fuera de fase entre el océano
y la atmósfera. El objetivo principal del presente trabajo es realizar un exhaustivo análisis
espaciotemporal del presupuesto de calor oceánico superior en un conjunto de productos de
asimilación oceánica de vanguardia. Ponemos énfasis en los mecanismos de advección del calor
del océano, y su representación en conjuntos de miembros individuales y en las diferentes etapas
de la oscilación ENSO que conduce a eventos EN. Nuestros análisis consistentemente mues-
tran que el calentamiento subsuperficial inicial en el Paćıfico ecuatorial occidental se advecta al
Paćıfico central por la subcorriente ecuatorial, la cual, junto con la advección ecuatorial asociada
con anomaĺıas tanto en el gradiente de temperatura meridional como en la circulación a nivel de
la termoclina, explica la acumulación de calor en el Paćıfico central durante la fase de recarga.
También encontramos que la fase de recarga se caracteriza por un aumento de la inclinación
meridional de la termoclina, aśı como un transporte de masa equatorial cruzada hacia el sur en
el océano resultante del movimiento vertical anómalo inducido por Ekman en las zonas sube-
cuatoriales. Aunque las diferencias entre conjuntos de datos son generalmente pequeñas, y las
anomaĺıas tienden a tener el mismo signo, las diferencias en la magnitud del término meridional
se consideran clave para explicar los diferentes velocidades de propagación de la tendencia de
calentamiento subsuperficial a lo largo de la termoclina. La única excepción es GECCO, que
no produce los patrones de divergencia Ekman meridional superficial (Convergencia Sverdrup
subsuperficial) en el Paćıfico ecuatorial occidental y central.
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Abstract The oscillatory nature of El Ni~no-Southern Oscillation results from an intricate superposition of
near-equilibrium balances and out-of-phase disequilibrium processes between the ocean and the atmos-
phere. The main objective of the present work is to perform an exhaustive spatiotemporal analysis of the
upper ocean heat budget in an ensemble of state-of-the-art ocean assimilation products. We put specific
emphasis on the ocean heat advection mechanisms, and their representation in individual ensemble
members and in the different stages of the ENSO oscillation leading to EN events. Our analyses consistently
show that the initial subsurface warming in the western equatorial Pacific is advected to the central Pacific
by the equatorial undercurrent, which, together with the equatorward advection associated with anomalies
in both the meridional temperature gradient and circulation at the level of the thermocline, explains the
heat buildup in the central Pacific during the recharge phase. We also find that the recharge phase is char-
acterized by an increase of meridional tilting of the thermocline, as well as a southward upper-ocean cross-
equatorial mass transport resulting from Ekman-induced anomalous vertical motion in the off-equatorial
regions. Although differences between data sets are generally small, and anomalies tend to have the same
sign, the differences in the magnitude of the meridional term are seen to be key for explaining the different
propagation speed of the subsurface warming tendency along the thermocline. The only exception is
GECCO, which does not produce the patterns of meridional surface Ekman divergence (subsurface Sverdrup
convergence) in the western and central equatorial Pacific.

1. Introduction

El Ni~no-Southern Oscillation (ENSO) [Ballester et al., 2016] is the dominant source of interannual variability
worldwide and one of the most important modes of variability in the tropical Pacific, with far-reaching influ-
ences on the whole climate system [Jin, 1997a,1997b; Meinen and McPhaden, 2000; Wang, 2002; Brown and
Fedorov, 2010; Ballester et al., 2011, 2013; Petrova et al., 2016]. The large amplitude of ENSO anomalies in the
tropical Pacific is essentially explained by the strong coupling between the Walker circulation, the zonal gra-
dient of sea surface temperature and the longitudinal tilt of the thermocline (i.e., the so-called Bjerknes
feedback [Bjerknes, 1969; Wyrtki, 1975]). These interactions are however modulated by out-of-phase nega-
tive feedbacks that bound the amplitude and reverse the sign of interannual anomalies. According to the
delayed oscillator theory, this reversal is explained by the differential propagation speed of wind-induced
oceanic Kelvin and Rossby waves [Battisti, 1988; Schopf and Suarez, 1988]. While eastward-propagating
Kelvin waves quickly deepen the warm ocean layer in the eastern Pacific [Wang, 2002], westward Rossby
waves travel at lower speeds, and start to shallow the thermocline only after being reflected as Kelvin waves
at the western boundary [Fedorov and Brown, 2009].

Among other models that have been proposed, the recharge oscillator emphasizes the time delay between
anomalies in longitudinally averaged thermocline depth and eastern Pacific sea surface temperature [Jin,
1997a,1997b]. In this conceptual framework, a deeper-than-normal thermocline suppresses the active
upwelling in the eastern Pacific and favors the growth of an El Ni~no (EN) event and the weakening of the
trade winds, whose curl generates poleward Sverdrup transport that discharges the heat in the upper ocean
and reverses the sign of ENSO [Meinen and McPhaden, 2000]. This theory, therefore, hypothesizes that the
oscillatory nature of ENSO results from the balance between equatorial zonal winds and the pressure gradi-
ent associated with the equatorial thermocline tilt, as well as from the disequilibrium between the mean
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basin-wide thermocline depth and the meridional convergence or divergence of Sverdrup transport due to
tropical wind stress curl anomalies [Jin, 1997a,1997b; Singh and Delcroix, 2013].

Zonal and vertical currents are indeed intimately connected through the energy balance, because a signifi-
cant fraction of the wind power is converted into buoyancy power [Brown and Fedorov, 2010]. This transfer
explains how the energy supplied by enhanced trade winds to the westward South Equatorial Current (SEC)
in the central Pacific is converted into downward (upward) mass fluxes in the western (eastern) Pacific that
distort local ocean isopycnals and deepen (shoal) the thermocline [Brown et al., 2011]. The increased
(decreased) thermocline tilting in the equatorial Pacific associated with stronger (weaker) than normal trade
winds induces large cold (warm) anomalies in sea surface temperature in the eastern Pacific, which are
amplified by the ocean-atmosphere coupling and extended to the central Pacific by means of zonal
advection.

The zonal advective, the Ekman pumping and the thermocline feedbacks have been described as the three
major dynamical processes contributing to the amplification of temperature anomalies during the onset of
ENSO events [Jin and Neelin, 1993]. Thus, assuming a small initial warm perturbation in the equatorial sur-
face, the coupled system rapidly responds by weakening the trade winds and reducing the zonal tilting of
the equatorial thermocline [Jin et al., 2006], which in turn generates anomalous eastward geostrophic cur-
rents in the central and eastern Pacific [Santoso et al., 2013]. The upper ocean response is characterized by
the decrease of the depth of the thermocline and the generation of anomalous zonal currents in the central
and eastern Pacific, which together, amplify the initial anomalies and bring the oscillation to a mature phase
[Jin and An, 1999]. These mechanisms also play an important role in the dampening and reversal of ENSO
conditions when Sverdrup mass divergence starts to discharge the heat content in the equatorial Pacific
after the mature phase of EN conditions.

The main objective of the present work is to perform an exhaustive spatiotemporal analysis of the upper
ocean heat budget, emphasizing similarities and differences between the individual members of an ensem-
ble of state-of-the-art ocean assimilation products. We specifically focus on the ocean heat advection mech-
anisms that characterize the stages of the ENSO oscillation leading to EN events. With a similar approach,
we have recently shown how the ensemble mean of these ocean assimilation products can provide impor-
tant insights into mechanisms that contribute to the heat buildup in the western Pacific 18–24 months
before EN events [Ballester et al., 2015]. Here we extend these analyses, and we not only describe the simi-
larities and differences between ensemble members, but also generalize them to the whole ENSO cycle and
the entire Pacific ocean basin. The main results emerging from this study can hence be used to understand
to what extent results derived from these assimilation products can be used to describe the dynamics of
ENSO, such as those in Ballester et al. [2015]. Additionally, they can be taken as a reference for validation
and assessment of numerical simulations. While still largely disagreeing in some key dynamical processes,
because of the large differences in their underlying models, assimilation techniques and assimilated obser-
vations [Ray et al., 2015], these products provide the best and most complete spatiotemporal picture of the
ocean subsurface available to date. Indeed, all the data sets used in this study correctly capture all the EN
and La Ni~na (LN) events, and they only differ in some of the processes leading to their mature phase, as ana-
lyzed and discussed below.

After discussing our methodology (section 2), we use the ensemble of assimilation products to describe the
transitions that characterize the swing between phases of the oscillation, from a climatological neutral base
state (section 3) to the generation of a subsurface warm buildup in the western Pacific (section 4), the
recharged phase in basin-wide equatorial heat content (section 5) and the onset and mature phases of EN
(section 6). Discussion and summary are provided in sections 7 and 8, respectively.

2. Methods

The onset of EN events is characterized by an initial subsurface heat buildup in the western Pacific, the sub-
sequent eastward movement of the accumulated warm waters along the equatorial thermocline (i.e.,
recharge mode in the central Pacific) and the final rapid amplification of temperature anomalies in the east-
ern Pacific due to the coupled ocean-atmosphere Bjerknes feedback [Ballester et al., 2015]. The present arti-
cle describes the role of heat advection in each of these three stages of the oscillation before the mature
phase of EN events. To this aim, we analyze the different terms of the temperature tendency equation,
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which links the potential temperature (h) tendency to the zonal (Uadv), meridional (Vadv) and vertical (Wadv)
heat advection, thermal forcing (Q) and residual terms (R) through:

@h
@t

5Uadv1Vadv1Wadv1Q1R: (1)

We note that certain data assimilation techniques may result in this evolution equation being nonconserva-
tive. We do not explicitly compute the thermal forcing as our focus is on the equatorial subsurface below
the mixed layer, with climatological depths ranging from 20 m in the eastern Pacific to 70 m in the western
Pacific, where the effect of Q is small. The interannual anomalies of the heat advection components are
expressed as
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where the overbar and the prime denote the climatological and anomalous components, respectively, and
u, v and w the zonal, meridional and vertical current velocities. A 13-term running average (1/24, 1/12, . . .,
1/12, . . ., 1/12, 1/24) is used to calculate the interannual anomaly component from detrended monthly vari-
ables. Other low-frequency filters were tested, such as a recursive Butterworth procedure [Ballester et al.,
2011], but similar results were found. Given that the contribution of the nonlinear advection terms (i.e., the
last two terms in equations (2–4)) is generally small compared to the other components, they will not be
explicitly described in this work, although they are implicitly included in the U0adv, V0adv and W0adv terms
throughout this article.

Ocean potential temperature and zonal and meridional current velocities are obtained from five assimila-
tion products: NEMOVAR-COMBINE (model: NEMO v3.0) [Balmaseda et al., 2010], GECCO (MITgcm) [K€ohl and
Stammer, 2008], SODA2.2.6 (POP2.x) [Carton and Giese, 2008], ORAS4 (NEMO v3.0) [Balmaseda et al., 2013],
and ORAS3 (HOPE) [Balmaseda et al., 2008]. Vertical velocity is diagnosed by integrating horizontal diver-
gence down from the surface, with surface values assumed to be equal to the time tendency of sea surface
height.

EN events are chosen according to the classification of the Climate Prediction Center: December 1963,
1965, 1968, 1972, 1976, 1982, 1986, 1990, 1997, 2002, 2006 [CPC, 2015]. In those cases when EN conditions
are observed in the tropical Pacific for two consecutive boreal winters (i.e., 1968/1969, 1976/1977, 1986/
1987, 1990/1991), only the first year is considered for the calculation of the composite anomalies, given that
the main objective of the article is the description of the onset of these events. The 1994 event was
excluded from the analyses because it was the continuation of a previous warm event starting in 1990, with
warm sea surface temperature anomalies persisting in the central and eastern tropical Pacific for almost 6
years [Trenberth and Hoar, 1996]. A similar criterion is used for the selection of LN years in Figure 2: Decem-
ber 1964, 1966, 1970, 1973, 1975, 1984, 1988, 1995, 1998, 2007 [Ballester et al., 2015].

3. Climatological and ENSO Year Features

The main climatological features that characterize the circulation and the thermodynamic structure of the
equatorial and off-equatorial Pacific Ocean in the assimilation products is consistent with previous observa-
tional studies and is shown in Figure 1. The westward SEC is simulated in the tropical south Pacific, extend-
ing from 20S to about 3–4N across the equator, where it is largely driven by the trade winds (Figures 1a and
1b). The circulation in the equatorial Pacific is also characterized by the eastward Equatorial Under Current
(EUC), a subsurface current 200–400 km wide transporting 30–40 Sv along the tilted equatorial thermocline
[Izumo, 2005, Figure 1b]. The zonal velocity of the EUC is strongest in the central Pacific at about 140W, and
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is primarily driven by the east-west pressure gradient in the equatorial plane, in turn determined by the
strength of the easterly zonal wind stress. In the northern off-equatorial Pacific, the assimilation products
also consistently reproduce the North Equatorial Counter Current (NECC), whose eastward transport is
determined by Sverdrup dynamics and whose spatial structure is constrained by near-equatorial zonal wind
stress [Yu et al., 2000, Figure 1c].

The role of the trade winds is also key for explaining the spatial distribution of temperature and vertical cur-
rents along the equatorial Pacific. The dynamical forcing associated with the easterly wind stress piles up
warm waters to the western Pacific and deepens the local thermocline there (Figures 1b and 1d). In this
area, horizontal current convergence in the ocean surface induces weak downwelling motion above the
thermocline level, at the narrow westernmost edge of the longitudinal band with strong easterlies (i.e.,
150–160E) [Ballester et al., 2015]. In the eastern Pacific, the wind stress forcing shoals the thermocline, with
a zonal contrast of about 100–120 m in thermocline depth between the western and eastern parts of the
basin (cf. Figures 1b, 1d, and 1f). Ekman-driven equatorial upwelling in the central Pacific and coastal
upwelling in the eastern Pacific bring to the surface cold water from below the thermocline level, which
explains the equatorial minimum in surface temperatures relative to the off-equatorial bands (Figures 1e
and 1f). The rising motion in the central equatorial Pacific is part of the shallow meridional overturning cir-
culation, with surface poleward divergence, symmetric downwelling motion in the off-equatorial bands and
meridional convergence at the pycnocline level [Izumo, 2005, Figures 1a–1c, and 1e].

The difference between the average thermodynamic structure in the equatorial and off-equatorial Pacific
Ocean during the mature phase of EN and LN events is shown in Figure 2. During LN (EN) events, the
strengthening (weakening or even reversal) of the trade winds increases (decreases) the tilting of the ther-
mocline and enhances (reduces) most features of the oceanic circulation, including the SEC, the EUC, the
downwelling motion in the western Pacific and the shallow meridional overturning cells in the central
Pacific. Two prominent exceptions are found in the assimilation products. First, the eastward NECC is weak-
ened (intensified) during the growing and mature phases of LN (EN) as a result of the decreased (increased)
wind stress curl north of the equator [Hsin and Qiu, 2012, Figure 2c]; together with the enhancement (sup-
pression) of the westward SEC, this contributes to the westward (eastward) displacement of the warm pool
and the development of ENSO anomalies. Second, the equatorial upwelling in the far eastern Pacific starts

Figure 1. Climatological temperature and ocean currents. Multiproduct average for the common period 1961–2000 of potential temperature (8C, (a–f) shading and contours) and (a–c)
zonal, (d–f) meridional, and (a–f) vertical ocean velocities (m/s, arrows) averaged in latitude over the south off-equatorial (8–4S), (b) equatorial (2S–2N), and (c) north off-equatorial
(4–8N) regions, and averaged in longitude in the (d) western (150–160E), (e) central (160–150W) and (f) eastern (100–90W) Pacific (see the vertical green lines). The temperature contour
interval is 18C, and the thick contour corresponds to the 208C isotherm.
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to be suppressed (intensified) just a couple of months before the peak of LN (EN) events (Figure 2f), being a pri-
mary out-of-phase reversal mechanism for the oscillatory nature of ENSO [Battisti, 1988; Jin, 1997a,1997b].

4. Growth of the Warm Buildup in the Western and Central Pacific

Figures 3–5 depict the multiproduct average of the composite of EN events for the range of lags corresponding
to the generation of the subsurface heat buildup in the western Pacific, between 36 and 25 months before El
Ni~no events. The temperature tendency at these lags determines the anomalies that are observed later, during
the peak of the subsurface heat buildup in the western Pacific at lag 221 months. The stippling highlights the
inter-product similarities by showing the areas where anomalies have the same sign and magnitude larger
than 60.258C/yr for all or all but one the members of the ensemble, an approach that we take throughout the
manuscript. The inter-product differences corresponding to the vertical, meridional and zonal advection terms
are additionally presented in Figures 6 and 7, respectively. Here we show the longitude-depth values along a
narrow band in the equatorial Pacific (2S–2N, Figures (3 and 6, and 7), and two latitude-depth meridional trans-
ects representative of the processes that lead to the initial stages of the heat buildup in the warm pool (150–
160E, Figure 4) and to the east of the dateline (160–150W, Figure 5).

Ballester et al. [2015] highlighted fundamental differences between the dynamical origin of the subsurface
warming in these two regions. On the one hand, in the western Pacific (130–170E), anomalous downwelling
motion from an upper layer (0–75 m) of horizontal convergence to a subsurface layer (75–190 m) of hori-
zontal divergence deepens the thermocline and advects heat downward (cf. Figure 3a). Horizontal conver-
gence near the surface is found to be an intricate combination of surface (0–60 m) zonal convergence and
subsurface (40–75 m) meridional convergence, while the horizontal divergence just above the thermocline
level is explained by the zonal component and the intensification of the EUC in the central Pacific. On the
other hand, a completely different regime prevails in the central Pacific, where surface (0–60 m) zonal and
meridional divergence and subsurface (60–190 m) zonal and meridional convergence generate strong
upwelling motion (cf. Figure 3a).

Analysis of the heat budget reveals that most of the spatial structure of surface and subsurface heat anomalies
in the equatorial Pacific is explained by zonal and vertical advective processes (cf. shading and contours in Fig-
ure 3b). To the west of 170E, vertical advection determines a large fraction of the subsurface warming (Figure
3h). In particular, this contribution is primarily explained by the vertical advection of the climatological

Figure 2. Same as Figure 1, but for the difference of El Ni~no minus La Ni~na years. The temperature contour interval is 0.258C, and the thick contour corresponds to the 08C isotherm.
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temperature by anomalous currents (2w0@�h=@z, not shown), which results from the combination of (rather
weak) downwelling anomalies (Figure 3a) and the strong climatological vertical gradient of temperature (Figure
1b). Meridional cross-sections in the warm pool confirm the dominant role of vertical advection within the trop-
ical band in this region (Figure 4). A tendency toward subsurface warming is present from 12S to 8N, which
approximately corresponds to the latitudinal range with anomalous downwelling motion (Figure 4a). Neverthe-
less, the warming is clearly larger right at the equator near the thermocline, where both the vertical gradient of
temperature and the anomaly in downward vertical velocity are largest (Figures 1d and 4a). Figure 4 also con-
firms the negligible contribution of zonal and meridional heat advection in this region at these very initial
stages of the composite of EN events, regardless of the specific latitudes within the tropical band.

To the east of 170E, the subsurface warming is a complex combination of different mechanisms. The largest
contribution to subsurface warming is associated with temperature and circulation changes along the equa-
torial thermocline from the zonal and vertical terms (Figure 3b). For the zonal component, the advection of

Figure 3. Multiproduct average of temperature tendency and heat advection during the growing phase of the heat buildup leading to El Ni~no events. Composite anomalies are aver-
aged over the equatorial band (2S–2N), and for the range of lags between 36 and 25 months before the major El Ni~no events. (a) The anomalous zonal and vertical velocity (m/s, arrows),
the anomalous potential temperature (8C, shading), the climatological 208C isotherm (black contour) and the anomalous 208C isotherm (green contour). (b–h) Time tendency of potential
temperature (8C/yr, contours) and the heat advection terms specified in the plot titles (8C/yr, shading). The contour interval is 0.258C/yr, with solid (dashed) lines depicting positive (nega-
tive) anomalies. The dark (light) stippling denotes areas where heat advection anomalies have the same sign and magnitude larger than 60.258C/yr for all (all but one) the members of
the ensemble.
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anomalous heat by climatological cur-
rents (i.e., 2�u@h0=@x) and the advec-
tion of climatological temperature by
anomalous currents (2u0@�h=@x) have
similar contributions, with anomalies
reaching up to 118C/yr in the central
Pacific near the thermocline level (not
shown). Note that nearly opposite
anomalies are found for the vertical
component (i.e., 2�w@h0=@z and
2w0@�h=@z, not shown).

The tendency in subsurface warming in
the central Pacific is to a large extent
explained by 2ð�u@=@x1�w@=@zÞh0
(cf. shading and contours in Figure
3c). This contribution is associated
with the negative eastward and
upward gradient of subsurface tem-
perature along the equatorial thermo-
cline due to increasing LN-like
conditions (Figure 3a), which is
advected to the central Pacific by the
climatological EUC (Figure 1b). These
factors generate positive zonal advec-
tion at the level of the thermocline
and negative (positive) vertical advec-
tion above (below) the thermocline
(Figures 3f and 3h), which together
explain the warming tendency
observed below 100–120 m (Figure
3c). The overall contribution of 2ðu0@
=@x1w0@=@zÞ�h is instead associated
with the tilted stratification of the
ocean (Figure 1b), which is advected
by the intensification of the EUC (Fig-
ure 3a). The diapycnal component of
these circulation anomalies is not
negligible in this case, with eastward
anomalies defining areas of warm
advection at 160W and upward
anomalies generating cold advection
at 180 and 140W (Figure 3d).

Unlike what is seen in the warm pool,
the tendency in subsurface tempera-
tures in the central Pacific results from

a combination of the three heat advection components (cf. shading and contours in Figure 5b). Notably, while
smaller than the zonal and vertical components, the meridional advection plays an important role in deter-
mining the tendency of subsurface temperature in the off-equatorial bands (cf. Figures 5c and 5e). In fact, the
zonal and vertical advection components tend to cancel each other in the latitude intervals 6–2S and 2–5N at
100 m (Figures 5c, 5d, and 5f), just above the thermocline (Figure 5a). Therefore, the warming tendency in this
area is entirely explained by the meridional advection of anomalous heat by climatological currents
(2v@h0=@y, not shown), which advects relatively less cold off-equatorial temperature anomalies (Figure 5a)
through the equatorward lower branch of the climatological shallow meridional overturning cells (Figure 1e).

Figure 4. Same as Figures 3a and 3e–3h, but for the meridional transect of temper-
ature, meridional and vertical currents and heat advection in the 150–160E sector.

Journal of Geophysical Research: Oceans 10.1002/2016JC011718

BALLESTER ET AL. EL NI~NO EVENTS IN ASSIMILATION PRODUCTS 7

96 Publications



Although the above-described advec-
tion processes are generally repro-
duced by the five assimilation
products, there are still substantial dif-
ferences in their magnitude and spa-
tial extent at this early stage of the
oscillation. For example, all products
reproduce the subsurface warming
due to vertical advection to the west
of 170E, but its intensity and extent
vary greatly among the data sets: the
downward advection is weak in
ORAS3, confined to a narrow band in
SODA2.2.6, close in magnitude to the
composite average in NEMOVAR-
COMBINE and ORAS4, and strong and
extending eastward to 160W in
GECCO (Figure 6). These differences
are essentially a reflection of differen-
ces in the ocean circulation, because
of differing pattern and magnitude of
the vertical velocity in each data set
(not shown). In turn, the warming due
to zonal advection in the central
Pacific is directly related to the sub-
surface warming tendency to the
west of 170E, which is zonally
advected along the thermocline by
the EUC (not shown). Differences are
even larger for the meridional compo-
nent, with no contribution to the sub-
surface warming in GECCO, around
average values in SODA2.2.6 and
ORAS3, and a strong positive contri-
bution in NEMOVAR-COMBINE and
ORAS4 (Figure 7). The large differen-
ces in the magnitude of the meridio-
nal term are seen to be key for
explaining the different propagation
speed of the subsurface warming
tendency along the thermocline (cf.
contours in Figure 7, find more details
in the Discussion section below).

5. Transition to the
Recharged Phase

The composites corresponding to
the development of the basin-wide

recharge mode in equatorial heat content are shown in Figures 8 and 9. These figures show averages for
lags between 27 and 16 months before EN events, whose tendencies determine the subsequent peak of
the recharge phase on average at lag-09 months. This range of lags is characterized by the peak in LN-like
conditions (Figure 8a) and a tendency toward warming of the equatorial Pacific around the level of the ther-
mocline (contours in Figure 8). In this section we show, as we did in the previous section, the longitude-

Figure 5. Same as Figures 3a, b, and 3e–3h, but for the meridional transect of tem-
perature, meridional and vertical currents and heat advection in the 160–150W
sector.
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depth composite along the equatorial
Pacific (2S–2N, Figure 8), as well as a
latitude-depth meridional transect in
the central Pacific (160–150W, Figure
9). This transect corresponds to the
central part of the area of maximum
warming rate (i.e., largest temperature
tendency anomalies) and meridional
mass exchange between the equato-
rial plane and the off-equatorial
bands. Despite some minor residual,
the sum of the zonal, meridional and
vertical advection terms explains the
general basin-wide subsurface warm-
ing near the thermocline (cf. shading
and contours in Figure 8b).

Similarly to what seen at earlier lags,
in this stage of the ENSO cycle the
most important contribution to the
subsurface warming in the equatorial
central Pacific results once again from
both zonal and vertical heat advection
terms (Figure 8c). While the intensifi-
cation of the EUC is confined to 160–
120W and is weaker than in the previ-
ous phase, heat advection anomalies
are largely explained by the strong
eastward and upward gradient of
anomalous temperature that charac-
terizes the peak of the LN-like
conditions (Figure 8a). Further decom-
position of these terms reveals that
2ð�u@=@x1�w@=@zÞh0 (Figure 8d) and
2ðu0@=@x1w0@=@zÞ�h (Figure 8e) have
opposite signs, showing how temper-
ature and circulation anomalies have
opposing tendencies in the subsur-
face temperatures in the central
Pacific.

The mean advection of temperature
anomalies [2ð�u@=@x1�w@=@zÞh0] is
largely positive in the whole central
Pacific, from 170E to 120W and
between 40 and 180 m (Figure 8d).

This warm anomaly can be further decomposed in its zonal and vertical contributions, which have large
positive values at the level of the thermocline and at depths just above the thermocline, respectively, as
a result of the corresponding advection of the subsurface anomalous heat buildup in the western Pacific
(Figure 8a). The diapycnal transport is characterized by the intensification of the Ekman-induced upwell-
ing motion in the central Pacific (Figure 8a), which drives cold waters to the surface and explains the
negative anomalies in 2w0@�h=@z. The zonal component 2u0@�h=@x is positive at the level of the thermo-
cline, due to the weak intensification of the zonal component of the EUC (Figures 8a and 8f). Neverthe-
less, anomalies in the vertical component dominate, controlling the overall sign of 2ðu0@=@x1w0@=@zÞ�h
(Figure 8e).

Figure 6. Same as Figure 3h, but for the individual members of the ensemble.
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While playing a relatively minor role
in the central Pacific (cf. Figures 8c
and 8g), meridional heat advection
along the equatorial thermocline
explains a large fraction of the subsur-
face warming in the eastern Pacific.
Advection of mean temperatures by
anomalous currents, 2v0@�h=@y, and
of anomalous temperatures by mean
currents, 2�v@h0=@y, both contribute
to the overall meridional advection
pattern. As shown in Figure 9a, in the
central Pacific anomalous currents are
characterized by a strengthening of
the shallow meridional overturning
cells, with anomalous surface Ekman
divergence, off-equatorial downwel-
ling and subsurface convergence.
Thus, the subsurface convergence in
meridional currents advects climato-
logical off-equatorial warmer waters
to the equator (Figure 1e). Similarly,
temperature anomalies show weak
warming in the off-equatorial regions
near the level of the thermocline (Fig-
ure 9a), which are advected to the
equator by the climatological shallow
meridional overturning circulation
(Figure 1e). When considering the
near-equatorial band as a whole (e.g.,
10S–10N), it is clear from the latitudi-
nal transect that the combined contri-
bution of the zonal (Figure 9c) and
vertical (Figure 9e) components domi-
nate over the meridional term in
determining the subsurface warming
in the recharge mode (cf. Figures 9b
and 9d). Results also show that half of
the contribution of the meridional
advection is explained by the intensi-
fication of the ocean circulation, and
the other half by the deepening of
the off-equatorial thermocline (Fig-
ures 8i, 8j, and 9a).

The inter-product comparison reveals that very large differences exist between ensemble members at
this intermediate phase of the oscillation. For example, the sum of the zonal and vertical advection
terms contributes differently to the temperature tendency in each data set: This contribution is posi-
tive in 170E–150W at 100–200 m depth in NEMOVAR-COMBINE and ORAS4, weakly positive in 160E–
140W at around 100 m in SODA2.2.6, and positive in the whole equatorial Pacific at 20–140 m in
ORAS3 and at 80–160 m in GECCO (Figure 10). These differences primarily arise from the vertical
component, given that the diapycnal upwelling of cold subsurface waters across the thermocline is
subject to large uncertainties (not shown). The meridional term only differs in magnitude and not in
sign or spatial extent (Figure 11). Interestingly, the larger the contribution of the meridional advec-
tion to the subsurface warming, the larger the warming tendency near the thermocline level

Figure 7. Same as Figure 3g, but for the individual members of the ensemble.
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(cf. shading and contours in Figure 11), regardless of the contribution of the zonal and vertical com-
ponents (Figure 10); this finding highlights the dynamical importance of the meridional term during
this phase.

Figure 8. Multiproduct average of temperature tendency and heat advection during the growing phase of the recharge mode leading to El Ni~no events. Composite anomalies are averaged
over the equatorial band (2S–2N), and for the range of lags between 27 and 16 months before the major El Ni~no events. (a) The anomalous zonal and vertical velocity (m/s, arrows), the anom-
alous potential temperature (8C, shading), the climatological 208C isotherm (black contour) and the anomalous 208C isotherm (green contour). (b–j) Time tendency of potential temperature
(8C/yr, contours) and the heat advection terms specified in the plot titles (8C/yr, shading). The contour interval is 0.258C/yr, with solid (dashed) lines depicting positive (negative) anomalies.
The dark (light) stippling denotes areas where heat advection anomalies have the same sign and magnitude larger than 60.258C/yr for all (all but one) the members of the ensemble.
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6. Onset of EN Events

Figures 12 and 13 depict composites
corresponding to the onset and grow-
ing phase of EN events, with averages
for lags between 15 and 4 months
before EN events, whose tendencies
determine the mature phase of EN.
The oceanic conditions during this
phase are characterized by warm sub-
surface anomalies along the equato-
rial thermocline and the weakening
(enhancement) of the EUC in the
western (eastern) Pacific (Figure 12a).
The SEC, the downwelling motion in
the warm pool and the coastal
upwelling in the far eastern Pacific are
also found to be weaker than in the
climatology (Figure 12a). These
anomalies are known to be associated
with the tendency toward warm EN
conditions in the central and eastern
Pacific, including the beginning stage
of weakened trade winds, the flatten-
ing of the equatorial thermocline and
the development of a subsurface cold
buildup in the western Pacific (con-
tours in Figure 12). The role of advec-
tive processes is here briefly revisited
through the longitude-depth compos-
ite along the equatorial Pacific (2S–
2N, Figure 12) and the latitude-depth
meridional transect in the central
Pacific (160–150W, Figure 13).

Similarly to the previous phases, the
combination of the three advection
terms is in good agreement with the
magnitude and spatial structure of
the tendency in subsurface tempera-
ture (cf. shading and contours in
Figure 12e). Note that this correspon-
dence is again primarily explained by
the combined contribution of the
zonal and vertical advection (Figure
12b). On the one hand, the advection

of climatological temperature by anomalous zonal currents (i.e., 2u0@�h=@x) is well known to be largely
responsible for the warming tendency in the central and eastern upper ocean (zonal advection feedback
[An and Jin, 2001], see Figure 12f as a reference). On the other hand, the advection of climatological temper-
ature by anomalous vertical currents (2w0@�h=@z) has been described as a fundamental process for the
warming in the far eastern Pacific (Ekman pumping feedback [Jin et al., 2006, Figure 12h]).

The meridional transect in the central Pacific shows that the largest heat anomalies are confined to the lati-
tudinal range 5S–5N, between 100 m and the thermocline level (Figure 13a). The vertical velocity anomalies
are characterized by strong upwelling north of the equator (6N–9N) and strong downwelling south of it
(4S–1S) (Figure 13a). Thus, anomalies in the northern hemisphere tend to restore the thermocline to its

Figure 9. Same as Figure 8a, 8c, and 8f–8h, but for the meridional transect of temper-
ature, meridional and vertical currents and heat advection in the 160–150W sector.
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climatological depth, while those in
the southern hemisphere contribute
to the deepening of the thermocline
near the equator by intensifying the
northernmost edge of the downwel-
ling branch of the southern shallow
meridional overturning cell (Figure
1e). Interestingly, inter-hemispheric
differences in vertical velocity anoma-
lies increase the meridional tilting of
the thermocline and generate south-
ward cross-equatorial mass transport
in the upper 50 m of the ocean (Fig-
ure 13a).

The meridional heat advection is neg-
ative in the central and eastern Pacific
near the level of the thermocline (Fig-
ure 12g). As a result, this component
starts contributing to the weakening
of the heat content in the equatorial
Pacific subsurface already in the
recharge phase (Figure 12a), before
the onset of EN and the activation of
the Bjerknes feedback. The decompo-
sition of this term shows that 2�v@h0=
@y is larger and has opposite sign rel-
ative to 2v0@�h=@y (cf. Figures 12c and
12d). Indeed, 2�v@h0=@y (2v0@�h=@y)
shows large negative (weak positive)
anomalies in the off-equatorial
regions (Figures 13c and 13d), near
the areas of climatological (anoma-
lous) subsurface equatorward conver-
gence and strong meridional contrast
in anomalous (climatological) temper-
ature (Figures 1e and 13a).

7. Discussion

Figure 14 provides an integrated view
of the ENSO oscillation by showing
the contribution of the processes
described throughout the manuscript
to the equatorial temperature tend-

ency at the thermocline level and as a function of the time lag. This comparison highlights the generally
synchronous evolution of the temperature tendency and the advection along the tilted equatorial thermo-
cline (cf. shading and contours in Figure 14c). In the central Pacific (170E–110W), this tendency is to a large
extent explained by the advection of the initial subsurface warm buildup in the western Pacific by the cli-
matological EUC (i.e., 2ð�u@=@x1�w@=@zÞh0, Figure 14d). Instead, the anomalous downwelling motion of sur-
face climatological warm waters (2w0@�h=@z) is the key process explaining the evolution of the subsurface
warming in the western (130–170E) and far eastern (110–90W) Pacific (Figure 14e). Note that the transition
between advective processes near 170E is explained by a clear regime shift in the vertical structure of hori-
zontal divergence [Ballester et al., 2015].

Figure 10. Same as Figure 8c, but for the individual members of the ensemble.
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The latitudinal heat advection struc-
ture is illustrated in the meridional
transect in the central Pacific shown
in Figure 15. The contribution of the
meridional term is negligible right at
the equator, where the Ekman-
induced upwelling motion dominates,
but it rapidly increases poleward,
attaining anomalies that are already
large at 2S and 2N (Figure 15g). Here
we considered a narrow equatorial
band (i.e., 2S–2N) in order to isolate
the ascending branch of the shallow
meridional overturning cells from the
descending branches at around 8–3S
and 3–8N (Figure 1e). Note that this
circulation is associated with a cross-
shaped anomalous pattern in both
the zonal and vertical advection terms
(Figures 15f and 15h), which is not
found in their combined contribution
(Figure 15c). The meridional advection
remains qualitatively unmodified
when the latitudinal range considered
for the equatorial averages in the
longitude-depth plane includes the
descending branches of the cells (e.g.,
6S–6N, not shown).

The peak in LN (EN) conditions is
approximately in phase with the
equatorward meridional warm (cold)
advection in the central and eastern
Pacific (Figure 14g). The phase of the
oscillation in which the contribution
of meridional advection reaches its
peak is however the result of the com-
bination of two different processes
with different temporal evolution. On
the one hand, the discharge
(recharge) phase in basin-wide equa-
torial heat content leads to LN (EN)
events by approximately 9 months
[Meinen and McPhaden, 2000]. This

phase is characterized by colder (warmer) temperature anomalies at the equator than in the off-equatorial
regions (e.g., Figure 13a). Thus, the meridional circulation of the climatological shallow meridional overturn-
ing cells warms (cools) the equatorial and off-equatorial thermocline before the mature phase of LN (EN)
events (2�v@h0=@y; Figures 14i and15i). On the other hand, the strengthening (weakening) of the equatorial
trade winds during LN (EN) conditions, as well as the associated changes in off-equatorial wind stress curl,
induces anomalous subsurface equatorward (poleward) Sverdrup transport of mass [Jin, 1997a,1997b]. The
disequilibrium balance between these processes generates a delayed warming (cooling) at the level of the
thermocline (2v0@�h=@y; Figures 14j and 15j).

In this regard, the synchronous evolution of LN (EN) conditions and the equatorward warm (cold)
advection in the central and eastern Pacific, as illustrated in Figure 14g, is shown to be compatible

Figure 11. Same as Figure 8g, but for the individual members of the ensemble.
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with the recharge theory formulated by Jin, which is mathematically described by the tilting mode
and the recharge-discharge phase. The tilting mode characterizes the quick oceanic response to
enhanced (weakened) easterly wind stress in the central tropical Pacific during LN (EN) conditions,
which is proportional to the zonal tilting of the equatorial thermocline. The recharge (discharge)
phase provides the required memory between opposite phases of the tilting mode. This transition
period is characterized by the time tendency toward anomalous equatorward (poleward) Sverdrup
convergence (divergence) of mass due to enhanced (weakened) easterly wind stress in the western
and central tropical Pacific, and its associated change in the off-equatorial curl, which ultimately
tends to deepen the thermocline.

The recharge theory is also found to be compatible with the longitudinal transition in the mechanisms
explaining the initial subsurface heat buildup on either side of 170E, as well as the subsequent eastward
propagation along the equatorial thermocline. Near and east of the dateline, anomalous easterly (westerly)

Figure 12. Multiproduct average of temperature tendency and heat advection during the growing phase of El Ni~no events. Composite anomalies are averaged over the equatorial band
(2S–2N), and for the range of lags between 15 and 4 months before the major El Ni~no events. (a) The anomalous zonal and vertical velocity (m/s, arrows), the anomalous potential tem-
perature (8C, shading), the climatological 208C isotherm (black contour) and the anomalous 208C isotherm (green contour). (b–h) Time tendency of potential temperature (8C/yr, con-
tours) and the heat advection terms specified in the plot titles (8C/yr, shading). The contour interval is 0.258C/yr, with solid (dashed) lines depicting positive (negative) anomalies. The
dark (light) stippling denotes areas where heat advection anomalies have the same sign and magnitude larger than 60.258C/yr for all (all but one) the members of the ensemble.
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trade winds during LN (EN) events are associated with the tendency toward equatorward (poleward)
Sverdrup mass convergence (divergence) and the deepening of the thermocline (e.g., Figure 8j). Near the
edge of the warm pool, easterly (westerly) wind stress anomalies and the associated anticyclonic (cyclonic)
curl anomalies are weaker, and therefore this delayed effect is smaller (Figure 8j). The oceanic response in
this region appears to be more directly controlled by the zonal convergence (divergence) of the zonal wind
stress along the equator, which favors anomalous surface ocean horizontal convergence (divergence) and
downward (upward) motion during LN (EN) events [Ballester et al., 2015; Figures 3h and 4e]. This process
explains the much faster, albeit still somewhat delayed, response of subsurface temperatures in the warm
pool (e.g., the zero contour in Figure 14e crosses longitude 160E at lag 103). The present article clarifies,
within the context of the recharge oscillator theory, the relative contribution, spatial extent and delayed
effect of each of the mechanisms involved in the subsurface buildup in the western and central Pacific, and
its eastward propagation.

Finally, it is worth noting how relatively large agreement exists between assimilation products during the
three phases of the oscillation. Differences between data sets are generally small, and anomalies tend to be
similarly signed (see Figures 6–10, and 11). The only exception is GECCO, which does not produce the

Figure 13. Same as Figure 12, but for the meridional transect of temperature, meridional, and vertical currents and heat advection in the 160–150W sector.
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patterns of meridional surface Ekman divergence (subsurface Sverdrup convergence) in the western and
central equatorial Pacific observed in the other assimilation data sets, therefore featuring the weakest sub-
surface heat buildup. The relatively coarser resolution of this product (18 3 18) might partially explain some
of these differences. More importantly, this assimilation data set is obtained by fitting the model simultane-
ously to all available data over the whole 50 year period, iteratively for 23 iterations by first running the for-
ward model to calculate the model data misfit formulated as a cost function, followed by an adjoint model
run to calculate the gradients of this cost function [K€ohl and Stammer, 2008]. Given the relatively large com-
putational demands of this approach, the optimization did not fully converge after this number of itera-
tions. Although this solution was found to be good enough to investigate the underlying processes and
causes of other phenomena such as the Meridional Overturning Circulation [K€ohl and Stammer, 2008], it

Figure 14. Multiproduct average of temperature tendency and heat advection before and after the peak of El Ni~no events. Composite
anomalies are averaged over the equatorial band (2S–2N) at the depth of the tilted thermocline. (a) The anomalous potential temperature
(8C, shading) and its time tendency (8C/yr, contours). The contour interval is 0.508C/yr, with solid (dashed) lines depicting positive (nega-
tive) anomalies. (b–j) Zero contour of the time tendency of potential temperature, as well as the heat advection terms specified in the plot
titles (8C/yr, shading). The solid (dashed) horizontal green line shows the phase corresponding to the peak of EN events (LN-like condi-
tions). The stippling denotes anomalies in which heat advection has the same sign and magnitude larger than 60.258C/yr for all the
members of the ensemble.
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seems that the model was not brought into a good level of agreement with the data regarding those proc-
esses that are fundamental to the generation and growth of EN events.

Mechanisms described in the present work can be used as a reference for the validation of numerical simu-
lations from intermediate and complex coupled climate models. For example, a key feature highlighted
here is the asymmetry between the northern and the southern tropical hemispheres during the recharge
mode. This phase is characterized by an increase of the meridional tilting of the thermocline and the south-
ward cross-equatorial mass transport in the upper ocean as a result of the anomalous upwelling (downwel-
ling) motion in 6–8N (3–1S). Yu and Mechoso [2001] showed that the anomalies in vertical velocity are due
to the latitudinal distribution of zonal wind stress anomalies, which induces areas of convergence and diver-
gence of meridional Ekman transport. Nonetheless, the climate model used by Yu and Mechoso [2001] simu-
lated vertical anomalies of equal sign in both hemispheres and no cross-equatorial anomalies between the
off-equatorial regions, in disagreement with our results. This highlights how the present work provides a
description of dynamical processes that the climate modeling community might use as metrics to test the
performance of the ENSO oscillation in state-of-the-art climate models.

Figure 15. Same as Figure 14, but along the latitudinal axis and averaged over the longitude range 160–150W.
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8. Summary

The present work describes different processes that control subsurface temperatures and thermocline
depth during the generation of El Ni~no events through a careful analysis of the subsurface heat budget. We
emphasize the role that different processes play in the evolution of subsurface warm anomalies during the
different stages of the oscillation. Main results include:

1. To the west of 170E, the vertical advection of climatological temperature by anomalous currents, induced
by surface horizontal convergence, downwelling motion and subsurface divergence, was shown to
explain alone the initial subsurface warming in the equatorial and off-equatorial Pacific during the warm
buildup stage, between monthly lags -33 to 221 before the peak of EN events.

2. The role of horizontal advection was found to be confined to the east of 170E, explaining the tendency
toward the return to climatological conditions of subsurface temperatures in the central Pacific, both
through zonal and vertical advection along the equatorial thermocline and through meridional advec-
tion right above this level.

3. These two mechanisms were also shown to explain a large fraction of the subsurface warming associated
with the recharge phase in basin-wide heat content. On the one hand, along the meridional axis, the equator-
ward advection of heat was shown to be explained to the same extent by anomalies in the meridional gradi-
ent of subsurface temperature and anomalies in the meridional ocean circulation. On the other hand, along
the equatorial plane (i.e., combination of the zonal and vertical components), the anomalous heat accumu-
lated in the western Pacific was seen to be advected to the central Pacific by the climatological currents. This
contribution was found to be partially counterbalanced by the advection of climatological temperature by
the anomalous currents, which is dominated by anomalous diapycnal upwelling of cold subsurface waters.

4. The large differences in the magnitude of the meridional term were seen to be key for explaining the dif-
ferent propagation speed of the subsurface warming tendency along the thermocline.

All terms in this analysis are inferred from an ensemble of state-of-the-art ocean assimilation products,
focusing on those processes that are robustly produced by all the members of the ensemble, as well as
those that are differently simulated by a subset of data sets. The combined use of multiple ocean analysis
products provides a reference for a three-dimensional description of mechanisms leading to the generation
of EN events. Additionally, it allows for a more detailed validation and assessment of mechanisms previously
inferred from intermediate and complex coupled climate models, as well as for the determination of the
limits in the use of assimilation products for the validation itself.
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Resumen - Summary in Spanish

A pesar de los extensos esfuerzos en curso para mejorar la predicción a largo plazo de El Niño-
Oscilación Sur, la previsibilidad en los sistemas operativos de vanguardia sigue siendo limitada
por factores tales como la barrera de primavera y la influencia de los vientos atmosféricos.
Investigaciones recientes sugieren que el evento El Niño (EN) 2014/15 se estancó como resultado
de una explosión de viento del este en toda la cuenca en junio, lo que provocó la descarga de
una gran parte del calor oceánico subsuperficial. Aqúı utilizamos registros observacionales y
experimentos numéricos para explorar la sensibilidad de EN a la magnitud de la acumulación
de calor que ocurre en el subsuelo del océano 21 meses antes. Nuestras simulaciones sugieren
que un gran aumento en el contenido de calor durante esta fase puede conducir a condiciones
cálidas uniformes en la cuenca en el Paćıfico ecuatorial en el invierno antes de la ocurrencia de
un evento EN muy fuerte. En nuestra configuración de modelo, el sistema compensa cualquier
disminución inicial en el contenido de calor y naturalmente evoluciona hacia una nueva recarga,
dando lugar a un retraso de hasta un año en la ocurrencia de un evento EN. Ambos escenarios
justifican la dependencia no lineal entre la intensidad de la acumulación de calor subsuperficial
y la magnitud y el momento de los episodios posteriores de EN.
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Sensitivity of El Niño intensity and 
timing to preceding subsurface 
heat magnitude
Joan Ballester1,2,†, Desislava Petrova1,†, Simona Bordoni2,  Ben Cash3, Markel García-Díez1 & 
Xavier Rodó1,4,†

Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern 
Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such 
as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 
El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, 
which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational 
records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup 
occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase 
in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial 
Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the 
system compensates any initial decrease in heat content and naturally evolves towards a new recharge, 
resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the 
non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and 
timing of subsequent EN episodes.

El Niño-Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical Pacific1–5, 
and a major source of climate predictability, large-scale teleconnections, and impacts worldwide6–9. After several 
decades of intensive research, the main mechanisms explaining the dynamics of the phenomenon and the onset 
of El Niño (EN) and La Niña (LN) events are nowadays thought to be relatively well understood3,10–12. Since 
the eighties, when the first successful prediction of EN was issued13, steady improvements in the forecast of the 
phenomenon have led to a plateau at moderate skill at short and medium lead times14. Forecasts issued in spring 
or before are still generally unable to foresee whether an EN or a LN event will occur at the end of the year, the 
so-called spring barrier15,16. Although recent advances suggest that it is indeed possible to overcome this predict-
ability limit, either with intermediate6, purely dynamical7 or purely statistical17 models, the value of a real-time 
operational scheme derived from these results remains to be fully accomplished.

Mounting evidence has favored the view of ENSO as a slightly damped periodic oscillation modulated by 
stochastic noise12,14,18–20, with its long-range potential predictability arising from the dynamics of the ocean sub-
surface3,21. The recharge oscillator10–11 is currently the leading paradigm for the link between the Tropical Heat 
Content (THC) in the ocean subsurface and ENSO variability. This theory is based on the delay between anom-
alies in the longitudinally-averaged depth of the thermocline, and therefore the THC of the basin, and eastern 
Pacific Sea Surface Temperatures (SST). This paradigm, which has been thoroughly validated in the literature22,23, 
describes a recharge (discharge) phase of Warm Water Volume (WWV) along the equator that leads EN (LN) 
events by about 2 to 3 seasons21,24. This stage is in turn preceded by the tilting mode2,25,26, which is characterized 
by an anomalous zonal gradient of the depth of the thermocline and is significantly associated with ENSO at 
long-lead times (e.g. the correlation between ENSO and WWV anomalies to the west of 155W is around 0.57 at 
lag 15 months, see ref. 3).

This description of the oscillation emphasizes the importance of the THC at different lead times for the growth 
and magnitude of subsequent EN events. Reference 27 found that the duration of a complete EN cycle is deter-
mined by the time required for the slow accumulation of warm water in the western Pacific. Reference 28 showed 
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that the onset of EN usually begins during the second half of the year before the event, being identified as a 
fundamental process independent of the flavor of the episodes. A buildup in heat content along the equator has 
indeed preceded all the major EN events since 1980, and the magnitude of EN usually scales in proportion to the 
magnitude of the heat content buildup 2 to 3 seasons in advance3,29. Reference 30 used ocean-atmosphere coupled 
simulations to show that the prescription of a warm heat content anomaly immediately before the spring barrier 
can lead to the generation of a moderate EN event. These same simulations also showed that prescribed westerly 
wind bursts alone do not lead to significant EN anomalies, but they can instead greatly amplify heat content 
anomalies and generate a strong EN event when they are superimposed to an initially recharged ocean state30. 
Nonetheless, results also suggest that the heat content buildup may be a necessary but not sufficient condition for 
EN to occur3. For example, ref. 31 have recently shown that the 2014/15 EN event was stalled as a result of an unu-
sually strong basin-wide easterly wind burst in June 2014, which discharged the basin, suppressed the Bjerknes 
feedback and impeded the growth of the strong episode that was expected for the end of the year. At that time, 
basin-wide uniform warm conditions were instead observed in the equatorial Pacific, which were followed by the 
record-breaking EN episode in boreal winter 2015/16.

To illustrate the importance of the THC at different lead times, Fig. 1a depicts the relationship between the 
December anomaly of the Niño3.4 (N34) Index and leading WWV anomalies32 in March of the same and/or the 
preceding year (here referred to as years 0 and − 1, respectively) for all the EN episodes since 1980 (see ref. 33 
for the classification of events). WWV is defined as the volume of water masses above the 20 °C isotherm within 
120E-80W and 5S-5N. This figure confirms the widely accepted and well understood 9-month lead association 
between high WWV anomalies and EN events (blue circles), but importantly, it also shows that the same rela-
tionship holds for WWV anomalies one year earlier (i.e. 21 months before EN, green squares). Both relationships 
are strong, with correlations of 0.75 and 0.63 respectively, which increase to 0.85 (r2 =  72%) when March WWV 
anomalies are averaged for both years (red diamonds). Note that this double relationship is in general also valid 
for all years since 1980 (Fig. 1b), with only one major exception: WWV was largely positive 21 months before the 
1998 LN event, given that it was preceded by the very strong 1997 EN episode and its associated 9-month leading 
recharge phase in spring 1997 (dashed lines in Fig. 1b). In this way, when the 1998 LN event is not taken into 
account, the correlation between the December N34 Index and 21-month leading WWV anomalies is equal to 
0.55 for all the years since 1980 (green squares in Fig. 1b).

Given the strong relationship observed between this very long-lead heat buildup and subsequent EN events 
here we use a state-of-the-art Earth System Model to explore the response to a decrease or increase in the magni-
tude of the heat content stored in the ocean subsurface (see Methods). We performed 11 sets of ensemble experi-
ments, with initial conditions corresponding to an early phase of the onset of an EN episode in March of year − 1 
(i.e. lead time of 21 months). Previous studies have explored this relationship at shorter lead times of up to one 
year, through statistical analyses of observational data (e.g. ref. 3) or through numerical experiments (e.g. ref. 30). 
As we wanted to specifically study the dynamics of very strong EN events, we prescribed anomalous conditions 
to mimic as close as possible an episode of magnitude similar to the recent 2015/16 event (i.e. N34 =  + 2.8 °C). In 
each of these sets of ensemble experiments, the intensity of the subsurface warm anomaly was decreased (negative 
sign representing a discharge in heat content) or increased (positive sign or recharge) by ± 20%, ± 40%, ± 60%,  

Figure 1. Observed relationship between the December anomaly of the Niño3.4 Index (in °C) and leading 
Warm Water Volume anomalies (1014 m) in March of the same year (blue circles), March of the preceding 
year (green squares), and the average of both years (red diamonds). Episodes in panel a correspond to all 
El Niño events since 1980 according to the NOAA’s Climate Prediction Center (vertical dashed lines, 33), with 
colored straight lines depicting the linear fitting, while panel b shows values for all years in the 1980–2015 
period. The 21-month (9-month) lag relationship corresponding to the neutral year of 2014 is additionally 
shown as a solid square (circle) in panel a. Warm Water Volume was computed as the volume of water masses 
above the 20 °C isotherm within 120E-80W and 5S-5N.
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± 80% and ± 100% (Supplementary Figure 1a,c,d,f) relative to the unmodified reference (REF) simulation ensem-
ble (Supplementary Figure 1b,e). As such, differences among experiments are explained by both the magnitude 
of the initial subsurface heat content and the strong coupling between the ocean and the atmosphere that charac-
terizes the dynamics of ENSO. We note that unlike in ref. 30 we only prescribe anomalies in the ocean subsurface, 
and therefore the atmosphere is only indirectly modified when the readjustment of the ocean affects the ocean 
surface and the interaction between the ocean and the atmosphere (see Supplementary Figures 2–4).

Figure 2 shows the longitude-time Hovmöller diagram of equatorial potential temperature and zonal current 
anomalies at the level of the thermocline for experiments representative of the different types of ocean responses 
to the prescribed anomalies, Fig. 3 shows the corresponding anomalies of equatorial SST and zonal wind stress, 
and Fig. 4 the anomalies of equatorial Sea Surface Height (SSH) and surface zonal currents. As additional infor-
mation, the Supplementary Material includes the vertical profiles and horizontal maps of these variables for the 
time steps in which the recharge (Supplementary Figures 5–7), EN (Supplementary Figures 8–10), discharge 
(Supplementary Figures 11–13) and LN (Supplementary Figures 14–16) phases of the oscillation are observed in 
the REF ensemble.

The REF ensemble is found to correctly reproduce the main features of a canonical ENSO oscillation 
(Figs 2–4d). It is initially characterized by easterly wind and cold SST anomalies in the central Pacific and the 
generation of the subsurface heat buildup in the western Pacific, which peaks in spring of year − 1 (i.e. beginning 
of the simulations). Reference 26 showed that meridional and eastward heat advection due to equatorward sub-
surface mass convergence and transport along the equatorial undercurrent contribute to this long-leading subsur-
face warming at 170E-150W, while surface horizontal convergence and downwelling motion have a leading role 
in subsurface warming in the warm pool. Westerly wind anomalies appear at the beginning of the following year, 
when the warm waters start to propagate to the eastern Pacific along the equatorial thermocline as downwelling 
Kelvin waves. Some few months later, in spring of year 0, the warm anomalies reach the eastern Pacific subsurface 
during the basin-wide recharge phase of the ENSO oscillation, which is immediately followed by the beginning of 
the warming of the ocean surface. Equatorial SST anomalies exceed the + 1 °C threshold in the central and eastern 
equatorial Pacific between the summers of this and the following year (i.e. year + 1). The eastward surface current 
anomalies rapidly become westward just after the peak, favoring the decaying phase of EN. The warm phase of 
ENSO is associated with the shoaling of the thermocline and the accumulation of subsurface cold waters in the 

Figure 2. Longitude-time Hovmöller diagram of equatorial temperature (shading, in °C) and zonal current 
(contour, in m/s) anomalies at the level of the thermocline. Panels correspond to the − 100% (a), − 80% (b), 
− 40% (c), REF (d), + 40% (e) and + 80% (f) experiments. The minimum contour is ± 0.1 m/s and the contour 
interval is 0.2 m/s, with grey solid (black dashed) lines depicting positive (negative) anomalies. The horizontal 
green lines indicate the December month in which El Niño peaks in the reference simulation.
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western Pacific, which propagate to the east as upwelling Kelvin waves once the EN event starts to decay and the 
zonal wind anomalies become easterly in the western Pacific. A LN event develops as soon as the subsurface cold 
anomalies reach the eastern Pacific, although the magnitude of its peak is found to be approximately one half of 
the magnitude of the preceding EN episode.

When the initial heat buildup is modified by ± 40%, the growth and propagation of the subsurface warm 
anomaly, as well as the subsequent onset of the EN event, remain very similar in timing and approximately pro-
portional in magnitude to that shown in the REF ensemble (Figs 2–4c,e). This result is found to be valid both 
for surface and subsurface temperatures, as well as for surface winds and ocean currents, showing that the same 
dynamical mechanisms operate during the phases of the oscillation that precede and follow the peak of EN events. 
In the particular case of the + 40% (− 40%) ensemble, the magnitude of the event is nearly proportionally larger 
(weaker), with the anomaly of the N34 index reaching + 3.5 °C (+ 2 °C) and representing an increase (decrease) of 
about 30% relative to the REF ensemble.

Further increasing the initial heat buildup up to 80% of the REF simulation induces some interesting differ-
ences (Figs 2–4f). The excess heat in the western Pacific is released and quickly starts to warm the eastern part 
of the equatorial Pacific subsurface. Nevertheless, the surface warming at the end of year − 1 is found to be weak 
and uniformly distributed along the equatorial Pacific. This configuration does not favor the activation of the 
Bjerknes feedback and therefore the Walker circulation remains in a neutral phase (i.e. westerlies in the west but 
easterlies in the east), resulting in weak EN conditions (N34 <  + 1 °C). As a result, the accumulated heat is not 
discharged towards higher latitudes, and therefore this initial EN-like event only represents a step in the slow but 
steady warming of the basin, characterized by an initial warm base state of the equatorial Pacific, and enhanced 
by strong westerly wind anomalies progressing to the east throughout year 0. The subsequent EN event is found 
to be very strong (N34 =  + 4 °C) and followed by a strong LN event one year later.

The picture is however completely different in the ensemble of simulations in which the initial heat buildup is 
reduced by 80% (Figs 2–4b). The equatorial easterly wind anomalies (or, more precisely, the off-equatorial wind 
stress curl) observed before and after the beginning of the simulations are associated with the positive change rate 
in subsurface meridional convergence10–11. This tendency towards equatorward mass convergence is associated 
with upwelling of subsurface cold waters that favors the persistence of cold SST and easterly wind anomalies in 
the central Pacific, which in turn deepen the thermocline and accumulate subsurface warm waters in the western 

Figure 3. Longitude-time Hovmöller diagram of sea surface temperature (shading, in °C) and zonal wind 
stress (contour, in N/m2) anomalies. Panels correspond to the − 100% (a), − 80% (b), − 40% (c), REF (d), + 40% 
(e) and + 80% (f) experiments. The minimum contour is ± 0.005 N/m2 and the contour interval is 0.01 N/m2, 
with grey solid (black dashed) lines depicting positive (negative) anomalies. The horizontal green lines indicate 
the December month in which El Niño peaks in the reference simulation.
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Pacific26. A weak LN event therefore develops at the end of year − 1, which re-activates the generation of the sub-
surface heat buildup in the western Pacific. From this point onward, the evolution of the accumulated heat mim-
ics that of the REF ensemble in terms of magnitude, timing, propagation and mechanisms, but with a one-year 
delay, leading to the growth of a strong EN episode that peaks in December of year + 1 (N34 =  + 2 °C, i.e. same 
magnitude as in the − 40% experiment, but one year later).

A similar evolution is found when the accumulated heat in the subsurface is completely suppressed in the 
− 100% experiment (Figs 2–4a). In this case, however, given that the initial THC is weaker and the heat buildup 
is completely removed, the renewed recharge of the tropical Pacific results in a delayed EN event of smaller mag-
nitude (N34 =  + 1 °C).

The relationship between initial THC and ENSO variability is summarized in Fig. 5. THC is defined here 
as the average heat content within 120E-80W, 5S-5N and the upper 300 m. Results show that the greater the 
initial THC, the greater its magnitude up to the spring of year 0, when the peak in THC is observed in the 
initially-recharged simulations (Fig. 5a). This dependency is strong during this initial period (correlation ≈ 1, 
pink line in Fig. 5b), but the recharge does not occur at the same pace (regression =  0.61 J/J in January of year 
0, red line in Fig. 5b), as this process is faster in the initially-discharged simulations. The relationship between 
the initial and the time-varying THC becomes negative in autumn of year 0 (red and pink lines equal to zero in 
Fig. 5b), when all the simulations exhibit similar THC values (Fig. 5a). This includes the few initially-discharged 
experiments in which the heat content is still increasing at the end of year 0 (i.e. − 100% and − 80%), as well as 
all the other experiments (i.e. from − 60% to + 100%), in which the heat content is already being discharged at 
this point in time (Fig. 5a). The relationship then becomes negative, but it is still strong (correlation =  − 0.92 and 
regression =  − 1.35 J/J in June of year + 1, Fig. 5b).

Results also show that the greater the initial THC, the greater the magnitude of the subsequent EN event (see 
Fig. 5c at the end of year 0). The relationship is again strong (correlation =  0.92 and regression =  1.56 °C/1016 J 
in December of year 0, blue and cyan lines in Fig. 5b), but not completely linear. On the one hand, in the 
initially-recharged simulations, negative feedbacks in the central and eastern Pacific limit the growth and 
magnitude of EN during its mature phase10,11,34–36, which explains why the N34 Index in December of year 
0 is only + 1 °C warmer in the + 100% ensemble than in REF (Fig. 5c). On the other hand, the spread in the 
initially-discharged simulations is large, given that the Bjerknes feedback is not activated in some experiments 
(i.e. the N34 Index is equal to + 2.8 °C in REF and negative in − 100%, Fig. 5c). The relationship becomes negative 

Figure 4. Longitude-time Hovmöller diagram of sea surface height (shading, in cm) and surface zonal 
current (contour, in m/s) anomalies. Panels correspond to the − 100% (a), − 80% (b), − 40% (c), REF (d), 
+40% (e) and + 80% (f) experiments. The minimum contour is ± 0.1 m/s and the contour interval is 0.2 m/s, 
with grey solid (black dashed) lines depicting positive (negative) anomalies. The horizontal green lines indicate 
the December month in which El Niño peaks in the reference simulation.
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Figure 5. Relationship between Tropical Heat Content (1016 J) and the Niño3.4 Index (°C). Panels (a,c,e) 
depict the evolution of Tropical Heat Content (THC) and the Niño3.4 (N34) Index. Crosses (circles) in panel 
(e) correspond to the initial (final) month of the model runs. Panel (d) shows the delay (in months) in the 
maximum of N34 relative to the December month in which El Niño peaks in the reference simulation (see 
vertical green lines in panels a–c). The black line in panel d shows the piecewise linear fitting between x- and 
y-axis variables. Curves and circles in panels (a,c–e) correspond to the − 100% (dashed lime), − 80% (dashed 
cyan), − 60% (dashed magenta), − 40% (dashed red), − 20% (dashed purple), REF (solid black), + 20% (solid 
purple), + 40% (solid red), + 60% (solid magenta), + 80% (solid cyan) and + 100% (solid lime) experiments. 
Panel (b) shows the regression coefficient (red and blue lines) and the Pearson correlation (pink and cyan) 
among model experiments between the Initial Tropical Heat Content (THC0) and THC (red and pink) and N34 
(blue and cyan). Regression values in panel (b) are unitless for THC, and °C/1016 J for N34. THC was computed 
as the temperature average within 120E-80W, 5S-5N and the upper 300 m.
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in early summer of year + 1 (blue and cyan lines equal to zero in Fig. 5b), when the transition between warm 
and cold conditions is found in most, albeit not all, simulations (Fig. 5c). Indeed, in the initially-discharged 
simulations, the timing of the peak of EN depends on the prescribed THC, with a clear phase-locking to the 
seasonal cycle that characterizes the jump between the winters of years 0 and + 137–40; Fig. 5d). Instead, all of the 
initially-recharged simulations are found to peak in October of year 0, defining a stepwise relationship between 
the initial THC and the timing of EN maxima (Fig. 5d).

The phase evolution of the system shows the traditional counterclockwise trajectory, in which the change 
rate of the N34 Index is approximately proportional to the THC, and the radius of the trajectories monotonically 
increases as a function of the initial THC (Fig. 5e, see also ref. 30 for a similar approach based on ocean energetics).  
Nonetheless, the trajectories of all the initially-discharged simulations tend to evolve towards the diagram 
values that correspond to the recharge phase of the REF ensemble (i.e. + 0.5·1016 J ≤  THC ≤  + 1·1016 J and  
− 0.5 °C ≤  N34 ≤  + 0.5 °C), and only then do they diverge to reach weaker N34 values than in REF. This indicates 
that, in our model configuration, the system compensates for the initially-prescribed reduction in heat content, 
and evolves towards a new recharge in THC and the generation of EN events through the memory of the system, 
regardless of the magnitude of the initial THC, and even when it is completely removed.

This general increasing trend of THC in the initial period of all the simulations is explained by the recharge 
theory, in which the off-equatorial wind stress curl is associated with the positive change rate in subsurface merid-
ional convergence. In the initially-recharged simulations, this tendency towards the deepening of the thermo-
cline in the central Pacific contributes to the transition towards the recharge phase that leads to EN by 2 to 3 
seasons10,11. Instead, in the simulations in which the initial heat content has been completely or largely suppressed 
(i.e. − 100% and − 80%), the equatorward mass convergence is associated with the upwelling of subsurface cold 
waters that favors the persistence of cold SST and easterly wind anomalies in the central Pacific, which in turn 
deepen the thermocline and generate a new heat buildup in the western Pacific26,27. We must however note that, 
in a more general framework, the initial THC could increase at a different rate or even decrease if wind stress 
anomalies were also prescribed or a different time frame was chosen as initial conditions for the experiments.

The new recharge process in the − 100% and − 80% experiments can result in a delay in the occurrence of 
the EN event, which highlights the non-linear dependency between the intensity of the subsurface heat buildup 
and both the magnitude and timing of subsequent EN episodes. The numerical simulations reported here show 
that the accumulation of warm waters in the western Pacific determines the timing of the transition between LN 
and EN conditions, which is here seen to increase by one year when the initial subsurface heat is largely reduced. 
We found that the stepwise relationship between the initial THC and the timing of EN maxima also affects the 
magnitude of the events. For example, the EN episode at the end of year 0 in the − 40% ensemble has similar mag-
nitude to the event occurring one year later in the − 80% experiment, because the longer timescale of the recharge 
process compensates the magnitude of the initial discharge. In this respect, our results provide new insight into 
the fundamental role of the ocean heat content, in this case at longer lead times than traditionally described, and 
therefore they have important implications for the understanding of the genesis of EN events, their dynamics and 
their predictability.

Methods
Estimates of WWV for the 1980–2015 period were derived from the TAO Project Office of NOAA/PMEL, 
which are based on temperature analyses of the Bureau National Operations Centre at the Australian Bureau of 
Meteorology and profiles from TAO moorings, Argo floats and XBTs, with anomalies calculated after removing 
the 1980–2002 mean seasonal cycle32.

The model used in the present work, the Community Earth System Model (CESM) v1.2, is a global coupled 
model extending its predecessor, the Community Climate System Model (CCSM) v4, by incorporating new Earth 
system simulation capabilities41. The model configuration used here couples the latest version of the Community 
Atmosphere Model v542 with the Parallel Ocean Program v243, the Community Land Model v444, the Community 
Ice Code v445 and the River Transport Model46. The atmospheric model has a resolution of 2.5° in longitude and 
1.875° in latitude, with 30 vertical levels. The ocean model uses a displaced pole grid with approximately 1° resolu-
tion in longitude and 0.5° in latitude, which is refined within the tropical band up to 0.25° at the equator. There are 
60 vertical levels with the highest resolution (10 m) in the upper 150 m, and the lowest (250 m) in the deep ocean.

CESM was chosen to conduct the experiments reported here because CCSM was found to be one of the three 
best models in the simulation of the dynamic warm pool edge among 19 coupled ocean-atmosphere general cir-
culation models from the Coupled Model Intercomparison Project Phase 547. This feature corresponds to the east-
ernmost edge of the western Pacific warm pool, the maximum in zonal salinity gradient and the area of surface 
ocean convergence, downward motion and advection and subsurface divergence26,48–50. The correct simulation of 
these dynamical features is seen to be key for the reproduction of the ENSO oscillation and the transition between 
events of opposite sign, including the generation of the heat buildup in the western Pacific and the eastward prop-
agation of the accumulated heat21,47.

We performed 11 sets of ensemble experiments, with initial conditions corresponding to a very early phase 
of the onset of an EN episode, in March of the year preceding the winter peak of a strong warm event (i.e. a lead 
time of 21 months with regard to the December maximum), chosen from a reference 100 year spin-up simula-
tion. This stage of the ENSO oscillation is characterized by cold LN-like conditions in the tropical Pacific and 
the generation of a subsurface heat buildup in the western tropical Pacific (Supplementary Figure 1b,e;21,26). In 
each of these sets of ensemble experiments, the intensity of the subsurface warm anomaly was decreased (neg-
ative sign representing a discharge in heat content) or increased (positive sign or recharge) by ± 20%, ± 40%,  
± 60%, ± 80% and ± 100%. The word “anomaly” in the experiments refers to the difference of a monthly value with 
regard to the long-term mean annual cycle computed from the REF simulation. We note that warm temperature 
anomalies were fully modified only in the inner three-dimensional box [120E-80W] ×  [10S-10N] ×  [50–200 m], 
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and that this modification was linearly decreased to zero from the border of this box to the frontier of the outer box 
[100E-60W] ×  [15S-15N] ×  [20–300 m]. For example, Supplementary Figure 1a,d (Supplementary Figure 1c,f)  
show the initial condition in the − 100% (+ 100%) experiment, in which the subsurface warm anomaly was sup-
pressed (doubled). For the sake of clarity, we use the terminology ‘‘initially discharged’’ (‘‘initially recharged’’) 
simulations or ensembles to refer to the experiments with initially reduced (increased) subsurface warming, and 
we also compare the magnitude of these prescriptions by saying that the − 100% (+ 100%) ensemble is ‘‘more 
initially discharged’’ (‘‘more initially recharged’’) than for example the − 20% (+ 20%) experiment. Each set of 
experiments in turn consists of 10 simulations with slightly perturbed initial conditions, from which only the 
ensemble average is shown here.
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Resumen - Summary in Spanish

Se ha demostrado que el ĺımite teórico de predictibilidad de El Niño-Oscilación Sur (ENSO)
es del orden de los años, sin embargo, predicciones de largo plazo de El Niño (EN) y La Niña
(LN) son esencialmente no disponibles, y los esquemas de pronóstico más avanzados son en gran
parte incapaces de predecir correctamente más allá de la barrera de primavera. Los esfuerzos
se han dedicado principalmente a la mejora de los modelos dinámicos, mientras que los esque-
mas estad́ısticos se han mantenido subdesarrollados. En consecuencia, no se han aprovechado
plenamente la disponibilidad de variables oceánicas subsuperficiales que se han proporcionado
regularmente durante las últimas décadas como resultado del Programa de Océanos Tropicales
Atmósfera Global (TOGA). Aqúı utilizamos varias variables predictoras, incluyendo la temper-
atura subsuperficial a diferentes profundidades y regiones del océano ecuatorial, en un modelo
estad́ıstico flexible de componentes dinámicos para hacer previsiones retrospectivas hábiles de
largo plazo del Índice Niño3.4 (N3.4) en el peŕıodo 1970-2016. El modelo predice exitosamente
hasta dos años y medio de antelación todos los episodios más importantes de EN, incluyendo
el reciente extremo EN 2015/16. El análisis demuestra que los eventos se predicen con mucha
mayor precisión después de la finalización del sistema de observación en el Paćıfico tropical en
1994, como resultado de la mejora de la calidad de los datos y la cobertura alcanzada por TOGA.
Por lo tanto, ahora es posible emitir predicciones de largo plazo de este importante fenómeno
climático a un bajo costo computacional.



DRAFT

Multi-year statistical prediction of ENSO enhanced1

by the tropical Pacific observing system2

Desislava Petrovaa,b, Joan Ballestera,b, Siem Jan Koopmanc, and Xavier Rodóa,b,d
3

aClimate Dynamics and Impacts Unit, Catalan Institute for Climate Sciences (IC3), Carrer del Dr. Trueta, 203, 08005 Barcelona, Catalonia, Spain; bClimate and Health Program,4

Barcelona Institute for Global Health (ISGLOBAL), Carrer del Dr. Aiguader 88, 08003 Barcelona, Catalonia, Spain; cDepartment of Econometrics, Vrije Universiteit Amsterdam, De5

Boelelaan 1105, 1081 HV Amsterdam, Netherlands; dInstitució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain6

This manuscript was compiled on April 11, 20177

The theoretical predictability limit of El Niño-Southern Oscillation (ENSO) has been shown to be on the order of years (1–5), however, long-lead
predictions of El Niño (EN) and La Niña (LN) events are essentially lacking, and state-of-the-art forecasting schemes are largely unable to predict
correctly beyond the spring barrier (6). Efforts have mostly been dedicated to the improvement of dynamical models, while statistical schemes have
remained underdeveloped. Consequently, they have not taken full advantage of the availability of subsurface ocean variables (6), which have been
provided on a regular basis for the last couple of decades as a result of the Tropical Ocean Global Atmosphere Program (TOGA) (7). Here we use
several predictor variables, including subsurface temperature at different depths and regions of the equatorial ocean, in a flexible statistical dynamic
components model (8) to make skilful long-lead retrospective forecasts of the Niño3.4 Index (N3.4) in the period 1970-2016. The model successfully
predicts up to two and a half years in advance all the major EN episodes, including the recent extreme 2015/16 EN. The analysis demonstrates
that events are predicted much more accurately after the completion of the observational array in the tropical Pacific in 1994 (9), as a result of the
improved data quality and coverage achieved by TOGA. Therefore, there is now potential to issue long-lead predictions of this important climatic
phenomenon at a low computational cost.

8

ENSO | long-lead prediction | subsurface ocean dynamics| observing system9

TSkilful long-range forecasts of EN are still in high demand. After decades of extensive efforts, dynamical models nowadays10

represent the best available tools to issue ENSO forecasts at lead times of up to two seasons, although they are still largely11

constrained by the lack of complete understanding of the physics of the phenomenon, by problems arising from the initialization of12

the components of the climate system or by the need for accurate parametrization of important physical processes (6). Statistical13

models, on the other hand, largely depend on the availability of ocean and atmosphere historical data, so that the longer the length14

of the data, the more robust is the predictor-predictand relationship identified by the model (6). In addition to these factors, the15

low signal-to-noise ratio in boreal spring (10), the influence of high-frequency atmospheric winds (11, 12), as well as the natural16

irregularity of the climate system (13) all limit the long-term dynamical and statistical forecasting of the phenomenon. Some of the17

classical ENSO theories view the oscillation as self-sustained (14–16), and support the claim that it is potentially predictable several18

years in advance (1, 3, 5, 17, 18), but only a few studies document such long-lead forecasts of past events, and most of them use19

dynamical models (4, 5, 8). Statistical models are assumed to be less skilful at long lead times, and comparable in performance20

to dynamical schemes at shorter lead times of about half a year (18, 19). To some extent this is explained by the fact that a new21

generation of statistical models has not been developed and added to the ENSO forecasting plume, while the majority of the old22

models have not been substantially revised since they were created in the 1980s and early 1990s (6).23

One of the strongest events on record - the 1982/83 EN - surprised the scientific community (1, 7) as it was neither predicted, nor24

identified until very late in its development. This triggered a decade-long effort to put in place a monitoring system in the tropical25
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have been documented in the literature. The potential of statistical models has been overlooked, and they have not been upgraded to use
effectively the available subsurface ocean information from the equatorial Pacific Ocean, which is of utmost importance for the evolution of El
Niño and La Niña events. Here we use a new statistical model to predict ENSO at least 2 years in advance. We discuss our forecasts in the
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Pacific with the aim of studying ENSO better and putting emphasis on the improvement of the predictive capacity of models (7),26

which led to the inauguration of the TOGA research program in 1985 (7). It deployed a three-dimensional array in the tropical Pacific27

that since then regularly samples the subsurface temperature down to 500 metres depth. The system was completed in 1994, just in28

time to track the stronger-than-normal trade winds in 1995/96, which generated a buildup of warm waters in the western tropical29

Pacific more than one year before the peak of the record-breaking 1997/98 EN event (7). This was the first time when the scientific30

community and the public could see the benefits of TOGA. Although a number of studies now fully recognize the fundamental role31

that the intensification of the trade winds and the subsurface heat buildup in the western equatorial Pacific play in the onset of EN32

events (1, 8, 16, 20–23), many of the operational statistical models do not account in detail for these processes that occur early on in33

the generation of the events (24–27).34

In the present study we use the flexible statistical dynamic components model described in ref. 8, which at long lead times35

incorporates explanatory variables designed to capture the three-dimensional shape of the warm pool subsurface heat buildup at36

different depth levels, as well as zonal wind stress anomalies in the central and western equatorial Pacific (see Methods). The model37

consists of several stochastic cycle components with frequencies corresponding to the main peaks in the spectrum of N3.4 (see ref. 8),38

as well as explanatory regression variables such as sea surface and subsurface temperature and zonal wind stress. These variables enter39

the model equations in the form of lagged time series with respect to the December value of N3.4, and are selected to be consistent40

with the EN dynamical evolution. In this way, different covariates are used for forecasting at different lead times, depending on41

the average temporal progression of EN events. For instance, at a lead time of 24 months, the selected predictors are subsurface42

temperatures in the far western equatorial Pacific Ocean at depths of 250, 300 and 400 metres, as the heat buildup is generally intense43

there at this early stage in the generation of a warm event (8, 23).44

Model Simulations and Forecasts45

The observed and forecast monthly N3.4 anomalies at 6 and 24 months lead time are presented in Fig. 1. The 6-month lead forecast46

correctly predicts the timing and magnitude of all EN and LN events, and no false alarms are generated (r2 = 0.72, p < 0.001,47

RMSE = 0.54; Fig. 1A). Since an ENSO event is typically already under-way half a year before its peak in December-January-February48

(DJF), the majority of the operational forecasting schemes are able to produce predictions at this lead time that are highly correlated49

with the observations (6) (r2 > 0.40). The 24-month lead forecast, and in general any lead time forecast beyond the spring barrier (i.e.50

from 8 months onward; not shown), properly reproduces the crests and troughs in the time series, which is also evident in the high51

correlation coefficient between the observations and the forecasts (r2 = 0.66, p < 0.001, RMSE = 0.62; Fig. 1B). However, for the52

period before the prominent 1997/98 EN, we find that the predicted amplitudes of the larger events are notably smaller than the53

observed. We highlight that this cannot be explained by a change in the interannual ENSO activity in the different time periods, as54

three sizeable EN (i.e. 1972/73, 1982/83, 1986/87 and 1997/98, 2009/10, 2015/16) and LN (i.e. 1973/74, 1975/76, 1987/88 and55

1998/00, 2007/08, 2010/11) episodes have occurred before and after 1994 (28).56

To characterize better the difference between periods, Fig. 2 displays the regressions between the observations and forecasts for57

two consecutive 22-year sub-periods (1972-1993 in blue and 1994-2015 in red) at 6- and 24-month lead. No substantial difference58

is observed between the slopes of the regression lines for the two periods at the shorter lead time (regr1972−1993 = 0.65, t = 23.88,59

regr1994−2015 = 0.74, t = 27.34, p < 0.001; Fig. 2A), indicating that the model performance is comparable. Conversely, the regression60

coefficients significantly increase for the long-range forecasts made after 1994 (regr1972−1993 = 0.35, t = 17.12, regr1994−2015 = 0.65,61

t = 30.93, p < 0.001; Fig. 2B), which represents a major improvement in the capacity of the model. The change in the overall62

similarity between the observations and the forecasts at 24-month lead time is also assessed by the fifteen-year moving correlation63

shown in Fig. 1C. The correlation increases monotonically with time until the early 1990s and then stays relatively constant afterwards.64

At the same time, data availability was constantly improving during TOGA, until the tropical Pacific network array of moorings was65

fully into place at the end of the program in 1994 (9).66

To further explore the difference in the model performance over the two periods, Fig. 3 shows correlations and root mean square67

errors (RMSE) for the whole range of lead times up to 24 months. For lead times of about 2 seasons both the correlations and RMSE68

are similar among periods, while for lead times beyond the spring predictability barrier they start to diverge. We also observe that69

correlations and RMSE stay relatively constant beyond spring. Previous studies (2, 4, 18, 29) have already concluded that the spring70

predictability barrier is not an intrinsic barrier to the system itself, but it rather depends on model skill and data availability. Here71

we confirm this result, as we also find that the drop in forecast skill is minimal beyond the spring barrier (Fig. 3). The statistical72

model we use is linear, and while its stochastic cyclical components are mainly responsible for capturing the correct phase of the73

oscillation, the lagged predictor explanatory variables are expected to contribute to the correct forecast of the amplitudes of the74

events, especially at longer lead times (see Methods and ref. 8 for details). Therefore, below we analyse if the predictor variables add75

significantly to the EN forecasts of the earlier period, which also coincides with a time when no regular subsurface temperature and76

wind stress data were being provided yet (9).77

The forecasts at several lead times of the strongest EN events in the study period (see ref. 28) are displayed in Fig. 4. In all cases78

the model is capable of predicting the occurrence of a warm event 29 months in advance (magenta curve), although there are evident79

errors in the amplitude and timing in some cases. A much better representation of the amplitudes in the long-lead forecasts of the80

events in the second period (1997/98, 2009/10 and 2015/16), as compared to those occurring in the first period (1972/73, 1982/8381

and 1986/87), is also clearly distinguished in the figure. The estimated coefficients and the corresponding t- and p-values for the82

explanatory variables used in the 24-month lead forecasts of all the warm events in the study period are listed in Table 1. Remarkably,83

none of the three predictor variables is found to be significant at the 90% level for the forecasts of any of the events before 1994, while84

there is at least one significant variable for each forecast of the episodes that occurred afterwards. Similar results hold for the other85
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long-lead forecasts shown in Figure 4 (Supplementary Tables 1 and 2).86

Implications for Long-Lead Statistical El Niño Predictability: the Contribution of TOGA87

As seen above, there is a well-defined shift between the lack of significance of the predictor variables for the forecasts of the warm88

events before the end of TOGA and their significance afterwards. Our results strongly support the view that the improved forecasts89

are due to the availability of regular and higher resolution subsurface data ensured by the implementation of the observational network90

array (30, 31). The correct and relevant subsurface information also has consequential implications for the proper forecasting of the91

magnitudes of the warm events (32). In the linear framework of the model that we use, at the longer lead times the explanatory92

predictor variables have more forecast weight than they do at the shorter lead times (see Methods). Noticeably, the forecast amplitudes93

of the three earlier events shown in Fig. 4A-C do not exceed 1.5◦C at the long lead times of 21 and 29 months (green and magenta94

curves). At the same time, the forecast amplitudes of the three events that took place in the later period, when the explanatory95

variables are shown to have an impact (Table 1), are consistent with the occurrence of a strong EN even at these very long lead times96

(green and magenta curves in Fig. 4D-F). This is remarkable, given the fact that the two most extreme events on record are among97

them, with anomalies above 2.5◦C.98

Although there is a marked difference in the predictive capacity of the model during the earlier and later sub-periods, it still99

exhibits outstanding skill (i.e. correlations and RMSE in Fig. 3) for a statistical model, and even in comparison to the ensemble of100

dynamical models (6). We have demonstrated that the equatorial Pacific observing system, and especially the provision of subsurface101

temperature data on a regular basis, has a vital contributing role for its long-lead forecasting capabilities. With the end of TOGA102

in 1994 nearly the whole equatorial band between 10◦N-10◦S was covered with moorings (9), and this is also the start of altimetry103

data (29). As seen in the Figure of the Tropical Atmosphere Ocean-Triangle Trans-Ocean Buoy Network (TAO-TRITON) array104

development (30), some subsurface data from the central Pacific was already streamed at the end of 1987, while at the end of 1991105

data was also coming in from the western Pacific, which represents a key region for the forecast of the phenomenon at lead times of106

two years or more. Thus, almost three decades have passed since the three-dimensional observations began in the tropical Pacific. As107

a result, the limited span of the data is now much less of a problem for the robust definition of statistical predictive schemes (6), as108

we have shown here.109

In 1997 simulations with the dynamical Lamont model (33), which at the time was considered to be the benchmark, did not110

predict the prominent EN that was developing, but forecast a cold boreal winter instead. Only after sea level data (a proxy for111

upper ocean heat content) from the observing system was included to its initialization scheme, was it able to forecast the event in112

retrospect (7). In this way, the input of TOGA significantly improved the forecast skill of this and many other dynamical models (7).113

Moreover, nowadays the most skilful forecasts with such models are those initialized by subsurface observations (3). This confirms the114

importance of relevant subsurface data and the usefulness of TOGA not just in the case of statistical models discussed here, but also115

of the more complex dynamical models. In essence, the same conclusion as the one reached here has been made by (29), where a large116

reduction of the errors in N3.4 SST forecasts made after 1994 is detected with the European Centre for Medium-Range Weather117

Forecasts (ECMWF) seasonal forecast system 3. The results are also in agreement with an earlier study with the same system (34),118

in which the effect of ARGO floats are removed from the observations, and it is established that improvements in the forecast are119

clearly explained by the improved observing system.120

Some of the existing statistical systems already include measures of integrated equatorial heat content (6). However, our model uses121

temperature data from a selection of dynamically relevant regions and depths to maximize its predictive power. These values are not122

well-represented by spatially-integrated measures of heat content, and our analysis suggests that the integration masks the intensity of123

the heat buildup in specific regions in the subsurface at long lead times, and more importantly, does not allow the systems to properly124

track the eastward propagation of heat along the equatorial thermocline (8, 23). Therefore, statistical models should be improved125

in the direction of using the available subsurface information that is fundamental for ENSO in a more discrete and targeted way.126

Here we have established that this type of models, which are computationally less expensive than dynamical ones, are able to make127

forecasts multiple seasons and even years in advance. Hence, we argue that there is no inherent limitation in statistical predictions at128

long lead times as suggested by ref. 3 and ref. 6. Thus, statistical models can also provide useful information about EN to decision129

makers around the world, which could prevent threats to human lives and reduce economic costs.130

Materials and Methods131

The model used in the present study is a more advanced version of the statistical dynamic components model proposed by ref. 8132

and developed specifically for prediction of the Niño3.4 Index defined as the average sea surface temperature in the box [5◦N-5◦S,133

170◦W-120◦W]. The difference with the previous version is the addition of three stochastic cycle components, and the replacement of134

the fixed seasonal component. Instead, two of the new cyclical components have now been assigned with period lengths close to the135

annual (12 months) and semi-annual (6 months) frequencies. They are allowed to vary slowly over time in order to address the finding136

in our previous study that the annual periodicity of the seasonal component was not sufficiently well-simulated, because the annual137

periodicity is not strictly fixed at 12 months, and especially because during El Niño events the amplitude of the seasonal cycle is138

suppressed (35). The third additional cycle component in the model is associated with ENSO variability on decadal time scales, as139

in our original study we also established that this low-frequency variability is important for the simulation of some El Niño events,140

and this feature was not explicitly resolved in the previous model version (8). The three additional cycle components are modelled141

as linear dynamic stochastic processes, which are generated by independent series of serially uncorrelated disturbances, (36, 37) as142
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further described in ref. 8.143

The model belongs to the class of linear Gaussian state space models. Its statistical treatment, which includes parameter estimation144

and forecasting, is based on the Kalman filter (37). The filter delivers the prediction errors and their variances, from which the145

Gaussian loglikelihood function is computed. Parameter estimation reduces to numerical maximisation of the loglikelihood function.146

Given the parameter estimates, the forecast function is constructed from the Kalman filter, and is regarded as a linear function of past147

and current observations of the dependent and explanatory regression variables. It evaluates the one-step ahead prediction of the state148

vector conditional on the past and current observations, y1, . . . , yt and Z1, . . . , Zt, as denoted by at+1|t, together with its conditional149

error variance matrix Pt+1|t, in a recursive updating scheme, for t = 1, . . . , n, (see ref. 8 and ref. 37 for details and derivations). The150

prediction error at time t is then given by vt = yt − Ztat|t−1 and its error variance is given by Ft = ZtPt|t−1Z
′
t +Ht, for t = 1, . . . , n.151

The system matrices Zt, Ht, Tt and Qt can be time-varying but in a deterministic way; they can be functions of the time index t.152

The ability of the Kalman filter to treat missing observations is a powerful one, and the forecasting problem can be viewed as a153

missing data problem by treating future observations as missing. Assume that at a certain time index τ , observation yτ is missing.154

In the Kalman filter we can treat the one-step ahead prediction error vτ as unknown with its error variance Fτ →∞. This setting155

reflects that we have no information about vτ . The updating steps for the state vector estimate and its error variance matrix simply156

reduce to the prediction steps157

at+1|t = Ttat|t−1, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t, [1]

for t = τ . Note that at|t = at|t−1 and Pt|t = Pt|t−1 for t = τ . The implementation of a Kalman filter with missing data entries is158

straightforward and relies on a conditional statement: if yt is observed, carry out the Kalman filter as usual; if yt is missing, carry out159

the prediction step Eq. (1).160

The treatment of missing values can be adapted to the forecast and forecast error computations. Assume that after the last161

available observation with time index m, the forecasts of ym+1, . . . , ym+h are requested, for some forecast horizon h. We then add162

a series of h missing values to the data and the Kalman filter treats them in the way described above. In this way we obtain163

the state prediction estimates am+h|m and its prediction error variance matrix Pm+h|m for h = 1, 2, . . .. The observation forecasts164

ŷm+h|m = E(ym+h|y1, . . . , ym) and the error variance matrix Vm+h|m = Var(ym+h − ŷm+h|y1, . . . , ym) are then computed by165

ŷm+h|m = Zm+ham+h|m, Vm+h|m = Zm+hPm+h|mZ
′
m+h +Hm+h,

This simple treatment of missing observations and forecasting is one of the advantageous features of state space analysis.166

Observations are also weighted when forecasting. The recursions above implicitly provide the optimal weights to the available167

observations for forecasting, in terms of minimum mean squared error. For a linear time series model with time-varying components168

as in our case, the forecasting weights gradually decline when observations are further distanced from the forecast origin point, since169

they become less relevant. In this way, at the longer lead times the forecast weights are smaller for the dynamic cyclical components,170

and the weight of the explanatory regression variable component is bigger, which makes it then more significant than it is at the171

shorter lead times.172

The presented results in Fig. 3 are based on the parameter estimates from the period 1952-1970 for the prediction of the time173

series between 1972-1993, and from the period 1974-1992 for the prediction of the time series between 1994-2015. Importantly, the174

forecasts in Figs. 1, 2 and 4 are performed using all available observations before each prediction point for parameter estimation,175

component estimation and forecasting. This explains the difference between the reported correlation coefficients between the forecasts176

and observations presented in Fig. 1 and those presented in Fig. 3. We would like to stress that the skill of the model is most177

accurately reflected by the results in Fig. 1. However, to avoid heavy computations, we have produced the forecasts in Fig. 3 based178

on a pre-fixed period for calibration purposes, instead of updating the information every time a new observation becomes available.179

Also note that every point in the forecasts in Fig. 4 is predicted at the respective lead time indicated in the figure. This is different180

from the forecasts shown in Fig. 9 of ref. 8, where only the target month of December was predicted at the respective lead time. All181

presented results here are based on the same data sets for SST, subsurface temperature and wind stress as described in ref. 8.182
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Fig. 1. Retrospective prediction of the Niño3.4 Index. Monthly observations (black curve) and model prediction at (A) 6-month lead (red curve) and (B) 24-month
lead (blue curve). (C) 15-year moving correlation between the observations and the prediction in (B) (blue curve), and the piecewise linear fitting (purple lines) before and after (shading)
the completion of the observing system in 1994.
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iñ
o3
.4

fo
re
ca
st

(◦
C
)

Niño3.4 observation (◦C)

6 months

24 months

A

B

Fig. 2. Relationship between observations and model predictions. Scatter plots of the Niño3.4 Index observations and the model predictions at (A) 6-month lead
and (B) 24-month lead. The blue dots correspond to the period 1972-1993 with a linear regression line in light blue, and the red dots correspond to the period 1994-2015 with a linear
regression line in beige. The red arrow indicates the improvement in the slope of the regression line for the period 1994-2015 with respect to the slope of the regression line for the period
1972-1993.

Petrova et al. PNAS | April 11, 2017 | vol. XXX | no. XX | 7

128 Publications



DRAFT
0 2 4 6 8 10 12 14 16 18 20 22 24

0.2

0.4

0.6

0.8

1

 

 

1972−1993
1994−2015
Spring barrier

0 2 4 6 8 10 12 14 16 18 20 22 24

0.2

0.4

0.6

0.8

1

 

 

C
or
re
la
ti
on

R
M
S
E
(◦
C
)

Lead time (months)

A

B

Fig. 3. General forecast skill of the model. (A) Correlations between the Niño3.4 Index observations and model predictions and (B) root mean square errors (RMSE) as
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Fig. 4. Forecasts of the major El Niño events since 1970. (A)-(C) El Niño events in the period 1972-1993 and (D)-(F) 1994-2015. The thick black curves are the
observed Niño3.4 Index anomalies, and the thin magenta, green, beige and cyan curves are predictions started 29, 21, 13 and 5 months in advance.

Petrova et al. PNAS | April 11, 2017 | vol. XXX | no. XX | 9

130 Publications



DRAFT

Table 1: Coefficients, t-values and p-values for subsurface temperature predictor re-
gression variables at 24-month lead. Values significant at the 90% level are bold.

El Niño event 250m. RI 300m. RI 400m. RI
1972/73

Coefficient 0.12 −0.17 −0.29
t 0.78 −0.82 −0.86
p 0.43 0.41 0.39

1982/83
Coefficient 0.09 0.01 0.20

t 0.78 0.03 0.90
p 0.43 0.97 0.36

1986/87
Coefficient −0.03 −0.12 −0.02

t −0.30 −0.88 −0.09
p 0.76 0.37 0.92

1991/92
Coefficient 0.07 −0.09 0.09

t 0.64 −0.56 0.38
p 0.52 0.57 0.70

1997/98
Coefficient 0.24 0.35 0.46

t 1.61 1.52 1.46
p 0.10 0.12 0.14

2002/03
Coefficient 0.21 0.31 0.38

t 1.67 1.57 1.44
p 0.09 0.11 0.15

2006/07
Coefficient 0.23 0.32 0.43

t 2.07 1.80 1.75
p 0.04 0.07 0.08

2009/10
Coefficient 0.17 0.24 0.46

t 1.68 1.46 1.95
p 0.09 0.14 0.05

2014/15
Coefficient 0.15 0.25 0.34

t 1.61 1.63 1.59
p 0.10 0.10 0.11

2015/16
Coefficient 0.14 0.28 0.32

t 1.55 1.85 1.56
p 0.12 0.06 0.12

10 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Petrova et al.
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Supplementary Table 1: Coefficients, t-values and p-values for subsurface temper-
ature predictor regression variables at 21-month lead. Values significant at the 90%
level are bold.

El Niño event 250m. RII wnd RI
1972/73

Coefficient −0.08 −0.70
t −0.62 −0.26
p 0.53 0.79

1982/83
Coefficient −0.07 −0.88

t −0.70 −0.40
p 0.48 0.68

1986/87
Coefficient −0.05 −0.32

t −0.50 −0.16
p 0.61 0.87

1991/92
Coefficient −0.14 0.48

t −1.27 0.23
p 0.20 0.81

1997/98
Coefficient -0.33 3.96

t -1.96 1.34
p 0.05 0.18

2002/03
Coefficient -0.34 4.67

t -2.08 1.83
p 0.03 0.06

2006/07
Coefficient −0.24 4.41

t −1.60 1.92
p 0.11 0.05

2009/10
Coefficient -0.30 4.07

t -2.10 2.02
p 0.03 0.04

2014/15
Coefficient -0.20 4.05

t -1.67 2.53
p 0.09 0.01

2015/16
Coefficient −0.14 3.59

t −1.19 2.25
p 0.23 0.02
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Supplementary Table 2: Coefficients, t-values and p-values for subsurface temper-
ature predictor regression variables at 29-month lead. Coefficients significant at the
90% level are bold.

El Niño event 250m. RI 300m. RI 400m. RI
1972/73

Coefficient 0.06 0.04 −0.51
t 0.38 0.18 −1.25
p 0.70 0.85 0.21

1982/83
Coefficient −0.07 −0.01 0.07

t −0.55 −0.07 0.30
p 0.58 0.94 0.76

1986/87
Coefficient 0.04 0.07 0.18

t 0.37 0.50 0.81
p 0.71 0.61 0.41

1991/92
Coefficient −0.04 0.13 0.22

t −0.36 0.72 0.91
p 0.71 0.47 0.36

1997/98
Coefficient 0.25 0.37 0.57

t 1.73 1.68 1.88
p 0.08 0.09 0.06

2002/03
Coefficient 0.15 0.28 0.50

t 1.15 1.35 1.78
p 0.25 0.17 0.07

2006/07
Coefficient 0.18 0.38 0.40

t 1.60 2.09 1.64
p 0.11 0.03 0.10

2009/10
Coefficient 0.18 0.29 0.32

t 1.68 1.71 1.38
p 0.09 0.08 0.16

2014/15
Coefficient 0.16 0.29 0.41

t 1.64 1.87 1.89
p 0.10 0.06 0.06

2015/16
Coefficient 0.11 0.25 0.38

t 1.23 1.60 1.79
p 0.22 0.11 0.07
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El Niño-Southern Oscillation (ENSO) is a high-impact climatic phe-

nomenon that causes extreme weather events worldwide. It leads to floods

or droughts in certain regions, damages agriculture and the economy, and in-

creases the risk of infectious diseases. Therefore, ENSO forecasts could help

authorities to plan in advance of imminent disasters, to mitigate the risk, and

to protect vulnerable communities. Certain diseases are particularly sensitive

to climate extremes. For example, a previous study found that the timing and

magnitude of dengue outbreaks in El Oro province in Ecuador were associ-

ated with El Niño. In this study, long-lead forecasts of equatorial Pacific sea

surface temperatures (SST) are used within a dengue prediction model, to as-

sess the extent to which epidemics can be predicted well in advance.

A structural time series model, which uses a state space approach and pre-

dictors relevant to the El Niño evolution, was developed to predict SST in the

Niño 3.4 region. The model configuration is specifically tailored to forecast

the events at long lead times of 2 years or more, well beyond the traditional

spring barrier of ENSO prediction. The forecasting scheme provides infor-

mation about the amplitude of the events, their duration, and the peak time of

the SST. The model output was then used within a dengue prediction model

to estimate the incidence during the 2010 epidemic in El Oro, Ecuador.

The ENSO forecasting model correctly forecast the 2009-2010 El Niño,

which could have helped to predict the dengue outbreak as early as 30 months

ahead. Thus, long-lead ENSO forecasts could be incorporated into dengue

prediction models, to enhance the development of a dengue warning system

for Ecuador. This framework could be extended to other tropical and sub-

tropical countries, which are directly and severely affected by the anomalous

temperature and precipitation rates during and after El Niño.
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1. Introduction45

ENSO is a climate phenomenon characterized by coupled ocean-atmosphere anomalies in the46

tropical Pacific. It is commonly defined and assessed on the basis of SST deviations in the Niño47

3.4 region (N3.4; [120-170◦W, 5◦S-5◦N]) and with the help of the Oceanic Niño Index (ONI),48

which represents the three-month running-mean of SST anomalies in this region. El Niño (EN;49

the warm phase) is associated with a positive ONI ≥ +0.5 ◦C for a period of at least 5 consecutive50

overlapping three-month seasons, while La Niña (LN; the cold phase) is associated with a negative51

ONI ≤ -0.5 ◦C for the same period of time (CPC 2017). The abnormally high or low tempera-52

tures of the ocean affect the atmosphere directly above as a result of the strong ocean-atmosphere53

coupling in the equatorial region (Bjerknes 1969), and thus trigger atmospheric teleconnections54

that change the usual weather patterns globally (Ropelewski and Halpert 1987; Kiladis and Diaz55

1989; Rodó et al. 2006; Sarachik and Cane 2010), but especially in the vicinity of the equator. For56

example, in Ecuador the warm phase of the oscillation induces extreme events such as severe and57

prolonged deluges that affect a sizeable proportion of the population in the country (Larkin and58

Harrison 2002; Rossel and Cadier 2009; Recalde-Coronel et al. 2014).59

ENSO is a main driver of tropical climate and triggers atmospheric teleconnections that directly60

impact the health, resources and livelihoods of millions of people worldwide. Therefore, predict-61

ing particular ENSO events well in advance is of high relevance to decision makers in charge62

of planning and preparing for climate-related disasters. At the same time, few studies exist on63

long-lead predictions of ENSO on the order of more than 1 year in advance (Chen et al. 2004;64

Ludescher et al. 2014; Gonzalez and Goddard 2016). A recent study, Petrova et al. (2016), doc-65

umented unprecedented forecasts of past El Niño events started more than two years ahead of66

peak SST anomalies. All the EN events that occurred in the period 1996-2015 were predicted67
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at long lead times in a retrospective forecasting experiment. The forecasting scheme is based on68

structural time series modelling and analysis by state space methods (Durbin and Koopman 2012).69

Additionally, predictors capturing the state of the atmosphere and ocean at different stages of the70

development of an El Niño are incorporated in a manner so that specific variables such as wind71

stress, surface and subsurface ocean temperature are only used at their relative time of importance72

( see Petrova et al. (2016) for details). The long-lead capabilities of the model and the ENSO73

information that it provides - estimates of the timing, magnitude and duration of the events - could74

be used as input in other climate and tropical disease prediction models, which would help to an-75

ticipate and assess the risks for the nations in the tropics, but also in other parts of the world where76

ENSO is known to have high impact.77

The climate of Ecuador is heavily affected by the inter-annual ENSO variability. The coun-78

try does not have well-distinguished seasons in regards to temperature, the mean ranges between79

21 - 28◦C, and thus is only slightly higher during boreal winter (Figure 1(a), (b)). There is a80

marked wet season, however, which lasts from January to May (Figure 1(e),(f); Bendix and Lauer81

1992; Moran-Tejeda et al. 2016). Rainfall is highly related to the meridional movement of the82

Inter-Tropical Convergence Zone (ITCZ). When it is in its southernmost position it brings warm83

and moist air to coastal regions, resulting in increased precipitation rates and higher temperatures.84

Conversely, when the ITCZ is in its northernmost position, the coast is affected by the upwelling85

processes in the equatorial Pacific, and by drier and cooler air masses (Figure 1(c),(d),(g),(h);86

Rossel and Cadier 2009).87

During El Niño strong convection triggered by warmer SST results in higher temperatures in88

southern coastal Ecuador (Figure 2(a)-(d); Aceituno 1988; Bendix and Bendix 2006; Rossel and89

Cadier 2009; Moran-Tejeda et al. 2016), and much heavier precipitation (Figure 2(e)-(h)) than90

observed during neutral or LN years (at least double the amount). Moreover, the peak of ENSO,91

6
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which is normally at the end of the year (November-February), coincides with the rainy season in92

Ecuador (Figure 1(e)), and is immediately followed by the peak of precipitation anomalies associ-93

ated with ENSO in southern Ecuador in February to March (Figure 2(g)-(h); Bendix and Bendix94

2006). Thus, the normal precipitation patterns in the area are significantly enhanced during EN.95

It was also shown that the ENSO-associated SST anomalies and coastal precipitation are highly96

correlated (with correlation coefficients up to 0.8 for Dec.-May period during EN; Coelho et al.97

2002). Therefore, ENSO has predictive capacity for precipitation rates in the area (Rossel and98

Cadier 2009). In addition, a positive relationship, albeit lower in magnitude, was also found be-99

tween EN and maximum and minimum temperature in the region (Moran-Tejeda et al. 2016).100

The effect of El Niño events on local precipitation and temperature, could lead to an increase101

in the frequency of vector-borne diseases, such as dengue (Hsieh and Chen 2009). In a previous102

study (Stewart-Ibarra and Lowe 2013), a statistical mixed model was developed to assess the im-103

portance of climatic and non-climatic drivers of dengue interannual variability in southern coastal104

Ecuador (in El Oro province). The authors found that the ONI, rainfall, and minimum temperature105

were positively associated with dengue, with more cases of dengue expected during El Niño events106

(Figure 3). Field studies in the same region also found that rainfall and minimum temperature were107

key drivers of Aedes aegypti dynamics (Stewart Ibarra et al. 2013), providing mechanistic evidence108

for the influence of local climate on dengue transmission. Moreover, dengue transmission in El109

Oro has a well-defined seasonal pattern, and most cases are reported from February to May, which110

is the period of the year characterized by warmer and rainy weather (see Figure 1 in Stewart-Ibarra111

and Lowe (2013)).112

The aim of this study is to test the application of this recently developed ENSO forecasts to epi-113

demic dengue forecasts in an endemic region. For this reason, we use forecasts of the 2009/10 El114

Niño event and the calculated ONI at multiple lead times, derived from the structural time series115

7

142 Appendices



model, to produce predicted dengue distributions for El Oro province in southern coastal Ecuador116

for March 2010. In 2010 the province experienced the most severe dengue epidemic on record,117

with approximately 4008 suspected cases. People under 20 years of age bore the greatest burden118

of disease (Stewart Ibarra et al. 2014a). Statistical and wavelet analyses revealed that the epidemic119

may have been triggered by above normal minimum temperature and above normal rainfall during120

the 2009/10 EN event (Stewart-Ibarra and Lowe 2013; Stewart Ibarra et al. 2014b). Rainfall in121

February, preceding the peak of transmission, was almost double the long-term average. Social122

risk factors during the epidemic included household demographics (i.e., age and gender of heads of123

household) and housing conditions (i.e., access to piped water, poor housing construction) (Stew-124

art Ibarra et al. 2014b). Other regions also experienced major dengue epidemics in the same year,125

including Puerto Rico, which reported the largest historical outbreak (21,000 cases) (CDC 2010).126

Globally, the greatest number of deaths due to dengue were reported in 2010, in the period from127

1990 to 2013 (Stanaway et al. 2016).128

We describe the ENSO and dengue models and how they were combined (Section 2), present the129

forecasts (Section 3), and discuss what are the implications for climate services for health (Section130

4).131

2. Modelling and Data132

a. ENSO Forecasting Model133

A structural time series model described in Petrova et al. (2016) was used to predict the 2009/10134

El Niño event. The model is built in terms of unobserved components - a trend, a seasonal, three135

cycle components, an irregular term and some explanatory regression variables. It is given by:136

yt = µt + γt +ψ1t +ψ2t +ψ3t + x′tδ + εt (1)
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where yt represents the monthly Niño 3.4 index at time t; µt is the trend component specified as137

a random walk process; γt is the seasonal component; ψ1t , ψ2t and ψ3t are three cycles with dif-138

ferent frequencies λ j, ( j = 1,2,3), persistences ϕψ j and variances σ2
κ j

; x′tδ represents a predictor139

regression variable; and εt represents the irregular term. The trend, seasonal, and cycle compo-140

nents are modeled as linear dynamic stochastic functions of time (Harvey and Koopman 2000).141

More information about the components can be found in Harvey (1989) and Durbin and Koopman142

(2012).143

An important feature of the structural time series model is that it can be embeded in a state144

space framework (Durbin and Koopman 2012), in which all unknown parameters associated with145

the model components are put in state and disturbance vectors, and estimated together in a dy-146

namic way using the Kalman Filter (Kalman 1960). Then forecasting is performed through signal147

extraction of the components, and likelihood evaluation. STAMP, SsfPack and OxMetrics (Koop-148

man et al. 2008, 2010; Doornik 2013) are used for the estimations and forecasts.149

As there is a long-term variability in the mean of the Niño 3.4 time series, it is incorporated in the150

model through the trend component. ENSO is also associated with a phase-locking to the annual151

cycle (Rasmusson and Carpenter 1982; An and Choi 2009; Stein et al. 2011), as its two phases152

usually peak in the Northern Hemisphere winter months of November, December, January (NDJ;153

Sarachik and Cane 2010) and decay by the following summer. Thus, seasonality in the tropical154

Pacific is of prime importance for the timely growth and decline of ENSO (Tziperman et al. 1997;155

Krishnamurthy et al. 2015), and hence, for its accurate prediction. In this model it is accounted156

for by the seasonal component. It has also been previously shown that other cyclical processes157

on inter-annual scales that occur in the equatorial Pacific ocean and atmosphere play a role in the158

formation of the ENSO phenomenon (Jin et al. 2003; Rasmusson et al. 1990; Jiang et al. 1995 and159

others). These variability modes have been found to have periods close to 1.5 years (near-annual160
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mode), 2-2.5 years (quasi-biannual mode), and 4-6 years (quasi-quadrennial mode). They are in-161

cluded in the model in the form of stochastic cycle components. For more information regarding162

the dynamical interpretation of these cycles the reader is referred to Petrova et al. (2016).163

In addition to the components discussed above, a set of predictor regression variables are added164

to account for more specific dynamical variation of the Niño 3.4 time series. These include surface165

and subsurface ocean temperature and wind stress in the equatorial western and central Pacific.166

The variables were selected on the basis of the dynamical processes in the equatorial Pacific that167

occur up to three years prior to the peak of an El Niño event.168

ENSO is a mechanism through which, as a result of the prevailing easterly zonal winds, heat is169

accumulated in the western to central equatorial Pacific subsurface ocean, and then released to the170

atmosphere or to higher latitudes after a saturation point is reached (Wyrtki 1985; Zebiak 1989;171

Jin 1997). In this way, the zonal wind in the tropics directly affects the heat content of the ocean172

via Kelvin and Rossby downwelling and upwelling waves, which in turn influence SSTs (Ballester173

et al. 2015). The change in SSTs then affects the zonal wind patterns, and the so-called Bjerknes174

feedback between the ocean and the atmosphere is thus activated (Bjerknes 1969). Considering175

these processes, we have selected regions in the tropical Pacific from which to obtain information176

about the coupled system in the form of time series, which are used as explanatory covariates in177

the ENSO forecasting model. For more details about the relevant dynamics, how these regions are178

defined, and about the predictor variables the reader is referred to Petrova et al. (2016).179

The structural time series ENSO model described above has successfully predicted all the major180

El Niño and La Niña events in the study period (Figure 4). For the purposes of the current analysis,181

it was then used to predict the 2009/10 moderate-to-strong El Niño event at long lead times. The182

aim was to use this early information and try to increase the prediction window for the dengue183

epidemics that is known to have occurred in southern coastal Ecuador after this particular warm184
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event (Stewart-Ibarra and Lowe 2013). The data sets used for the predictions are wind stress from185

the NCEP/NCAR reanalysis (Kalnay et al. 1996), sea surface temperature from the NOAA-OI-186

SST-V2 data provided by the NOAA/OAR/ESRL PSD (www.esrl.noaa.gov/psd/), and subsurface187

temperature data from the Subsurface Temperature And Salinity Analyses by Ishii et al. (2005),188

archived at the National Center for Atmospheric Research, Computational and Information Sys-189

tems Laboratory (www.rda.ucar.edu/datasets/ds285.3/).190

b. Dengue Forecasting Model191

A statistical mixed model, described in Stewart-Ibarra and Lowe (2013), was used to predict192

dengue incidence in March 2010 for the province of El Oro, in southern coastal Ecuador. Briefly,193

a negative binomial generalised linear mixed model was formulated using monthly dengue cases194

data as the response variable and the expected number of cases, based on the underlying popu-195

lation, as the model offset (Lowe et al. 2011, 2013). Dengue is a mandatory notifiable disease,196

and cases included all suspected (clinically diagnosed) cases reported to the Ministry of Health197

surveillance system. Explanatory variables included the ONI, local monthly rainfall and minimum198

temperature anomalies from the Granja Santa Ines weather station located in Machala, Ecuador199

(3◦17′′26′′ S, 79◦54′5′′ W, 5 m.a.s.l.) for the period 1995-2010, the mean monthly proportion of200

households with Aedes aegypti immatures (House Index) for the province of El Oro provided by201

the National Service for the Control of Vector-Borne Diseases, and the number of serotypes circu-202

lating in the country each month in the period 2001-2010. Serotypes are reported by the National203

Reference Center (NRC) for Dengue and other Arboviruses, the official diagnostic laboratory of204

the Ministry of Health. Temporally autocorrelated random effects for each calendar month were205

included to account for confounding factors, which might influence the annual cycle of dengue as206

well as climate, introducing an extra source of variability into the model. Yearly random effects207
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were also included to capture non-climate related inter-annual variability, such as changes in vec-208

tor control or reporting practices.209

The model, comprising a combination of lagged climate variables, non-climate covariates and210

temporally structured and unstructured random effects, is formulated as follows:211

yt ∼ NegBin(µt ,k) (2)

log(µt) = log(et)+α +βt ′(t)+∑y jx jt +δT ′(t)+∑ε jz jt (3)

where yt is the monthly dengue cases, k is the overdispersion parameter, µt is the mean dengue212

cases and et is the model offset. The relative risk then includes a model intercept, α , temporally213

autocorrelated random effects for each calendar month, βt ′(t), and exchangeable non-structured214

random effects for each year, δT ′(t). The variables x jt represent climate variables: anomalies of215

precipitation ( j = 1) and minimum temperature ( j = 2), and the ONI index ( j = 3). The variables216

z jt represent non-climate factors: the House Index and the number of serotypes circulating in the217

country.218

Model parameters were estimated in a Bayesian framework using Markov Chain Monte Carlo219

(MCMC; Gilks et al. 1996). This approach accounts for parameter uncertainty by assigning prior220

distributions to the parameters, with associated MCMC sampling yielding samples from the full221

posterior predictive distribution of dengue in any given month.222

The structured temporal random effects were assigned a first-order autoregressive month effect223

for each month (t ′(t) = 2, ...,12) with month 1 (January) aliased to the model intercept, α , and224

subsequent months following a random walk or first difference prior in which each effect is de-225

rived from the immediately preceding effect. The temporally unstructured random year effects226

were assigned independent diffuse Gaussian exchangeable prior distributions.227

The most significant variables associated with dengue variations were found to be the ONI228
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lagged by three months, and the Aedes aegypti larval House Index in the previous month. It229

was shown that a 1◦C increase in SST anomaly in Niño3.4 would result in 28% increase in dengue230

cases 3 months later, while 1% increase in the number of households with Aedes aegypti im-231

matures would result in 48% increase in dengue cases one month later. Anomalies in minimum232

temperature (Tmin) with a time lag of two months, and anomalies in precipitation with a time233

lag of one month were also important climate predictors (see Stewart-Ibarra and Lowe (2013) for234

further details). Interestingly, ONI was found to be a more important climate variable than both235

Tmin and precipitation, which could imply that the impact of ENSO is not limited to these two236

variables. Finally, ENSO was shown to have a strong positive association Tmin, while the asso-237

ciation with precipitation was only weak. In Figure 3(a) it can be seen that all El Niño events in238

the study period are related to positive anomalies in the minimum temperature, and similarly to239

dengue anomalies in the region (Figure 3(b) and (c)). However, only the stronger EN are related240

to positive precipitation anomalies (Supplementary figure A?).241

3. Results242

a. Forecast of the 2009/10 El Niño243

Shown in Figure 5(a) are forecasts of the N3.4 sea surface temperature anomalies at lead times244

between 29 and 4 months prior to the peak of the 2009/10 El Niño together with the observed245

anomalies (black curve). The explanatory covariates used for forecasting are subsurface ocean246

temperature and zonal wind stress in the western and central tropical Pacific at their significant247

lag times as discussed in Section 2a. A warm event is foreseen at all lead times, and as early as248

29 months (magenta curve in Figure 5(a)) in advance the forecasting model already indicates a249

positive anomaly of approximately +1 ◦C for the peak month of December 2009. As lead time250
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decreases, forecasts and observations become more convergent, and the model prediction skill in-251

creases. An exception is the 8 month lead forecast (green curve in Figure 5(a)), which is generally252

less accurate than the 12 month lead one. We attribute this to the ”spring barrier” in ENSO pre-253

diction, and the fact that forecasts for the end of the year started in the months March-May tend to254

be less accurate due to the presence of more noise in the atmosphere-ocean system (Sarachik and255

Cane 2010; Barnston et al. 2012). One full year before the peak of the EN (red curve in Figure256

5(a)), the forecast predicts the correct value of the warm peak in the N3.4 region of +1.46 ◦C at257

the correct time (December 2009).258

Depicted in Figure 5(b) is the ONI for NDJ, calculated from the forecasts in Figure 5(a). The259

0 lead time corresponds to the observed values for the ONI at the end of 2009/beginning of 2010260

(+1.3 ◦C for NDJ (CPC 2017)). It is evident that the forecasting scheme is capable of providing261

highly accurate information about the amplitude of the event one year in advance of the mature262

phase of El Niño (magenta curve in Figure 5(b)). Moreover, a medium-sized warm event (ONI≈+1263

◦C) is predicted for the eastern equatorial Pacific as early as 21 months ahead.264

b. Forecast of the 2010 dengue outbreak in El Oro265

Figure 6 shows the posterior predictive distribution of dengue cases for March 2010 in El Oro266

province. In this figure we show the skill of the model with observed data in order to be able to267

compare it later with forecasts from the ENSO model. The explanatory variables used to produce268

the dengue simulations here included the House Index in the previous month (February 2010),269

anomalies of precipitation in the previous month (February 2010) and minimum temperature two270

months previous (January 2010), and the ONI for the NDJ period (all other variables are held271

constant). The posterior predictive mean (dashed line) and observed dengue cases (arrow) are272

coincidental. In Figure 7, the posterior predictive distribution of dengue cases for March 2010 is273
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simulated several times, varying the ONI value each time. In Figure 7(a), the observed NDJ ONI274

value is used to produce the dengue simulation (i.e. a dengue forecast with a 3 month lead time).275

In Figure 7(b)-(f), forecast NDJ ONI values are used to simulate dengue, providing lead times of 7,276

11, 15, 20 and 24 months with respect to the March 2010 dengue peak. Note, all other explanatory277

variables were held constant. Climatological values of precipitation and temperature anomalies278

over previous years (i.e. climatology) and the House Index for the previous year (February 2009)279

were used (at relevant time lags).280

The dengue simulation in Figure 6 provides a baseline reference forecast for which to compare281

dengue simulations produced using forecasts of ONI from the ENSO model (see Figure 7). The282

skill of the dengue predictions gradually decreases with increasing lead time. However, even at283

long lead times, the posterior mean prediction is contained within the 95% credible intervals of284

the dengue predictive distribution.285

4. Discussion and Conclusion286

The results described in the previous section demonstrate that it would have been possible to287

predict the 2010 dengue outbreak in southern coastal Ecuador long before its occurrence (2 years288

earlier) by using information about the ONI from an ENSO forecasting model. ONI was found to289

be the key climate explanatory variable for dengue outbreaks in this region by Stewart-Ibarra and290

Lowe (2013). Moreover, it has a strong inter-annual signal and a weaker seasonal signal, which291

makes it a good predictor. Also, considering that local temperature and precipitation correlate with292

ONI, it should be sufficient to use only the climatological values of these variables in combination293

with the ONI in order to explain the variability in dengue incidence that is related to climate.294

In this way, even at the very long lead time of 24 months the dengue model used here is skilful295

at detecting the high chance of a dengue epidemics in March 2010 (Figure 7(f)), which actually296
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happened in the aftermath of the 2009/10 El Niño event. Therefore, long-lead El Niño information297

could theoretically be used to enhance the prediction of dengue incidence and issue early warning298

of such epidemics in Ecuador, and thus help to mitigate some of their worst effects.299

However, these results must be interpreted with caution. It should be noted that not all of the300

outbreaks of dengue in El Oro are associated with EN events. In Figure 3(c), for example, it is301

visible that a couple of outbreaks occurred at a time that was not during El Niño. Other factors302

not related to climate, such as the introduction of a new serotype or a lapse in vector control303

could trigger a sizeable epidemic in the region. Additionally, the positive association between304

warm events and dengue incidence in southern coastal Ecuador has been found for the recent305

period since 1995, and in the cases of the 1997/98, 2002/03, 2004/05, 2006/07 and 2009/10 EN306

events in particular (see Figure 2 in Stewart-Ibarra and Lowe (2013)). In fact, for validation307

purposes, the same forecasts as for the 2009/10 EN and dengue epidemic were repeated for the308

prominent 1997/98 EN event and the epidemic that followed it (Supplementary figures A1 and309

A2), and the dengue prediction was highly accurate even at the 24 months lead time. Still, although310

the effect of EN on precipitation and temperature in Ecuador has been relatively similar for the311

whole observational record, it is not clear that this positive association between the warm phase312

of ENSO and dengue would be preserved with time and with the changing climate (Tabachnick313

2010). Finally, it should also be recognized that El Niño events are variable. For example, there are314

eastern Pacific canonical EN and central Pacific ”Modoki” EN (Ashok et al. 2007), and they could315

be associated with possibly different teleconnections (Dewitte et al. 2012), and possible differences316

in the time lags that characterize them. Moreover, different types of El Niño could be predicted317

with various rates of success (Barnston et al. 2012), and the smaller events are generally harder to318

predict. Thus, in an operational forecasting framework it could be the case that a false alarm for319

EN, for instance, could result also in a false alarm for a dengue epidemic. In this way the credibility320
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of the information provided to the end users could be limited by the predictability of the climate321

system, in this case represented by the metric of ONI. It is even more probable that an outbreak322

could occur in a non-El Niño year, and one such outbreak actually happened in early 2006, which323

was a La Niña year. To prevent such false alarms, the two models briefly presented here should324

be recalibrated regularly, the forecast information should be updated frequently (as often as new325

information becomes available), and the level of uncertainty should be clearly communicated at326

each step.327

Although the afore-mentioned issues are important and must be taken into consideration, it is328

still valid that a skilful ENSO forecasting scheme could provide highly valuable information and329

make possible the development of early warning systems for forthcoming disasters (Connor and330

Mantilla 2008). In this study we demonstrated the ability of an ENSO forecasting model to predict331

a particular El Niño event and to deliver long-lead forecast information, which was then used in332

a partially climate-driven dengue prediction scheme to assess the risk of a dengue epidemic in El333

Oro in Ecuador in 2010. The ENSO model successfully predicted the 2009/10 EN at the very334

long lead time of 21 months, which provided a lead time of 24 months for the dengue forecast.335

Thus, the dengue outbreak that occurred in southern coastal Ecuador in the aftermath of this El336

Niño could in theory have been foreseen 2 years in advance. The added value of such a long-337

lead prediction is mostly economic, as public funds for health, and in particular for epidemic338

prevention and vaccination campaigns could be well planned and optimized. This example of339

a potentially successful early warning system and collaborative analysis between the spheres of340

climate science and infectious disease serves to demonstrate the benefit of climate services to341

health decision makers and professionals, and ultimately to society. Considering that dengue is342

a disease that poses substantial strains to the health care systems in tropical countries such as343

Ecuador, the results shown here open a possibility for the development of an operational scientific344
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tool to provide local decision makers with targeted health information, and to support and help345

them in planning their mitigation and adaptation measures.346
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(c) (g)

(d) (h)

FIG. 1. Mean climatology of (a)-(d) minimum surface temperature (◦C), and (e)-(h) precipitation (mm/month)

for (a), (e) January-March, (b), (f) April-June, (c), (g) July-September, (d), (h) October-December seasons. The

region of El Oro Province, Ecuador is located within the red rectangle.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 2. Anomalies with respect to composites for El Niño of minimum surface temperature (◦C) at lag (a)

0, (b) +1, (c) +2, (d) +3 and precipitation (mm/month) at lag (e) 0, (f) +1, (g) +2, (h) +3. The El Niño events

used for the calculation of composite anomalies are Dec. 1982, 1991, 1994, 1997, 2002, 2004, 2006, 2009. The

region of El Oro Province, Ecuador is located within the red rectangle.
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FIG. 3. (a) Time series of the Oceanic Niño Index (blue) and minimum temperature monthly anomalies

(red) from the Granja Santa Ines weather station located in Machala, El Oro, from January 1995 - December

2010. Dashed lines indicate the ±0.5 (◦C) threshold for El Niño and La Niña events. Scatter-plots of (b)

dengue standardised incidence and minimum temperature monthly anomalies in El Oro province, (c) dengue

standardised incidence anomalies in El Oro province and the Oceanic Niño Index, (d) dengue standardised

incidence and precipitation monthly anomalies in El Oro province. Green dots correspond to Tmin, ONI and

precipitation anomaly values >+0.5.
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FIG. 5. (a) Forecast of the 2009/10 El Niño event (N3.4 Index) starting 29 (magenta), 21 (beige), 17 (blue),

12 (red), 8 (green) and 4 (cyan) months ahead of the boreal winter peak. Observations are in black. The dashed

lines indicate the respective starting months for the forecasts, and the black dashed line indicates the peak of the

observed anomaly. (b) NDJ ONI (magenta) calculated from the forecasts started in the respective lead month

before the peak of the 2009/10 El Niño. Lead month 0 corresponds to the observed value (black line and filled

circle).

563

564

565

566

567

568

33

168 Appendices



FIG. 6. Posterior predictive distribution of dengue cases (base-10 logarithmic scale) for March 2010, El Oro

province, Ecuador. Explanatory variables include local precipitation (1 month lag) and minimum temperature (2

month lag) anomalies, House Index (1 month lag) and ONI (3 month lag observed value for NDJ). The posterior

predictive mean (dashed line), 95% credible intervals of the predictive distribution (dotted lines) and observed

dengue cases (arrow) are indicated.
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FIG. 7. Posterior predictive distribution of dengue cases (base-10 logarithmic scale) for March 2010, El Oro

province, Ecuador, using (a) observed ONI value for NDJ (3), and forecast ONI values for NDJ at lead times of

(b) 4 (7), (c) 8 (11), (d) 12 (15), (e) 17 (20), and (f) 21 (24) months with respect to the 2009/10 El Niño (with

respect to the peak in dengue). All other explanatory variables are held constant. The posterior predictive mean

(dashed line), 95% credible intervals of the predictive distribution (dotted lines) and observed dengue cases

(arrow) are indicated.

574

575

576

577

578

579

35

170 Appendices



1995 1996 1997 1998

−2

−1

0

1

2

3

 

 

29 21 17 12 8 4

(a)

an
om

al
y

(◦
C

)

Year

21 17 12 8 4 0
0

0.5

1

1.5

2

2.5

3

 

 

NDJ

(b)

O
N

I

Lead month

Fig. A1. (a) Forecast of the 1997/98 El Niño event (N3.4 Index) starting 29 (magenta), 21 (beige), 17 (blue),

12 (red), 8 (green) and 4 (cyan) months ahead of the boreal winter peak. Observations are in black. The dashed

lines indicate the respective starting months for the forecasts, and the black dashed line indicates the peak of the

observed anomaly. (b) NDJ ONI (magenta) calculated from the forecasts started in the respective lead month

before the peak of the 1997/98 El Niño. Lead month 0 corresponds to the observed value (black line and filled

circle).
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Fig. A2. Posterior predictive distribution of dengue cases (base-10 logarithmic scale) for March 1998, El Oro

province, Ecuador, using (a) observed ONI value for NDJ (3), and forecast ONI values for NDJ at lead times of

(b) 4 (7), (c) 8 (11), (d) 12 (15), (e) 17 (20), and (f) 21 (24) months with respect to the 1997/98 El Niño. All other

explanatory variables are held constant. The posterior predictive mean (dashed line), 95% credible intervals of

the predictive distribution (dotted lines) and observed dengue cases (arrow) are indicated.
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(4) Institut Català de Ciències del Clima, Barcelona, Catalonia, Spain

(5) Predictia Intelligent Data Solutions, Santander, Cantabria, Spain

(6) Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, Ecuador

(7) National Institute of Meteorology and Hydrology (INAMHI), Guayaquil, Ecuador

(8) National Institute of Public Health Research (INSPI) of the Ministry of Health, Guayaquil,
Ecuador
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Summary 
 
Background: El Niño and its impact on local meteorological conditions potentially influences interannual 
variability in dengue transmission in southern coastal Ecuador. El Oro province is a key dengue surveillance 
site, due the high burden of dengue, seasonal transmission, co-circulation of all four dengue serotypes, and 
the recent introduction of chikungunya and Zika. In this study, we used climate forecasts to predict the 
evolution of the 2016 dengue season in the city of Machala, following one of the strongest El Niño events on 
record. 
 
Methods: We incorporated precipitation, temperature and Oceanic Niño Index forecasts in a Bayesian 
hierarchical mixed model to predict dengue incidence. The model was initiated on 1 January 2016, producing 
monthly dengue forecasts until October 2016. We accounted for misreporting due to the introduction of 
chikungunya in 2015, by using active surveillance data to correct reported dengue case data. We then 
evaluated the forecast retrospectively with available epidemiological information. 
 
Findings: The predictions correctly forecast an early peak in dengue incidence in March 2016, with a 91% 
chance of exceeding the mean dengue incidence for the previous five years. Accounting for the proportion of 
chikungunya cases that had been incorrectly recorded as dengue in 2015 improved the prediction of the 
magnitude of dengue incidence in 2016.  
 
Interpretation: The main advantage of this dengue prediction framework is the use of long-lead seasonal 
climate and El Niño forecasts, which permits a prediction to be made at the start of the year for the entire 
dengue season. Combing active surveillance data with routine dengue reports improved not only model fit 
and performance, but also the accuracy of benchmark estimates based on historic seasonal averages. This 
study advances the state-of-the-art of climate services for the health, by demonstrating the potential value of 
incorporating climate information in the public health decision-making process in Ecuador.  
 
Funding: European Union FP7; Royal Society; National Science Foundation.  
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Introduction 
The burden of dengue fever (DENV: family Flaviviridae, genus flavivirus) has increased globally over the 
last three decades, from an estimated 8·3 million apparent (symptomatic) cases in 1990, to 58·4 million cases 
in 2013.1 The World Health Organization and others have advocated the use of climate information to 
manage the increasing burden of dengue as part of comprehensive early warning and response systems.2–4 
Predictions of higher than expected dengue incidence (e.g., outbreaks) can optimise the allocation of scarce 
resources through targeted and focused interventions. Prior studies have shown that climate information, 
such as seasonal climate forecasts, can be used to improve predictions of dengue outbreaks months in 
advance.5,6 
 
Dengue is sensitive to changes in climate conditions as temperature affects the physiology of the aedes 
aegypti and aedes albopictus mosquito vectors (e.g., biting and larval development rates)7,8 and the rate of 
viral replication in the mosquito.9,10 Both rainfall and drought can increase the availability of larval mosquito 
habitats (i.e., containers with standing water), depending on local water storage practices and piped water 
infrastructure.11,12 
 
The El Niño Southern Oscillation (ENSO) is the strongest inter-annual climate cycle on Earth. It occurs in 
the equatorial Pacific Ocean, and affects weather patterns worldwide through atmospheric teleconnections. 
Typical examples include excess rainfall in Peru and Ecuador, dry conditions in Indonesia, and a decrease in 
the number of typhoons in the western Pacific during the warm phase of the cycle, and more or less 
symmetrical anomalies during the cold phase.13 To monitor, assess, and predict ENSO, the climate research 
community has defined the Oceanic Niño Index (ONI), which is calculated as the three-month running-mean 
sea surface temperature (SST) departures from average in the Niño3·4 region ([120-170°W, 5°S-5°N]). The 
warm phase, El Niño, occurs when the ONI >= +0·5 for a period of at least 5 consecutive three-month 
overlapping seasons, and the cold phase, La Niña, when ONI <= -0·5.14 The recent El Niño in 2014/2016 
was one of the strongest on record, similar in magnitude to the prominent 1997/1998 event. The warming in 
the Niño 3·4 region started in October 2014 and reached a maximum ONI value OF +2·3 in November-
December-January (NDJ) 2015/16. The ONI then gradually decreased with a transition to a weak La Niña by 
autumn of 2016.14  
 
Southern coastal Ecuador is an important region to study the effects of ENSO on dengue. El Niño events are 
associated with heavy rainfall and warmer air temperatures, with anomalies greater than 2°C, as observed 
during late 2015 and early 2016.14–16 Prior studies have demonstrated the effects of ENSO and climate on 
dengue transmission in the region.12,18,19  
 
Dengue is hyper-endemic in Ecuador and the principal cause of mosquito-borne febrile illness. There is no 
official dengue alert system in the country. Each year, the authorities tend to expect the same number of 
cases as in previous years. Each local health district monitors the behaviour of dengue based on the endemic 
curve, which is calculated with retrospective dengue case reports from the last five years. The mean number 
of weekly cases and the upper 95% confidence intervals are calculated and compared with cases reported in 
the current year. Current surveillance efforts do not formally incorporate climate information, although the 
public health sector has identified this as a priority area. 
 
Chikungunya virus and Zika virus now co-circulate in the same region. The first recognised autochthonous 
cases of chikungunya were reported in Ecuador at the end of 2014.20 The first cases of Zika were confirmed 
in Ecuador on January 7, 2016, and currently (23 March 2017) 2,804 suspected and 1,058 confirmed cases of 
Zika have been reported.21  
 
In this study, we predicted monthly dengue incidence in the city of Machala, El Oro Province, Ecuador, from 
January to October of 2016. We incorporated seasonal climate forecasts of precipitation and temperature and 
a novel ONI forecast in a statistical model framework to make monthly probabilistic predictions of dengue. 
The forecasts were generated on 1 January 2016, to predict dengue from one to ten months ahead (January – 
October 2016). We accounted for misreporting due to the introduction of chikungunya virus, by using active 
surveillance data to correct reported dengue case data. We then evaluated the forecast retrospectively with 
available epidemiological information. 
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Methods 
Study area 
El Oro Province, located in southern coastal Ecuador, is a key dengue surveillance site,22,23 due the high 
burden of dengue, seasonal transmission and co-circulation of all four dengue serotypes (DENV 1-4). 
Further, the region experiences exceptionally high aedes aegypti vector indices, which has implications for 
the recent emergence of chikungunya in 2015 and Zika in 2016.12,24 There is significant movement of people 
and goods through the region, due to proximity to the Ecuador-Peru border, the presence of a major port, and 
location along the Pan America highway, likely resulting in frequent re-introductions of viruses and the 
vector.  
 
Data 
Passive surveillance data: Monthly clinically suspected cases of dengue from Machala from 2002 to 2016 
were provided by the national surveillance system operated by the Ministry of Health. Dengue is a 
mandatory notifiable disease. Cases were converted to incidence using population data provided by the 2001 
and 2010 national censuses (INEC 2001, INEC 2010), and population projections generated by INEC from 
2011-2016 (http://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/). Population estimates between 
2001 and 2010 were generated by linear extrapolation.  
 
Active surveillance data: The proportion of reported clinically diagnosed dengue cases in 2015, which were 
later confirmed to be chikungunya infections, were removed from the passive surveillance dengue case 
dataset (see Table S1). This proportion was determined from the results of a passive and active surveillance 
study of dengue infections in Machala, which has been described in detail elsewhere.22 Briefly, patients were 
referred to the study if they were clinically diagnosed with dengue fever by physicians from sentinel clinics 
and the central hospital operated by the Ministry of Health in Machala. These individuals were registered as 
dengue cases in the Ministry of Health passive surveillance system. Serum samples from patients were tested 
by the study team for acute or recent dengue infections by NS1 rapid test, NS1 ELISA, IgM ELISA, RT-
PCR, and for acute chikungunya infections by RT-PCR. Based on these results, we calculated the monthly 
proportion of clinically diagnosed dengue cases that were dengue negative and chikungunya positive, and 
used this proportion to adjust the total number of Ministry of Health dengue cases reported in the passive 
surveillance system from the same period. This allowed us to account for over reporting of dengue cases due 
to the recent introduction of a new febrile illness with similar clinical presentation as dengue. 
 
Climate data: Local daily weather data (e.g. rainfall, minimum temperature) was obtained from the Granja 
Santa Ines weather station located in Machala (3°17’26” S, 79°54’5” W, 10 m.a.s.l.) and operated by the 
National Institute of Meteorology and Hydrology (INAMHI) of Ecuador. The Oceanic Niño Index (ONI) 
was obtained from the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction 
Center of NOAA/National Weather Service. The ONI is defined as the 3-month running mean of ERSST.v4 
SST anomalies in the Niño 3·4 region, based on centred 30-year base periods updated every five years. 
 
Figure 1 shows the annual cycle of dengue incidence anomalies in Machala (per 100,000 inhabitants), at the 
monthly time scale from 2002-2015, precipitation and minimum temperature anomalies from the Granja 
Santa Ines weather station, and the ONI. El Niño events (anomalous warming of SST in Niño 3·4 region) 
are, in general, associated with positive temperature and precipitation anomalies in Machala, which in turn 
create ideal environmental conditions for dengue outbreaks (e.g. large dengue outbreak in 2010).  
 
The epidemiological surveillance and climate data, described above, was used to formulate the dengue 
forecast model, described in the following section.  
 
Dengue forecast model 
A statistical mixed model was used to produce probabilistic forecasts of dengue cases per month.18,25 Dengue 
cases, yt, were assumed to follow a negative binomial distribution with mean µt and overdispersion parameter 
κ. At the linear predictor scale, the log of the mean is equal to the log population (included in the model as an 
offset) and log relative risk rt for each time t.  
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yt ~ NegBin(µt, κ) 
log(µt) = log(p) + log(rt) 
log(rt) = α + f(βt'(t)) + Σγjxjt +δT'(t). 
 
Using exploratory analysis and model selection criteria, such as the deviance information criterion, the best 
estimate of the log relative risk comprised a smooth function for the annual cycle βt'(t), t'(t)=1,...,12, using a 
first order random walk model. The variables xjt, represent the selected climate covariates: precipitation (x1t) 
and minimum temperature (x2t), lagged by one month with respect to dengue, and ONI (x3t), lagged by three 
months with respect to dengue. Exchangeable non-structured random effects for each year δT'(t), T'(t)=1,...,14, 
were included, to account for interannual changes in dengue risk attributable to unknown factors from 2002–
2015, such as changes in vector control practices and the introduction of new serotypes and viruses (such as 
the introduction of chikungunya in 2015). Given the introduction of another new virus (Zika) in 2016, the 
random year effect in 2015 was used to approximate the effect of a new virus (and associated misreporting) 
in 2016. 
 
The model was trained using monthly dengue data from January 2002 – December 2015 and observed 
climate variables (precipitation, minimum temperature and ONI). The model was then used to produce 
forecasts for January – October 2016, making use of seasonal climate forecasts of precipitation and 
minimum temperature, and ONI forecasts from a new ENSO forecasting system (see below for details).  
 
Model parameters were estimated in a Bayesian framework using Integrated Nested Laplace Approximation 
(INLA, www.r-inla.org), to generate 1000 samples from an approximated posterior of a fitted model.26 
Subsequently, the posterior predictive distribution of dengue cases, yt, for each month was estimated by 
drawing random values from a negative binomial distribution with mean corresponding to the elements of µt 
and scale parameter corresponding to the elements of κ, estimated from the model. This created a 12 x 1000 
matrix, providing a probability distribution for each month. This data was then used to provide probabilistic 
forecasts of exceeding (a) mean incidence and (b) the upper 95% confidence interval for the mean incidence 
over the previous five years (2011-2015). 
 
Seasonal climate forecasts 
Seasonal forecasts of climate variables, such as precipitation and temperature, take advantage of the parts of 
the climate system with long-term memory, such as the oceans, to predict climate anomalies one or more 
months ahead of a given season.27 To estimate uncertainty, each forecast consists of an ensemble of 
forecasts, obtained by perturbing the initial conditions. In this study, seasonal forecasts from the Climate 
Forecast System (CFS) model, developed by the National Center for Environmental Research (NCEP), were 
used.28 The data was and accessed via the International Research Institute for Climate and Society (IRI) Data 
Library (http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CFSv2/index.html). The forecasts 
(1° zonal resolution) were arranged as a 24-member ensemble, initiated on the 1st of January 2016. The data 
consisted of monthly averages of precipitation and daily mean and minimum temperatures, for the 10 months 
following the forecast start date (January-October 2016), taken at the gridpoint nearest to the reference 
Granja Santa Ines weather station, located in Machala. The forecasts were then bias-corrected by subtracting 
the mean bias for each forecasts time, to account for the model drift.29,30 This was done using hindcasts (e.g. 
retrospective forecasts) for the period 1982-2015, and corresponding observed data from the weather station. 
 
ENSO forecast model 
A structural time series model, which uses subsurface ocean temperature, wind stress, and sea surface 
temperature as predictor variables, was used to forecast the Niño3·4 index and calculate predicted ONI 
values for 2016.31 Monthly values of the Niño3·4 were forecast at lead times up to 13 months and three-
month averages were calculated. The ENSO prediction model is run with different predictor variables at 
different lead times. All forecasts of the 2016 ONI values were calculated using the observed Niño3·4 index 
data for October, November, and December 2015. For example, the November-December-January (NDJ 
2015-2016) ONI was obtained by averaging the one-month-ahead forecast values of the Niño3·4 index for 
these months. Similarly, the December-January-February (DJF 2015-2016) ONI was obtained by averaging 
the two-month-ahead forecasts of Niño3·4 for these months. Thus, the last forecast used in this study for 
NDJ 2016-2017 ONI was a 13-month lead forecast. 
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Role of the funding sources 
The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full access to all the data in the study and had final 
responsibility for the decision to submit for publication.  
 
Results 
A set of analyses were performed and visual aids were co-designed with climate and public health specialists 
in Ecuador, to communicate the predicted climate and dengue situation for Machala, at the beginning of 
2016. This consisted of (a) the climate forecasts for 2016, along with hindcasts (retrospective forecasts) to 
indicate how well climate models had forecast climate variations over the past 30 years; (b) the dengue 
prediction for the 2016 season, along with a comparison of observed and predicted dengue over the past 14 
years; (c) a detailed forecast of dengue for each month in 2016, from January to October, showing the 2016 
model prediction, and the mean and 95% upper confidence interval dengue incidence thresholds, based on 
observed dengue incidence over the previous five years.  
 
The bias-corrected mean monthly climate forecasts of precipitation and minimum temperature (and 95% 
confidence intervals, based on the 24-member ensemble) for Machala, Ecuador, from January to October 
1986-2016, are shown in Figure 2. Observed values from the Granja Santa Ines weather station are also 
shown. The forecasts were produced on 1 January each year to predict climate conditions from one to ten 
months ahead. Observed and forecast SST anomalies in the Niño 3·4 region, from 1986-2016, produced 
using a structural time series model with a 6 month lead time are also included.31 In 2016, anomalous 
warming of Pacific SSTs was predicted, along with above average minimum temperature and below average 
precipitation in Machala. Results show that the ONI and climate forecasts models were generally successful 
in predicting past events. For example, the El Niño events in 1998 and 2010 were detected by the ENSO 
forecasting model. The CFS model correctly predicted above average minimum temperature after these 
peaks in SSTs.  
 
Observed, posterior predicted mean and 95% prediction (credible) intervals for dengue incidence rates (per 
100,000 population) in Machala, for the period 2002-2016 are shown in Figure 3. The model predicted, with 
some success, the interannual variability in dengue incidence. For example, the model accurately predicted 
the epidemic that occurred in 2010 and low dengue incidence rates in 2013. However, the model did 
underestimate incidence rates in 2003 and 2015, although observed incidence fell within the 95% prediction 
interval. Figure 4a shows the out-of-sample posterior predicted mean and 95% prediction (credible) interval 
for log dengue incidence rates (per 100,000 population) for 2016, January – October. The five-year mean 
dengue incidence (blue curve) and upper 95% confidence interval (red curve), calculated for the period 
2011-2015, are also shown.  This illustrates the typical thresholds used by the Ministry of Health in Ecuador 
to assess the severity of a dengue season. In Table 1, the probability of exceeding the mean and upper 95% 
confidence interval, calculated using incidence over the preceding five years (2011-2015) is provided. The 
model predicted an early peak in dengue incidence in March 2016 (compared to the previous five years), 
with a 91% chance of exceeding the mean dengue incidence and an 84% chance of exceeding the upper 95% 
confidence interval threshold (calculated for the previous five years). From June to October the posterior 
mean prediction was less than the five-year mean incidence, with probabilities of exceeding the mean set to 
below 30%.  
 
The observed dengue incidence, obtained after the forecast had been made, was included in Figure 4b. 
Although the posterior predicted mean slightly exceeded the observed dengue incidence for each month, the 
model correctly predicted that the peak incidence would occur earlier than expected, in March 2016. The 
model also correctly predicted with confidence that dengue incidence would be greater than the five-year 
mean incidence between January and April and less than the mean incidence from June onwards.  
 
To illustrate the benefit of incorporating active surveillance data, to correct for dengue misreporting, the 
model predictions were reproduced using the uncorrected dengue data, i.e. before removing the confirmed 
chikungunya cases from the dataset in 2015 (see Fig S1). By using the original reported data, both the 
predicted dengue incidence and five-year benchmark thresholds were inflated. 
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Discussion 
Using a probabilistic dengue prediction model, driven by climate forecasts, dengue incidence rates in 
Machala were correctly predicted to be greater than the mean incidence over the previous five years (2011-
2015) at the start of the season (between January and April 2016). The model successfully predicted the peak 
to occur earlier than expected, in March, with a 91% chance of exceeding the mean dengue incidence and an 
84% of exceeding the upper 95% prediction interval. From June 2016, the model also correctly predicted 
dengue incidence rates to be less than the mean incidence observed during the previous five years.  
 
In Ecuador, the Ministry of Health informally monitors dengue incidence based on historical passive 
surveillance data over the previous five years. When case reports exceed the upper 95% confidence interval, 
the local public health authorities are aware that there is potential for an epidemic. By incorporating forecast 
climate information, the model provided a more accurate dengue outlook for the upcoming dengue season, 
than relying on the benchmark risk thresholds of the mean and upper 95% confidence interval over the 
previous five years.  Based on the five-year average alone, public health officials would have expected the 
peak to occur later in the season.  
 
The main advantage of this new dengue prediction framework is the use of long-lead seasonal climate and 
ONI forecasts, which permits a prediction to be made at the start of the year for the entire dengue season. 
This provides advanced warning of the timing and magnitude of peak dengue incidence, which could greatly 
aid the management of scarce resources throughout the year.  
 
Dengue transmission in Ecuador is seasonal, with most cases occurring during the hot and rainy season, and 
sporadic transmission during the rest of the year. Over the last five years, the peak in dengue has shifted from 
the first trimester to the second trimester. This study shows the predicted evolution of the epidemic curve in 
2016 was only possible due to the incorporation of forecast climate information in the model. However, this 
may not be the case every year. Other factors intrinsic to the local population dynamics are likely to play a 
more dominant role for certain years. These factors are not explicitly accounted for in the model. However, 
we do include yearly random effects to crudely quantify variability resulting from unmeasured factors, such 
as variations in mosquito control measures from one year to the next. This allows us to better quantify the 
impact of climate variation on dengue inter-annual variability and make more realistic predictions of future 
risk, based on climate information.   
 
The efficacy of a climate-based dengue early warning system depends on the availability of accurate climate 
information and skilful climate forecasts. Climate forecasts are found to be more accurate during El Niño and 
La Niña episodes and in ENSO affected regions, such as southern coastal Ecuador.32 When these events 
occur, there is a clear opportunity to incorporate climate information into decision-making processes for 
climate-sensitive sectors. However, these forecasts can be less reliable during ENSO neutral years. The skill 
of climate model simulations and predictions still represents a major research area for improving the 
usefulness of health early warning systems to public health decision-makers, particularly in those regions and 
time-scales for which climate forecast skill is low or non-existent. Further work is in progress to explore 
different sources of predictability of local meteorological conditions in coastal Ecuador, to improve the skill 
of seasonal climate forecasts in this region.33 
 
Despite these limitations, this work advances the state-of-the-art of climate services for the health sector in 
Ecuador, by transitioning from proof of concept to application. The successful implementation of climate 
services for health depends on availability of relevant, high-quality climate data, as well as the institutional 
and human capacity to transform the data into reliable and tailored climate products and services.34 In our 
case, this relied on close collaboration between public health specialists, climate scientists, and mathematical 
modellers to find a compromise between the quality and resolution of the climate and epidemiological 
datasets. 
 
As well as taking advantage of the lead-times provided by climate information, the model also considered 
active surveillance data in the city to correct the dengue dataset, given the introduction of chikungunya virus 
in the region in 2015. This was a unique opportunity, as active surveillance data is not readily available in 
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many dengue-endemic regions. By removing the estimated number chikungunya cases from the dataset, 
which had been erroneously recorded as dengue cases, both the model prediction and the benchmark mean 
estimates were more realistic (compare Fig. 4B and Fig. S1). The active surveillance study showed that 
dengue case data in 2015 was in fact made up of dengue, chikungunya and other febrile diseases. The 
serological survey also tested for Zika virus. However, no cases of Zika were detected in 2015, consistent 
with Ministry of Health reports. We decided to remove chikungunya cases from the dataset, rather than using 
confirmed dengue cases only. This is because chikungunya was first introduced to the region in 2015. In 
previous years, other febrile diseases were likely to have been misreported as dengue cases. Therefore, to be 
consistent with misreporting practices in years prior to 2015, we did not correct for diseases other than 
chikungunya. In 2016, Zika virus also began to circulate in Machala but only nine cases of Zika were 
reported in the city. We assumed that improved knowledge of the clinical differences between dengue and 
chikungunya among the medical community would have reduced misreporting in 2016. There are ongoing 
analyses of active surveillance data from 2016 to understand the prevalence and co-infections of Zika, 
chikungunya, dengue, and other febrile illnesses. 
 
Ultimately, future predictions of dengue outbreaks in areas co-endemic for dengue, chikungunya, and Zika, 
require laboratory confirmation of cases for accurate differential diagnosis. This study highlights the need to 
combine climate information and active surveillance data to strengthen early warning systems for 
arboviruses in Ecuador and other El Niño-sensitive areas, experiencing co-circulation of arboviral diseases. 
 
Panel: Research in context 
 
Evidence before this study 
We searched PubMed on March 7 2017, using the terms “climate”, “dengue”, “model”, “early warning 
system”. Several studies have used climate data to formulate dengue models and produce dengue predictions. 
However, predictions are usually made in retrospective mode, using observed climate data, which would 
have been available only after the event being predicted had occurred.  
 
Added value of this study 
To our knowledge, this work constitutes the first demonstration of the use of long-lead seasonal climate and 
El Niño forecasts in a dengue early warning model for Ecuador. This study adds value to the body of 
literature on dengue modelling by 1) using real-time climate forecasts to make long-lead dengue predictions 
and 2) using active surveillance data to correct for misreporting.  
 
Implications of all the available evidence 
The results of this study contribute to an on-going collaboration between the National Institute of 
Meteorology and Hydrology and the Ministry of Health in Ecuador, to conduct studies on climate and 
dengue. Prior studies have focused on providing the evidence base of the impact of climate on dengue 
transmission and improvements in seasonal forecasts in the region. This study takes this collaboration one 
step further, by co-developing a dengue early warning system using forecast climate information, which 
could potentially be operationalised as a climate service for the public health sector. 
 
Keywords  
dengue; model; climate service; El-Niño Southern Oscillation (ENSO); seasonal climate forecast; 
probabilistic; early warning system. 
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Table 1: Monthly probabilistic dengue risk forecasts for Machala, Ecuador, January – October 2016. Mean and upper 
95% confidence interval (CI) for the mean cases and incidence (cases per 100,000 population) for the last five-year 
period 2011-2015. Probability of dengue incidence rates exceeding both the five year mean and upper 95% CI are 
shown.  
 
Month Mean (2011-2015) Probability of 

exceeding mean 
Upper 95% CI (2011-2015) Probability of  

exceeding upper 95% CI 

 Cases Incidence  Cases Incidence  

Jan 18 8 89% 27 11 84% 

Feb 33 13 85% 58 23 74% 

Mar 37 15 91% 56 22 84% 

Apr 59 23 79% 68 26 75% 

May 133 51 57% 186 71 43% 

Jun 248 95 24% 430 162 9% 

Jul 154 59 17% 251 97 5% 

Aug 79 31 22% 140 54 6% 

Sep 52 21 19% 69 27 11% 

Oct 33 13 28% 53 22 11% 
 
 
Figure 1: Annual cycle of (a) dengue incidence anomalies in Machala, Ecuador (per 100,000 inhabitants) (b) 
precipitation anomalies (mm/day) and (c) minimum temperature anomalies (deg C), from the Granja Santa Ines weather 
station, located in Machala and (d) Oceanic Niño Index (ONI, sea surface temperatures (SST) anomalies in the Niño 3·4 
region) at the monthly time scale from 2002-2015. 
 
Figure 2: Bias-corrected monthly forecasts from the Climate Forecast System version 2 (CFSv2) model for Machala, 
Ecuador, from January to October 1986-2016 for (a) precipitation (blue curve) and (b) minimum temperature (red 
curve). The shaded areas represent the 95% confidence intervals for the ensemble forecast (24 members). Observations 
from the Granja Santa Ines weather station, located in Machala, (black curve) for 1986-2015 are included. Forecasts are 
produced in January each year to predict climate conditions up to ten months in advance. (c) Forecast (purple curve) sea 
surface temperature (SST) anomalies in the Niño 3·4 region, 1986-2016. Forecasts are produced using a structural time 
series model with a six-month lead time. Observed values (black curve) for 1986-2015 are included. 
 
Figure 3: Observed (solid black curve), posterior predicted mean (dashed purple curve) and 95% prediction (credible) 
interval (purple shaded area) for dengue incidence rates (per 100,000 population) in Machala, Ecuador, 2002-2016. 
 
Figure 4: (a) Posterior predicted mean (dashed purple curve) and 95% prediction (credible) interval (purple shaded 
area) for log dengue incidence rates (per 100,000 population) in Machala, Ecuador, January – October 2016. The five 
year mean dengue incidence (blue curve) and upper 95% confidence interval (red curve), for the period 2011-2015, is 
shown. (b) as (a) with observed incidence shown in black.  
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Figure 3
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Figure 4a
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Figure 4b
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April 19, 2017

1 Data and Experiments

We use the general circulation model (GCM) experiments described in (Stuecker et al., 2015). In
these experiments idealized ENSO-like sea surface temperature (SST) anomaly forcing is prescribed
with the aim to explore the nonlinear interaction between ENSO and the annual cycle, and the role of
atmosphere-ocean coupling both in the tropics and in the RossBell region of interest in the Southern
Ocean. For the experiments an Atmospheric General Circulation Model (AGCM) and and AGCM
partially coupled (PARCP) to a thermodynamic slab ocean model (SOM) have been used.

The spatial pattern for the experiments is obtained by regressing the HadISST1 (Rayner et al.,
2003) anomalies onto the normalized N3.4 index (Figure 2 in Stuecker et al. (2015)). The forcing re-
gion applied for the experiments is bound in the box [170◦E-280◦E]x[25◦S-25◦N]. The ENSO pattern
is multiplied by a sinusoidal time series in order to obtain the ENSO-related sea surface tempera-
ture anomalies (SSTA). In this way, only SSTA in the eastern tropical Pacific (positive or negative)
characterize an El Niño (EN) or La Niña (LN) event. The model used in the experiments is the
atmospheric components CAM4 of the Community Earth System Model (CESM) version 1.0.3 (Neale
et al., 2013) in a T42 horizontal resolution and 26 vertical levels.

1.1 Atmospheric General Circulation Model experiment

The discussed SSTA are applied over an SST and sea ice climatology based on the observations in
the period 1982-2001 (Hurrel et al., 2008). A 100-year AGCM run (i.e. 40 idealized ENSO cycles)
characterized by a sinusoidal 2.5-year period ENSO SSTA forcing and modern day SST annual cycle
has been used. The forcing phase is such that the peak EN phase occurs once in December and once in
June during a 5-year cycle (the peak of LN is in March and September). Then the long-term monthly
means are removed in order to obtain anomalies. In this way, it is possible to study the sensitivity
of the anomalous circulation response related to the ENSO phase and the phase of the annual cycle.
The 2.5-year ENSO period is chosen so that the real evolution of an El Niño event, SSTAs peaking
in December (forcing frequency 0.4 yr−1) and decaying by the following boreal summer, could be
reproduced, and at the same time to be possible to clearly identify the combination tone frequency
peaks (0.6 yr−1 and 1.4 yr−1). It should be noted, however, that La Niña events do not peak as they
do in the observations, which could mean that results about LN may be less realistic. However, some
information about the processes during the cold phase should also be revealed, even thoug the phase
is different.

1.2 Partially coupled experiment

SST represent a fixed boundary condition in AGCM runs and thus are not able to adjust to heat
fluxes. Since observed SST act both as forcing and solution, some previous studies (Lau and Nath,
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2006; Kucharski et al., 2007; Lu et al., 2011; Kosaka and Xie, 2013; Lee et al., 2013) have applied
PARCP experiments in which SST (or the heat fluxes) are prescribed in parts of the model domain,
and in the rest of the domain the atmospheric model is coupled with an underlying thermodynamic
and/or dynamic ocean. Here we use the same idealized ENSO pattern as in the AGCM experiment,
but SST are prescribed from the dateline to the South American coast within the tropical band [15◦S-
15◦N]. In the rest of the domain a thermodynamical SOM is applied. There is also a buffer zone
[170◦E-180◦E]x[15◦N-25◦N], where the prescribed and calculated SSTs are gradually merged in order
to avoid unrealistic sharp SST gradients (Figure 2 in (Stuecker et al., 2015)).

The SOM applied here to obtain heat fluxes based on the observed climatology is that of (Kiehl
et al., 2006). CAM4 is run only with the modern climatology as boundary conditions for 30 years in
order to obtain the climatological net heat fluxes Fnet. Further details about the configuration of this
experiment could be found in (Stuecker et al., 2015).

Similarly to the AGCM experiment, the PARCP experiment has been designed to test the effect
of atmosphere-ocean coupling on the RossBell dynamics - a 100-year run applying a 2.5-year period
sinusoidal ENSO SSTA forcing and modern day SST annual cycle. Again El Niño peaks once in
December and once in June during any 5-year cycle, and La Niña peaks in March and September.

2 Results

2.1 Stream function RossBell index and the theoretical C-modes

Composites of the time evolution of the N3.4 SST time series (blue line), the normalized theoretical
C-mode (green line), the normalized theoretical C-mode-south (light blue line), the RossBell stream
function index for the AGCM (red line) and the RossBell stream function index for the PARCP (black
line) for the following four cases (20 member averages each) have been calculated (Figure 3):
a) El Niño events with a peak phase in December (Figure 3a);
b) El Niño events with a peak phase in June (Figure 3b);
c) La Niña events with a peak phase in March (Figure 3c);
d) La Niña events with a peak phase in September (Figure 3d);

The theoretical C-mode-south (N3.4 x annual cycle in the Southern Hemisphere extratropics)
captures some of the time evolution of the RB circulation indices for both experiments (AGCM and
PARCP) in both El Niño events with winter and with summer peaks (Figure 3a, b). The correlation
between the three series is significant (Table 1). Similarly, the theoretical C-mode (N3.4 x annual
cycle in the tropics) captures the time evolution of the RB circulation indices for both experiments
(AGCM and PARCP) in both La Niña events with autumn and with spring peaks (Figure 3c, d). At
the same time the correlations between the N3.4 SST time series and the stream function RB indices
are even higher (Table 1). Bi-linear regression has been calculated for the RB circulation index from
the PARCP experiment in terms of N3.4 index and the C-mode, as well as the N3.4 index and the
C-mode-south index for the ENSO composites. The respective regression coefficients are 0.25 for N3.4,
−0.07 for C-mode, and 0.06 for C-mode-south. The same coefficients, but for composites only of EN
events are 0.16 for N3.4, −0.42 for C-mode, and 0.44 for C-mode-south; and only of LN events 0.1 for
N3.4, −0.3 for C-mode and 0.24 for C-mode-south. Thus, we might conclude that the ENSO forcing is
important factor for the dynamics of the RB circulation pattern, but its combination with the seasonal
cycles in the south Pacific extratropics (where RB occurs) plays a more significant role during El Niño
events.

For El Niño events with winter peaks (Figure 3a) the C-mode-south time series predicts an anoma-
lous RB circulation in the developing EN phase (boreal summer and fall - July - November(0)), as well
as during the decaying phase in spring and summer of the following year (April - September (1)). In
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the following summer when negative La Niña conditions set in, however, the RB stream function index
is predicted by the time series of the other C-mode (Figure 3c), indicating that the ENSO forcing and
its combination with seasonality in the tropics is more influential during La Niña as compared to El
Niño. The same results hold for the EN with summer peaks (Figure 3b) and LN with autumn peaks
(Figure 3d). Thus, the RB dynamics is to a large extent imfluenced by ENSO regardless of the exact
timing of the cycle.

2.2 SST RossBell index and the theoretical C-modes

Composites of the time evolution of the N3.4 SST time series (blue line), the normalized theoretical
C-mode (green line), the normalized theoretical C-mode-south (light blue line), the RossBell SST
index for the AGCM (red line) and the RossBell SST index for the PARCP (black line) for the same
four cases (20 member averages each) have been calculated (Figure 4).
In the case of the SST RB indices for both EN with winter and with summer peaks, the RB SST
evolution is explained by the C-mode time series (Figure 4a, b). On the other hand, in the case
of LN the C-mode-south time series predicts the RB indices (Figure 4c, d), suggesting that the
ENSO forcing and the local seasonal cycle dominate the dynamics during the cold ENSO phase. An
interesting feature stands out in Figure 4a (EN with winter peak), there is a small RB peak in the
months August-November(0). This peak is captured by the C-mode-south index, showing that there
is some SST response also due to EN dynamics and local Southern Hemisphere seasonality. Moreover,
this peak is entirely missing in the case of the EN with summer peak (Figure 4b), indicating that
the SST response in the SH RB region indeed is affected by the EN-locking to the annual cycle. The
correlation coefficients for the respective time series are given in Table 2. The correlations between the
RB SST indices and the N3.4 index are low (Table 2). At the same time the correlations between the
RB stream function indices and the RB SST indices are significant (-0.58 in the AGCM experiment
and -0.50 in the PARCP experiment), suggesting that the RB SST response is not directly affected
by the ENSO forcing, but is rather modulated by the local atmospheric response to ENSO in the
southern extra-tropics, and by seasonality. Again, in order to confirm this conclusion, we performed
a bi-linear regression for the RB SST index from the PARCP experiment in terms of the N3.4 index
and the C-mode index, the N3.4 and the C-mode-south index, and the N3.4 and the RB circulation
index. The respective coefficients for the composites are: 0.06 for N3.4, 0.006 for C-mode, and −0.01
for C-mode-south; as well as 0.2 for N3.4, and −0.5 for RB stream function index; for composites only
of EN events: −0.1 for N3.4, 0.32 for C-mode, −0.33 for C-mode-south, as well as −0.01 for N3.4 and
−0.32 for RB stream function index; for composites only of LN events: 0.1 for N3.4, −0.3 for C-mode,
0.24 for C-mode-south, as well as 0.1 for N3.4 and −0.05 for the RB stream function index.

2.3 Stream function PSA1 index and the theoretical C-modes

Composites of the time evolution of the N3.4 SST time series (blue line), the normalized theoretical
C-mode-south (light blue line), the PSA1 stream function index for the AGCM (yellow line) and the
PSA1 stream function index for the PARCP (light green line) for the same four cases (20 member
averages each) have been calculated (Figure 5). As can be seen in Figure 5 the theoretical C-mode-
south generally predicts the PSA1 index in both the AGCM and the PARCP experiment for both EN
an LN events and in all 4 cases (i.e. regardless of the time when ENSO peaks). The time series in
the two experiments have a high correlation coefficient of 0.64, which rises to 0.88 for the composites
(Table 3), indicating that coupling plays some role in the PSA1 atmospheric index, but it is not of
fundamental importance. Overall, there is a very high correlation between the N3.4 index and the
PSA1 index, and a smaller correlation with the theoretical C-mode-south, thus indicating that the
combination between ENSO and the annual cycle in the tropics has some impact on the atmospheric
response in this part of the southern extra-tropics, but not as significant when compared to the effect
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of ENSO alone. There is also a high correlation between the stream function PSA 1 index and the
RossBell stream function index, especially for the composites in the coupled experiment (0.62). The
respective bi-linear regression coefficients are −0.02 for N3.4 index, 0.06 for C-mode index, and −0.06
for C-mode-south index.

2.4 Temperature PSA1 index and the theoretical C-modes

Composites of the time evolution of the N3.4 SST time series (blue line), the normalized theoretical
C-mode (green line), the normalized theoretical C-mode-south (light blue line), the PSA1 SST index
for the AGCM (velvet line) and the PSA1 SST index for the PARCP (magenta line) for the same
four cases (20 member averages each) have been calculated (Figure 6). The SST PSA1 index is only
slightly correlated with the PSA1 stream function index - a correlation of 0.21 (Table 4). This indicates
that the oceanic response in this part of the southern extra-tropics is not simply driven by the local
atmospheric response to ENSO. On the other hand, there is a very high lagged correlation (lag -7) of
0.88 between the SST PSA1 index and the N3.4 index in the PCMKR experiment (see Table 4 and
Figure 6). Based on this, we can conclude that the PSA1 SST response is rather directly affected by
the equatorial ENSO forcing, in fact it leads ENSO by 6-7 months, and combination mode dynamics
seems to play little effect (Table 4, Figure 6). The bi-linear regression coefficients are 0.03 for N3.4,
−0.03 for C-mode, and 0.02 for C-mode-south.

4
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Table 1: Cross-correlation coefficients R between the RB stream function indices and the C-mode
and N3.4 indices for the 2.5 yr Sine ENSO experiments (n = 1200 months). The R values for the
composites are given in brackets.

Indices R

N3.4 and C-mode 0.00 (0.00)
N3.4 and C-mode-south 0.00 (0.00)
N3.4 and RossBell ψ AGCM 0.45 (0.62)
N3.4 and RossBell ψ PARCP 0.45 (0.60)
C-mode and RossBell ψ AGCM 0.00 (−0.06)
C-mode and RossBell ψ AGCM (LN EVENTS) (0.30)
C-mode and RossBell ψ PARCP −0.10 (−0.09)
C-mode and RossBell ψ PARCP (LN EVENTS) (0.49)
C-mode-south and RossBell ψ AGCM 0.00 (0.04)
C-mode-south and RossBell ψ AGCM (EN EVENTS) (0.33)
C-mode-south and RossBell ψ PARCP 0.10 (0.08)
C-mode-south and RossBell ψ PARCP (EN EVENTS) (0.50)
RossBell ψ AGCM and RossBell ψ PARCP 0.42 (0.90)

5
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Table 2: Cross-correlation coefficients R between the RB SST indices and the C-mode and N3.4 indices
for the 2.5 yr Sine ENSO experiments (n = 1200 months). The R values for the composites are given
in brackets.

Indices R

N3.4 and C-mode 0.00 (0.00)
N3.4 and C-mode-south 0.00 (0.00)
N3.4 and RossBell SST AGCM 0.02 (0.22)
N3.4 and RossBell SST PARCP 0.00 (0.22)
C-mode and RossBell SST AGCM 0.00 (0.00)
C-mode and RossBell SST AGCM (EN EVENTS) (0.48)
C-mode and RossBell SST PARCP 0.00 (0.01)
C-mode and RossBell SST PARCP (EN EVENTS) (0.76)
C-mode-south and RossBell SST AGCM 0.00 (0.00)
C-mode-south and RossBell SST AGCM (LN EVENTS) (0.57, 0.64 at Lag(1))
C-mode-south and RossBell SST PARCP 0.00 (−0.03)
C-mode-south and RossBell SST PARCP (LN EVENTS) (0.62, 0.76 at Lag(1))
RossBell SST AGCM and RossBell ψ AGCM −0.39 (−0.58)
RossBell SST PARCP and RossBell ψ PARCP −0.15 (−0.40, −0.50 at Lag(-1))
RossBell SST AGCM and RossBell SST PARCP 0.34 (0.79)

6
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Table 3: Cross-correlation coefficients R between the PSA1 (PC3) stream function indices and the
C-mode and N3.4 indices for the 2.5 yr Sine ENSO experiments (n = 1200 months). The R values for
the composites are given in brackets.

Indices R

N3.4 and C-mode 0.00 (0.00)
N3.4 and PSA1 (PC1) ψ AGCM 0.74 (0.86)
N3.4 and PSA1 (PC1) ψ PARCP 0.68 (0.80)
C-mode and PSA1 (PC1) ψ AGCM −0.21 (−0.25, −0.26 at Lag(+1))
C-mode and PSA1 (PC1) ψ AGCM (EN EVENTS) (−0.27)
C-mode and PSA1 (PC1) ψ AGCM (LN EVENTS) (−0.41)
C-mode and PSA1 (PC1) ψ PARCP −0.34 (−0.40)
C-mode and PSA1 (PC1) ψ PARCP (EN EVENTS) (−0.50, −0.55 at Lag(+1)))
C-mode and PSA1 (PC1) ψ PARCP (LN EVENTS) (−0.61)
C-mode-south and PSA1 (PC1) ψ AGCM 0.20 (0.25, 0.27 at Lag(+1))
C-mode-south and PSA1 (PC1) ψ AGCM (EN EVENTS) (0.26), 0.33 at Lag(+1))
C-mode-south and PSA1 (PC1) ψ AGCM (LN EVENTS) (0.39)
C-mode-south and PSA1 (PC1) ψ PARCP 0.33 (0.39)
C-mode-south and PSA1 (PC1) ψ PARCP (EN EVENTS) (0.48, 0.56 at Lag(+1))
C-mode-south and PSA1 (PC1) ψ PARCP (LN EVENTS) (0.58)
PSA1 (PC1) ψ and RossBell ψ AGCM 0.36 (0.57)
PSA1 (PC1) ψ and RossBell ψ PARCP 0.40 (0.57, 0.62 at Lag(+1)))
PSA1 (PC1) ψ AGCM and PSA1 (PC1) ψ PARCP 0.64 (0.88, 0.90 at Lag(-1))
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Table 4: Cross-correlation coefficients R between the PSA1 SST indices and the C-mode and N3.4
indices for the 2.5 yr Sine ENSO experiments (n = 1200 months). The R values for the composites
are given in brackets.

Indices R

N3.4 and C-mode 0.0 (0.0)
N3.4 and C-mode-south 0.0 (0.0)
N3.4 and PSA1 SST AGCM 0.07 (0.09)
N3.4 and PSA1 SST PARCP 0.02, 0.40 at Lag(+/-7)

(0.10, −0.83 at Lag(-7), 0.67 at Lag(6))
C-mode and PSA1 SST AGCM −0.05 (−0.08)
C-mode and PSA1 SST AGCM (EN EVENTS) (0.45, −0.59 at Lag(-6))
C-mode and PSA1 SST PARCP −0.04 (−0.06)
C-mode and PSA1 SST PARCP (EN EVENTS) (0.29, 0.45 at Lag(2))
C-mode-south and PSA1 SST AGCM 0.04 (0.07)
C-mode-south and PSA1 SST AGCM (LN EVENTS) (0.66)
C-mode-south and PSA1 SST PARCP 0.03 (0.03)
C-mode-south and PSA1 SST PARCP (LN EVENTS) (0.40, 0.50 at Lag(1))
PSA1 SST AGCM and PSA1 (PC3) ψ AGCM −0.12 (−0.07)
PSA1 SST PARCP and PSA1 (PC3) ψ PARCP −0.06 (−0.09)
PSA1 SST AGCM and PSA1 SST PARCP 0.09 (0.23)
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Figure 1: Multi Taper Method (MTM) power spectra for the indicated observed indices.
The solid line indicates the power density and dashed lines the respective confidence
level (CL) based on a red noise null hypothesis.
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Figure 2: Multi Taper Method (MTM) power spectra for the indicated PARCP experi-
ment indices. The solid line indicates the power density and dashed lines the respective
confidence level (CL) based on a red noise null hypothesis.
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2.5 Sine ENSO experiment composites: El Niño Phase

a) El Niño with winter peak b) El Niño with summer peak

Figure 3: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized
theoretical C-mode-south (light blue), the RB ψ index for the AGCM experiment
(red, [106 m2 s−1 ]) and the RB ψ index for the PARCP experiment (black, [106 m2

s−1 ]). Due to the sinusoidal 2.5 yr ENSO period, the events can be separated and
composited into the following groups: a) Composite for the El Niño events with a peak
in December; b) Composite for the El Niño events with a peak in June.
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2.5 Sine ENSO experiment composites: La Niña Phase

c) La Niña with spring peak d) La Niña with autumn peak

Figure 3: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized
theoretical C-mode (green), the RB ψ index for the AGCM experiment (red, [106 m2

s−1 ]) and the RB ψ index for the PARCP experiment (black, [[106 m2 s−1 ]). Due to
the sinusoidal 2.5 yr ENSO period, the events can be separated and composited into
the following groups: a) Composite for the La Niña events with a peak in March; b)
Composite for the La Niña events with a peak in September.
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2.5 Sine ENSO experiment composites: El Niño Phase

a) El Niño with winter peak b) El Niño with summer peak

Figure 4: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized
theoretical C-mode (green), the RB SST index for the AGCM experiment (red, [◦ C])
and the RB SST index for the PARCP experiment (black, [◦ C]). Due to the sinusoidal
2.5 yr ENSO period, the events can be separated and composited into the following
groups: a) Composite for the El Niño events with a peak in December; b) Composite
for the El Niño events with a peak in June.
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2.5 Sine ENSO experiment composites: La Niña Phase

c) La Niña with spring peak d) La Niña with autumn peak

Figure 4: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized
theoretical C-mode-south (light blue), the RB SST index for the AGCM experiment
(red, [◦ C]) and the RB SST index for the PARCP experiment (black, [◦ C]). Due to
the sinusoidal 2.5 yr ENSO period, the events can be separated and composited into
the following groups: a) Composite for the La Niña events with a peak in March; b)
Composite for the La Niña events with a peak in September.
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2.5 Sine ENSO experiment composites: El Niño Phase

a) El Niño with winter peak b) El Niño with summer peak

Figure 5: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized theo-
retical C-mode-south (light blue), the PSA1 (PC1) ψ index for the AGCM experiment
(yellow, [106 m2 s−1 ]) and the PSA1 (PC1) ψ index for the PARCP experiment (light
green, [[106 m2 s−1 ]). Due to the sinusoidal 2.5 yr ENSO period, the events can be
separated and composited into the following groups: a) Composite for the El Niño
events with a peak in December; b) Composite for the El Niño events with a peak in
June.
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2.5 Sine ENSO experiment composites: La Niña Phase

c) La Niña with spring peak d) La Niña with autumn peak

Figure 5: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized theo-
retical C-mode-south (light blue), the PSA1 (PC1) ψ index for the AGCM experiment
(yellow, [106 m2 s−1 ]) and the PSA1 (PC1) ψ index for the PARCP experiment (light
green, [[106 m2 s−1 ]). Due to the sinusoidal 2.5 yr ENSO period, the events can be
separated and composited into the following groups: a) Composite for the La Niña
events with a peak in March; b) Composite for the La Niña events with a peak in
September.
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2.5 Sine ENSO experiment composites: El Niño Phase

a) El Niño with winter peak b) El Niño with summer peak

Figure 6: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized
theoretical C-mode-south (light blue), the normalized theoretical C-mode (green), the
PSA1 SST index for the AGCM experiment (light velvet, [◦ C]) and the PSA1 SST
index for the PARCP experiment (dark pink, [◦ C]). Due to the sinusoidal 2.5 yr
ENSO period, the events can be separated and composited into the following groups:
a) Composite for the El Niño events with a peak in December; b) Composite for the
El Niño events with a peak in June.
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2.5 Sine ENSO experiment composites: La Niña Phase

c) La Niña with spring peak d) La Niña with autumn peak

Figure 6: Index time evolution composites (20 members each) for the 2.5 yr Sine ENSO
experiments. Shown are the N3.4 SST forcing index (blue, [◦ C]), the normalized
theoretical C-mode-south (light blue), the normalized theoretical C-mode (green), the
PSA1 SST index for the AGCM experiment (light velvet, [◦ C]) and the PSA1 SST
index for the PARCP experiment (dark pink, [◦ C]). Due to the sinusoidal 2.5 yr
ENSO period, the events can be separated and composited into the following groups:
a) Composite for the La Niña events with a peak in March; b) Composite for the La
Niña events with a peak in September.
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5a) N3.4 index regression
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5b) RB stream f-n index regression
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5c) C-mode index regression
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5d) C-mode-south index regression
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5e) BELL stream f-n index regression
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5f) ROSS stream f-n index regression

Figure 7: 2.5 yr period sinusoidal ENSO PCMKR experiment regression coefficients.
Stream function anomalies regressed onto the respective stream function indices.
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b) RB temperature index regression
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c) C-mode index regression
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d) C-mode-south index regression
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e) BELL temperature index regression
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f) ROSS temperature index regression

Figure 8: 2.5 yr period sinusoidal ENSO PCMKR experiment regression coefficients.
SST anomalies regressed onto the respective SST indices.
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5a) N3.4 index regression
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5b) PC3 regression (8% of variance)
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5c) C-mode index regression
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5d) PSA1 (stream f-n) regression

Figure 9: 2.5 yr period sinusoidal ENSO PCMKR experiment regression coefficients.
Stream function anomalies regressed onto the respective stream function indices.
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