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Abstract

We present a methodology to address the problem of human gesture seg-

mentation and recognition in video and depth image sequences. A Bag-of-

Visual-and-Depth-Words (BoVDW) model is introduced as an extension of

the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth

features, including a newly proposed depth descriptor, are analysed and com-

bined in a late fusion form. The method is integrated in a Human Gesture

Recognition pipeline, together with a novel Probability-based Dynamic Time

Warping (PDTW) algorithm which is used to perform prior segmentation of

idle gestures. The proposed DTW variant uses samples of the same gesture

category to build a Gaussian Mixture Model driven probabilistic model of

that gesture class. Results of the whole Human Gesture Recognition pipeline

in a public data set show better performance in comparison to both standard
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BoVW model and DTW approach.

Keywords: RGB-D, Bag-of-Words, Dynamic Time Warping, Human

Gesture Recognition

1. Introduction1

Nowadays, human gesture recognition is one of the most challenging tasks2

in computer vision. Current methodologies have shown preliminary results3

on very simple scenarios, but they are still far from human performance. Due4

to the large number of potential applications involving human gesture recog-5

nition in fields like surveillance [1], sign language recognition [2], or clinical6

assistance [3] among others, there is a large and active research community7

devoted to deal with this problem. Independently of the application field,8

the usual human gesture recognition pipeline is mainly formed by two steps:9

gesture representation and gesture classification.10

Regarding the gesture representation step, literature shows a variety of11

methods that have obtained successful results. Commonly applied in image12

retrieval or image classification scenarios, Bag-of-Visual-Words (BoVW) is13

one of the most used approaches. This methodology is an evolution of Bag-14

of-Words (BoW) [4] representation, used in document analysis, where each15

document is represented using the frequency of appearance of each word in16

a dictionary. In the image domain, these words become visual elements of a17

certain visual vocabulary. First, each image is decomposed into a large set18

of patches, either using some type of spatial sampling (grids, sliding window,19

etc.) or detecting points with relevant properties (corners, salient regions,20

etc.). Each patch is then described obtaining a numeric descriptor. A set of21
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V representative visual words are selected by means of a clustering process22

over the descriptors. Once the visual vocabulary is defined, each new image23

can be represented by a global histogram containing the frequencies of visual24

words. Finally, this histogram can be used as input for any classification25

technique (i.e. k−Nearest Neighbor or SVM) [5, 6]. In addition, extensions26

of BoW from still images to image sequences have been recently proposed in27

the context of human action recognition, defining Spatio-Temporal-Visual-28

Words (STVW) [7].29

The release of the Microsoft KinectTM sensor in late 2010 has allowed30

an easy and inexpensive access to almost synchronized range imaging with31

standard video data. Those data combine both sources into what is com-32

monly named RGB-D images (RGB plus Depth). This data fusion has re-33

duced the burden of the first steps in many pipelines devoted to image or34

object segmentation, and opened new questions such as how these data can35

be effectively described and fused. Motivated by the information provided36

by depth maps, several 3-D descriptors have been recently developed [8, 9]37

(most of them based on codifying the distribution of normal vectors among38

regions in the 3D space), as well as their fusion with RGB data [10] and39

learning approaches for object recognition [11]. This depth information has40

been particularly exploited for gesture recognition and human body segmen-41

tation and tracking. While some works focus on just the hand regions for42

performing gesture recognition [12, 13, 14, 15, 16, 17], in [18] Shotton intro-43

duced one of the greatest advances in the extraction of the human body pose44

using RGB-D, which is provided as part of the KinectTM human recognition45

framework. The method is based on inferring pixel label probabilities through46
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Random Forest from learned offsets of depth features. Then, mean shift is47

applied to estimate human joints and representing the body in skeletal form.48

Hernández-Vela et al. [19] extended Shotton’s work applying Graph-cuts to49

the pixel label probabilities obtained through Random Forest, in order to50

compute consistent segmentations in the spatio-temporal domain. Girshick51

and Shotton [20] proposed later a different approach in which they directly52

regress the positions of the body joints, without the need of an intermediate53

pixel-wise body limb classification as in [18]. The extraction of body pose in-54

formation opens the door to one of the most challenging problems nowadays,55

i.e. human gesture recognition.56

In the gesture classification step there exists a wide number of methods57

based on dynamic programming algorithms for both alignment and clustering58

of temporal series [21]. Other probabilistic methods such as Hidden Markov59

Models (HMM) or Conditional Random Fields (CRF) have been commonly60

used in the literature [2]. Nevertheless, one of the most common methods for61

Human Gesture Recognition is Dynamic Time Warping (DTW) [22], since it62

offers a simple yet effective temporal alignment between sequences of differ-63

ent lengths. However, the application of such methods to gesture detection in64

complex scenarios becomes a hard task due to the high variability of the envi-65

ronmental conditions among different domains. Some common problems are:66

wide range of human pose configurations, influence of background, continu-67

ity of human movements, spontaneity of human actions, speed, appearance68

of unexpected objects, illumination changes, partial occlusions, or different69

points of view, just to mention a few. These effects can cause dramatic70

changes in the description of a certain gesture, generating a great intra-class71
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variability. In this sense, since usual DTW is applied between a sequence72

and a single pattern, it fails when taking into account such variability.73

The problem of gesture recognition in which an idle or reference ges-74

ture is performed between gestures is addressed in this paper. In order to75

solve this problem, we introduce a continuous human gesture recognition76

pipeline based on: First, a new feature representation by means of a Bag-77

of-Visual-and-Depth-Words (BoVDW) approach that takes profit of multi-78

modal RGB-D data to tackle the gesture representation step. The BoVDW79

is empowered by the combination of both RGB images and a new depth80

descriptor which takes into account the distribution of normal vectors with81

respect to the camera position, as well as the rotation with respect to the82

roll axis of the camera. Next, we propose the definition of an extension of83

DTWmethod to a probability-based framework in order to perform temporal84

gesture segmentation. In order to evaluate the presented approach, we com-85

pare the performances achieved with state-of-the-art RGB and depth feature86

descriptors separately, and combine them in a late fusion form. All these87

experiments are performed in the proposed framework using the public data88

set provided by the ChaLearn Gesture Challenge1. Results of the proposed89

BoVDW method show better performance using late fusion in comparison to90

early fusion and standard BoVW model. Moreover, our BoVDW approach91

outperforms the baseline methodology provided by the ChaLearn Gesture92

Recognition Challenge 2012. In the same way, the results obtained with the93

proposed PDTW outperform the ones from the classical DTW approach.94

1http://gesture.chalearn.org/
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The BoVDW model for gesture recognition is introduced in Section 2, as95

well as the PDTW. Experimental results and their analysis are presented in96

Section 3. Finally, Section 4 concludes the paper.97

2. BoVDW and Probability-based DTW for Human Gesture Recog-98

nition99

As pointed out in the Introduction, we address the problem of gesture100

recognition, with the constraint that an idle or reference gesture is performed101

between gestures. The main reason for such constraint is that in many real-102

world settings there always exists an idle gesture between movements rather103

than a continuous flux of gestures. Some examples are sports like tennis,104

swordplay, boxing, martial arts, or choreographic sports. However, the exis-105

tence of an idle gesture is not only related to sports, some other daily tasks106

like cooking or dancing contain idle gestures in certain situations. Moreover,107

the proposed system can be extended to be applied to other gesture recogni-108

tion domains without the need of modelling idle gestures, but any other kind109

of gesture categories.110

In this sense, our approach consists of two steps: a temporal gesture111

segmentation step (the detection of the idle gesture), and the gesture clas-112

sification step. The former one aims to provide a temporal segmentation113

of gestures. To perform such temporal segmentation, a novel probabalistic-114

based DTW models the variability of the idle gesture by learning a GMM115

on the features of the idle gesture category. Once the gestures have been116

segmented, the latter step is gesture classification. Segmented gestures are117

represented and classified by means of a BoVDW method, which integrates118
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Figure 1: General pipeline of the proposed approach.

in a late fusion form the information of both RGB and Depth images.119

The global pipeline of the approach is depicted in Figure 1. The proposal120

is divided in two blocks, the temporal gesture segmentation step and the121

gesture classification step, which are detailed in next sections.122

2.1. Gesture Segmentation: Probability-based DTW123

The original DTW is introduced in this section, as well as its common124

extension to detect a certain sequence given an indefinite data stream. In125

the following subsections, DTW is extended in order to align patterns taking126

into account the probability density function (PDF) of each element of the127

sequence by means of a Gaussian Mixture Model (GMM). A flowchart of the128

whole methodology is shown in Figure 2.129

2.1.1. Dynamic Time Warping130

The original DTW algorithm was defined to match temporal distortions131

between two models, finding an alignment/warping path between two time132
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Figure 2: Flowchart of the Probabilistic DTW gesture segmentation methodology.

series: an input model Q = {q1, .., qn} and a certain sequence C = {c1, .., cm}.133

In our particular case, the time series Q and C are video sequences, where134

each qj and ci will be feature vectors describing the j−th and i−th frame135

respectively. In this sense, Q will be an input video sequence and C will be136

the gesture we are aiming to detect. Generally, in order to align these two137

sequences, a Mm×n matrix is designed, where position (i, j) of the matrix138

contains the alignment cost between ci and qj . Then, a warping path of139

length τ is defined as a set of contiguous matrix elements, defining a mapping140

between C and Q: W = {w1, .., wτ}, where wi indexes a position in the cost141

matrix M . This warping path is typically subject to several constraints,142

Boundary conditions: w1 = (1, 1) and wτ = (m,n).143

Continuity and monotonicity: Given wτ ′−1 = (a′, b′), wτ ′ = (a, b), then144

a− a′ ≤ 1 and b− b′ ≤ 1. This condition forces the points in the cost matrix145

with the warping path W to be monotonically spaced in time.146
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Interest is focused on the final warping path that, satisfying these condi-147

tions, minimizes the warping cost,148

DTW (M) = min
W

{
M(wτ )

τ

}
, (1)

where τ compensates the different lengths of the warping paths at each time149

t. This path can be found very efficiently using dynamic programming. The150

cost at a certain position M(i, j) can be found as the composition of the151

Euclidean distance d(i, j) between the feature vectors ci and qj of the two152

time series, and the minimum cost of the adjacent elements of the cost matrix153

up to that position, as,154

M(i, j) = d(i, j) + min{M(i− 1, j − 1),M(i− 1, j),M(i, j − 1)}. (2)

However, given the streaming nature of our problem, the input video155

sequence Q has no definite length (it may be an infinite video sequence) and156

may contain several occurrences of the gesture sequence C. In this sense,157

the system considers that there is correspondence between the current block158

k in Q and the gesture when the following condition is satisfied, M(m, k) <159

θ, k ∈ [1, ..,∞] for a given cost threshold θ. At this point, if M(m, k) < θ k160

is consider a possible end of a gesture sequence C.161

Once detected a possible end of the gesture sequence, the warping pathW162

can be found through backtracking the minimum cost path from M(m, k) to163

M(0, g), being g the instant of time in Q where the detected gesture begins.164

Note that d(i, j) is the cost function which measures the difference among165

descriptors ci and qj , which in standard DTW is defined as the euclidean166

distance between ci and qj . An example of a begin-end gesture recognition167
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together with the warping path estimation is shown in Figure 2 (last 2 steps:168

GMM learning and Probabilistic DTW).169

2.1.2. Handling variance with Probability-based DTW170

Consider a training set of N sequences, S = {S1, S2, . . . , SN}, that is, N171

gesture samples belonging to the same gesture category. Then, each sequence172

Sg = {sg1, . . . , s
g
Lg
}, (each gesture sample) is composed by a feature vector 2

173

for each frame t, denoted as sgt , where Lg is the length in frames of sequence174

Sg. In order to avoid temporal deformations of the gesture samples in S,175

all sequences are aligned with the median length sequence using the classical176

DTW with Euclidean distance. Let us assume that sequences are ordered177

according to their length, so that Lg−1 ≤ Lg ≤ Lg+1, ∀g ∈ [2, .., N − 1], then,178

the median length sequence is S̄ = S⌈N
2
⌉.179

It is worth noting that this alignment step by using DTW has no relation180

to the actual gesture recognition, as it is consider a pre-processing step to ob-181

tain a set of gesture samples with few temporal deformations and a matching182

length.183

Finally, after this alignment process, all sequences have length L⌈N
2
⌉. The184

set of warped sequences is defined as S̃ = {S̃1, S̃2, . . . , S̃N} (See Figure 3(b)).185

Once all samples are aligned, the N feature vectors corresponding to each186

sequence element at a certain frame t, denoted as F̃t = {f 1
t , f

2
t , ..., f

N
t }, are187

modelled by means of a G−component Gaussian Mixture Model (GMM)188

λt = {αt
k, µ

t
k,Σ

t
k}, k = 1, . . . , G, where αt

k is the mixing value, and µt
k and189

Σt
k are the parameters of each of the G Gaussian models in the mixture. As190

2HOG/HOF descriptors in our particular case, see Sec. 3.2.1 for further details.
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a result, each one of the GMMs that model each F̃t is defined as follows,191

p(F̃t) =

G∑

k=1

αt
k · e

− 1
2
(x−µt

k
)T ·(Σt

k
)−1·(x−µt

k
). (3)

The resulting model is composed by the set of GMMs that model each192

set F̃t among all warped sequences of a certain gesture class. An example of193

the process is shown in Figure 3.194

2.1.3. Distance measures195

In the classical DTW, a pattern and a sequence are aligned using a dis-196

tance metric, such as the Euclidean distance. However, since our gesture197

samples are modelled by means of probabilistic models, in order to use the198

principles of DTW, the distance must be redefined. In thise sense, a soft-199

distance based on the probability of a point x belonging to each one of the200

G components in the GMM is consider, i.e. the posterior probability of x is201

obtained according to Eq. (3). Therefore, since
G∑

k=1

αt
k = 1, the probability202

of a element qj ∈ Q belonging to the whole GMM λt can be computed as,203

P (qj , λt) =

G∑

k=1

αt
k · P (qj)k, (4)

204

P (qj)k = e−
1
2
(qj−µt

k
)T ·(Σt

k
)−1·(qj−µt

k
), (5)

which is the sum of the weighted probability of each component. Never-205

theless, an additional step is required since the standard DTW algorithm206

is conceived for distances instead of similarity measures. In this sense, a207

soft-distance based measure of the probability is used, which is defined as,208

D(qj , λt) = exp−P (qj ,λt) . (6)
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Figure 3: (a) Different sequences of a certain gesture category and the median length

sequence. (b) Alignment of all sequences with the median length sequence by means of

Euclidean DTW. (c) Warped sequences set S̃ from which each set of t-th elements among

all sequences are modelled. (d) Gaussian Mixture Model learning with 3 components.

In conclusion, possible temporal deformations of different samples of the209

same gesture category are taken into account by aligning the set of N gesture210

samples with the median length sequence. In addition, by modelling with211

a GMM each set of feature vectors which compose the resulting warped212

sequences, we obtain a methodology for gesture detection that is able to deal213

with multiple deformations in gestures both temporal (which are modelled214
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by the DTW alignment), or descriptive (which are learned by the GMM215

modelling). The algorithm that summarizes the use of the probability-based216

DTW to detect start-end of gesture categories is shown in Table 1. Figure 6217

illustrates the application of the algorithm in a toy problem.218

Table 1: Probability-based DTW algorithm.
Input: A set of GMM models λ = {λ1, .., λm} corresponding to a gesture category, a

threshold value µ, and the streaming sequence Q = {q1, .., q∞}. Cost matrix Mm×∞

is defined, where N (x), x = (i, t) is the set of three upper-left neighbor locations of

x in M .

Output: Warping path W of the detected gesture, if any.

// Initialization

for i = 1 : m do

for j = 1 : ∞ do

M(i, j) = ∞

end
end

for j = 1 : ∞ do

M(0, j) = 0

end

for j = 0 : ∞ do

for i = 1 : m do

x = (i, j)

M(x) = D(qj , λi) + min
x′∈N (x)

M(x′)

end

if M(m, j) < µ then

W = { argmin
x′∈N (x)

M(x′)}

return

end

end

2.2. Gesture Representation: BoVDW219

In this section, the BoVDW approach for Human Gesture Representation220

is introduced. Figure 4 contains a conceptual scheme of the approach. In221
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this figure, it is shown that the information from RGB and Depth images222

is merged, while circles representing the spatio-temporal interest points are223

described by means of the proposed novel VFHCRH descriptor.

Figure 4: BoVDW approach in a Human Gesture Recognition scenario. Interest

points in RGB and depth images are depicted as circles. Circles indicate the

assignment to a visual word in the shown histogram – computed over one spatio-

temporal bin. Limits of the bins from the spatio-temporal pyramids decomposition

are represented by dashed lines in blue and green, respectively. A detailed view of

the normals of the depth image is shown in the upper-left corner.
224

2.2.1. Keypoint detection225

The first step of BoW-based models consists of selecting a set of points226

in the image/video with relevant properties. In order to reduce the amount227

of points in a dense spatio-temporal sampling, the Spatio-Temporal Interest228

Point (STIP) detector [23] is used, which is an extension of the well-known229

Harris detector in the temporal dimension. The STIP detector firstly com-230

putes the second-moment 3×3 matrix η of first order spatial and temporal231
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derivatives. Finally, the detector searches regions in the image with signif-232

icant eigenvalues λ1,λ2,λ3 of η, combining the determinant and the trace of233

η,234

H = |η| −K · Tr(η)
3, (7)

where |.| corresponds to the determinant, Tr(.) computes the trace, and K235

stands for a relative importance constant factor. As multi-modal RGB-D236

data is employed, the STIP detector is applied separately on the RGB and237

Depth volumes, so two sets of interest points SRGB and SD are obtained.238

2.2.2. Keypoint description239

In this step, the interest points detected in the previous step should be240

described. On one hand, state-of-the-art RGB descriptors are computed for241

SRGB, including Histogram of Gradients (HOG) [24], Histogram of Optical242

Flow (HOF), and their concatenation HOG/HOF [25]. On the other hand,243

a new descriptor VFHCRH (Viewpoint Feature Histogram Camera Roll His-244

togram) is introduced for SD, as detailed below.245

2.2.3. VFHCRH246

The recently proposed Point Feature Histogram (PFH) and Fast Point247

Feature Histogram (FPFH) descriptors [8] represent each instance in the 3-248

D cloud of points with a histogram encoding the distribution of the mean249

curvature around it. Both PFH and FPFH provide P6 DOF (Degrees of250

Freedom) pose invariant histograms, being P the number of points in the251

cloud. Following their principles, Viewpoint Feature Histogram (VFH)[9]252

describes each cloud of points with one descriptor of 308 bins, variant to253

object rotation around pitch and yaw axis. However, VFH is invariant to254
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(a) (b)

Figure 5: (a) Point cloud of a face and the projection of its normal vectors onto the plane

Pxy, orthogonal to the viewing axis z. (b) VFHCRH descriptor: Concatenation of VFH

and CRH histograms resulting in 400 total bins

rotation about the roll axis of the camera. In contrast, Clustered Viewpoint255

Feature Histogram (CVFH) [26] describes each cloud of points using a dif-256

ferent number of descriptors r, where r is the number of stable regions found257

on the cloud. Each stable region is described using a non-normalized VFH258

histogram and a Camera’s Roll Histogram (CRH), and the final object de-259

scription includes all region descriptors. CRH is computed by projecting the260

normal of the point cloud τ (i) of the i-th point ρ(i) onto a plane Pxy that is261

orthogonal to the viewing axis z, the vector between the camera center and262

the centroid of the cloud, under orthographic projection,263

τ (i)xy = ||τ (i)|| · sin(φ), (8)

where φ is the angle between the normal τ (i) and the viewing axis. Finally,264

the histogram encodes the frequencies of the projected angle ψ between τ
(i)
xy265

and y-axis, the vertical vector of the camera plane (see Fig. 5(a)).266

In order to avoid descriptors of arbitrary lengths for different point clouds,267
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the whole cloud is described using VFH. In addition, a 92 bins CRH is268

computed for encoding 6DOF information. The concatenation of both his-269

tograms results in the proposed VFHCRH descriptor of 400 bins shown in270

Figure 5(b). Note how the first 308 bins of the concatenated feature vector271

correspond to the VFH, that encode the normals of the point cloud. Fi-272

nally, the remaining bins corresponding to the CRH descriptor, encode the273

information of the relative orientation of the point cloud to the camera.274

2.2.4. BoVDW histogram275

Once all the detected points have been described, the vocabulary of V276

visual/depth words is designed by applying a clustering method over all the277

descriptors. Hence, the clustering method –k-means in our case– defines278

the words from which a query video sequence will be represented, shaped279

like a histogram h that counts the occurrences of each word. Additionally,280

in order to introduce geometrical and temporal information, spatio-temporal281

pyramids are applied. Basically, spatio-temporal pyramids consist of dividing282

the video volume in bu, bv, and bp bins along the u, v, and p dimensions of the283

volume, respectively. Then, bu × bv × bp separate histograms are computed284

with the points lying in each one of these bins, and they are concatenated285

jointly with the general histogram computed using all points.286

These histograms define the model for a certain class of the problem –in287

our case, a certain gesture. Since multi-modal data is considered, different288

vocabularies are defined for the RGB-based descriptors and the depth-based289

ones, and the corresponding histograms, hRGB and hD, are obtained. Finally,290

the information given by the different modalities is merged in the next and291

final classification step, hence using late fusion.292
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2.2.5. BoVDW-based classification293

The final step of the BoVDW approach consists of predicting the class294

of the query video. For that, any kind of multi-class supervised learning295

technique could be used. In our case, a simple k-Nearest Neighbour classifi-296

cation is used, computing the complementary of the histogram intersection297

as a distance,298

dF = 1−
∑

i

min(hFmodel(i), h
F
query(i)), (9)

where F ∈ {RGB,D}. Finally, in order to merge the histograms hRGB
299

and hD, the distances dRGB and dD are computed separately, as well as the300

weighted sum,301

dhist = (1− β)dRGB + βdD, (10)

to perform late fusion, where β is a weighting factor.302

3. Experiments and Results303

To better understand the experiments, firstly the data, methods, and304

evaluation measurements are discussed.305

3.1. Data306

Data source used is the ChaLearn [27] data set, provided by the CVPR2011307

Workshop’s challenge on Human Gesture Recognition. The data set consists308

of 50,000 gestures each one portraying a single user in front of a fixed cam-309

era. The images are captured by the Kinect device providing both RGB and310

depth images. A subset of the whole data set has been considered, formed311

by 20 development batches with a manually tagged gesture segmentation,312

which is used to obtain the idle gestures. Each batch includes 100 recorded313
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gestures grouped in sequences of 1 to 5 gestures performed by the same314

user. The gestures from each batch are drawn from a different lexicon of 8315

to 15 unique gestures and just one training sample per gesture is provided.316

These lexicons are categorized in nine classes, including: (1) body language317

gestures (scratching your head, crossing your arms, etc.), (2) gesticulations318

performed to accompany speech, (3) illustrators (like Italian gestures), (4)319

emblems (like Indian Mudras), (5) signs (from sign languages for the deaf),320

(6) signals (diving signals, mashalling signals to guide machinery or vehicle,321

etc.), (7) actions (like drinking or writing), (8) pantomimes (gestures made322

to mimic actions), and (9) dance postures.323

For each sequence, the actor performs an idle gesture between each gesture324

to classify. These idle gestures are used to provide the temporal segmentation325

(further details are shown in the next section). For this data set, background326

subtraction was performed based on depth maps, and a 10×10 grid approach327

was defined to extract HOG+HOF feature descriptors per cell, which are328

finally concatenated in a full image (posture) descriptor. Using this data set,329

the recognition of the idle gesture pattern will be tested, using 100 samples330

of the pattern in a ten-fold validation procedure.331

3.2. Methods and Evaluation332

The experiments are presented in two different sections. The first section333

considers the temporal segmentation experiment while the second section334

aims the gesture classification experiments.335
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3.2.1. Temporal Segmentation Experiments336

In order to provide with quantitative measures of the temporal segmenta-337

tion procedure, we first describe the subset of the data used and the feature338

extraction.339

• Data and Feature extraction340

For the temporal segmentation experiments we used the 20 development341

batches provided by the organization of the challenge. These batches contain342

a manual labelling of gesture start and end points. Each batch includes 100343

recorded gestures, grouped in sequences of 1 to 5 gestures performed by the344

same user. For each sequence the actor performs an idle gesture between345

each gesture of the gestures drawn from lexicons. Finally, this means that346

we have a set of approximately 1800 idle gestures.347

Each video sequence of each batch was described using a 20 × 20 grid348

approach. For each patch in the grid we obtain a 208 feature vector consisting349

of HOG (128 dimensions) and HOF (80 dimensions) descriptors which are350

finally concatenated in a full image (posture descriptor). Due to the huge351

dimensionality of the descriptor of a single frame (83200 dimensions), we352

utilized a Random Projection to reduce dimensionality to 150 dimensions.353

• Experimental Settings354

For both of the DTW approaches the cost-threshold value θ is estimated355

in advance using ten-fold cross-validation strategy on the set of 1800 idle356

gesture samples. This involves using 180 idle gestures as the validation data,357

and the remaining observations as the training data. This is repeated such358

that each observation in the sample is used once as the validation data.359

Finally, the threshold value θ chosen is the one associated with the largest360
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overlapping performance. For the probabilistic DTW approach, each GMM361

was fit with 4 components. The value of G was obtained using a ten-fold362

cross-validation procedure on the set of 1800 idle gestures as well. In this363

sense, the cross-validation procedure for the probability-based DTW is a364

double loop (optimizing on the number of GMM components G, and then, on365

the cost-threshold θ). In the HMM case, we used the Baum-Welch algorithm366

for training, and 3 states were experimentally set for the idle gesture, using367

a vocabulary of 60 symbols computed using K-means over the training data368

features. Final recognition is performed with temporal sliding windows of369

different wide sizes, based on the idle gesture samples length variability.370

• Methods, Measurements and Results371

Our probability-based DTW approach using the proposed distance D shown372

in Eq. (6) is compared to the usual DTW algorithm and the Hidden Markov373

Model approach. The evaluation measurements presented are overlapping374

and accuracy of the recognition for the idle gesture, considering that a gesture375

is correctly detected if overlapping in the idle gesture sub-sequence is greater376

than 60% (the standard overlapping value, computed as the intersection over377

the union between the temporal bounds in the ground truth, and the ones378

computed by our method). The accuracy is computed frame-wise as379

Acc =
TruePositives+ TrueNegatives

TruePositives+ TrueNegatives + FalsePositives + FalseNegatives
.

(11)

380

The results of our proposal, HMM and the classical DTW algorithm are shown381

in Table 2. It can be seen how the proposed probability-based DTW outperforms382

the usual DTW and HMM algorithms in both experiments. Moreover, confidence383

intervals of DTW and HMM do not intersect with the probability-based DTW in384
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Table 2: Overlapping and accuracy results.

Overlap. Acc.

Probability-based DTW 0.3908± 0.0211 0.6781 ± 0.0239

Euclidean DTW 0.3003 ± 0.0302 0.6043 ± 0.0321

HMM 0.2851 ± 0.0432 0.5328 ± 0.0519

any case. From this results it can be concluded that performing dynamic program-385

ming increases the generalization capability of the HMM approach, as well as a386

model defined by a set of GMMs outperforms the classical DTW on RGB-Depth387

data without increasing the computational complexity of the method. Figure 6388

shows qualitative results from two sample video sequences.389

3.2.2. BoVDW Classification Experiments390

In all the experiments shown in this section, the vocabulary size was set to391

N = 200 words for both RGB and depth cases. For the spatio-temporal pyramids,392

the volume was divided in 2 × 2 × 2 bins (resulting in a final histogram of 1800393

bins). Since the nature of our application problem is one-shot learning (only one394

training sample is available for each class), a simple Nearest Neighbor classification395

is employed. Finally, for the late fusion, the weight β = 0.8 was empirically set, by396

testing the performance of our method in a small subset of development batches397

from the dataset. We observed that when increasing β, starting from β = 0, the398

performance keeps increasing in a linear fashion, until the value β = 0.45. From399

β = 0.45 to β = 0.8 the performance keeps improving more slightly, and finally,400

from β = 0.8 to β = 1 the performance drops again.401

For the evaluation of the methods, in the context of Human Gesture Recogni-402

tion, the Levenshtein distance or edit distance was considered. This edit distance403

between two strings is defined as the minimum number of operations (insertions,404
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Figure 6: Examples of idle gesture detection on the Chalearn data set using the

probability-based DTW approach. The line below each pair of depth and RGB

images represents the detection of a idle gesture (step up: beginning of idle gesture,

step down: end)
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substitutions or deletions) needed to transform one string into the other. In our405

case, strings contain gesture labels detected in a video sequence. For all the com-406

parison, the mean Levenshtein distance (MLD) was computed over all sequences407

and batches.408

Table 3 shows a comparison between different state-of-the-art RGB and depth409

descriptors (including our proposed VFHCRH), using our BoVDW approach. More-410

over, we compare our BoVDW framework with the baseline methodology provided411

by the ChaLearn 2012 Gesture Recognition challenge. This baseline first computes412

differences of contiguous frames, which encode movement information. After that,413

these difference images are divided into cells forming a grid, each one containing414

the sum of movement information among it. These 2D grids are then transformed415

then into vectors, one for each difference image. Moreover, the model for a gesture416

is computed via Principal Component Analysis (PCA), using all the vectors be-417

longing to that gesture. The eigenvectors are just computed and stored, so when a418

new sequence arrives, its movement signature first is computed, and then projected419

and reconstructed using the different PCA models from each gesture. Finally, the420

classification is performed by choosing the gesture class with lower reconstruction421

error. This baseline obtains a MLD of 0.5096. Table 4 shows the results in all the422

20 development batches separately.423

When using our BoVDW approach, in the case of RGB descriptors, HOF alone424

performs the worst. In contrast, the early concatenation of HOF to HOG descrip-425

tor outperforms the simple HOG. Thus, HOF contributes adding discriminative426

information to HOG. In a similar way, looking at the depth descriptors, it can be427

seen how the concatenation of the CRH to the VFH descriptor clearly improves428

the performance compared to the simpler VFH. When using late fusion in order429

to merge information from the best RGB and depth descriptors (HOGHOF and430

VFHCRH, respectively), a value of 0.2714 for MLD is achieved. Figure 7 shows431
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Table 3: Mean Levenshtein distance for RGB and depth descriptors.

RGB desc. MLD Depth desc. MLD

HOG 0.3452 VFH 0.4021

HOF 0.4144 VFHCRH 0.3064

HOGHOF 0.3314

the confusion matrices of the gesture recognition results with this late fusion con-432

figuration. In general, the confusion matrices follow an almost diagonal shape,433

indicating that the majority of the gestures are well classified. However, the re-434

sults of batches 3, 16, 18, 19 are significantly worse, possibly due to the static435

characteristics of the gestures in these batches. Furthermore, late fusion was also436

applied in a 3-fold way, merging HOG, HOF, and VFHCRH descriptors separately.437

In this case the weight β was assigned to HOG and VFHCRH descriptors (and438

1−β to HOF), improving the MLD to 0.2662. From this result it can be concluded439

that HOGHOF late fusion performs better than HOGHOF early fusion.440

4. Conclusion441

In this paper, the BoVDW approach for Human Gesture Recognition has been442

presented using multi-modal RGB-D images. A new depth descriptor VFHCRH443

has been proposed, which outperforms VFH. Moreover, the effect of the late fu-444

sion has been analysed for the combination of RGB and depth descriptors in the445

BoVDW, obtaining better performance in comparison to early fusion. In addition,446

a probabilistic-based DTW has been proposed to asses the temporal segmentation447

of gestures, where different samples of the same gesture category are used to build448

a Gaussian-based probabilistic model of the gesture in which possible deformations449
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Figure 7: Confusion matrices for gesture recognition in each one of the 20 development

batches.
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Table 4: Mean Levenshtein Distance of the best RGB and depth descriptors

separately, as well as the 2-fold and 3-fold late fusion of them. Results obtained by

the baseline from the ChaLearn challenge are also shown. Rows 1 to 20 represent

the different batches.

HOGHOF VFHCRH 2-fold L.F. 3-fold L.F. Baseline

1 0.19 0.17 0.12 0.20 0.42

2 0.24 0.30 0.24 0.26 0.57

3 0.76 0.39 0.40 0.49 0.78

4 0.14 0.08 0.08 0.11 0.32

5 0.08 0.33 0.17 0.17 0.25

6 0.41 0.47 0.44 0.34 0.54

7 0.10 0.18 0.11 0.13 0.64

8 0.12 0.26 0.14 0.08 0.40

9 0.11 0.18 0.15 0.13 0.30

10 0.57 0.40 0.39 0.46 0.79

11 0.47 0.36 0.27 0.34 0.54

12 0.37 0.20 0.21 0.17 0.42

13 0.16 0.14 0.10 0.09 0.34

14 0.41 0.34 0.30 0.30 0.69

15 0.38 0.28 0.34 0.28 0.54

16 0.22 0.41 0.34 0.29 0.42

17 0.38 0.16 0.15 0.17 0.55

18 0.38 0.43 0.40 0.38 0.53

19 0.67 0.50 0.50 0.44 0.61

20 0.46 0.57 0.56 0.48 0.52

are implicitly encoded. In addition, to embed these models into the DTW frame-450

work, a soft-distance based on the posterior probability of the GMM was defined.451

In conclusion, a novel methodology for gesture detection has been presented, which452

is able to deal with multiple deformations in data.453
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