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ABSTRACT

We consider the propagation of gravitational waves (GWs) in de Sitter spacetime and how a non-zero value of
the cosmological constant might affect their detection in pulsar timing arrays (PTAs). If Λ �= 0, the waves are
anharmonic in Friedmann–Robertson–Walker coordinates, and although this effect is very small it gives rise to
noticeable consequences for GWs originating in extragalactic sources such as spiraling black hole binaries. The
results indicate that the timing residuals induced by GWs from such sources in PTAs will show a peculiar angular
dependence with a marked enhancement around a particular value of the angle subtended by the source and the
pulsars, depending mainly on the actual value of the cosmological constant and the distance to the source. The
position of the peak could represent a gauge of the value of Λ. The enhancement that the new effect brings about
could facilitate the first direct detection of GWs while representing a local measurement of Λ.
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1. INTRODUCTION

Pulsar timing arrays (PTAs) are among the most promising
candidates to provide the first direct detection of gravitational
waves (GWs). They have already been collecting data for
almost a decade and they are expected to obtain signals in
the next few years. The idea behind the PTA is to detect the
correlated disruption of the periods measured for a significant
number of pulsars due to the passing of a GW through the
system (Hobbs 2008a, 2008b, 2011; Hobbs et al. 2010; Lee
et al. 2011). The frequency range sensitive to this method
is 10−9 s−1 � w � 10−7 s−1 (Hobbs 2011), and the timing
residual is expected to follow a power law (Hobbs 2008a, 2008b;
Jenet et al. 2006). A key problem in making predictions for
these signals is modeling in a realistic way the wavefunctions
produced in the different sources; in particular, the value of the
amplitude of the metric perturbation h is a free parameter in
principle. Some bounds in the range of 10−17 � h � 10−15

have been already set (Jenet et al. 2006).
If Λ �= 0, GWs propagate in a de Sitter spacetime, not in

flat Minkowskian spacetime. The general practice is simply to
account for the expansion of the universe by using a redshifted
frequency according to the distance of the source (Lee et al.
2011). In this work we go beyond this exceedingly simple
approximation and use an approximate solution of the GW
equation in de Sitter spacetime, previously derived by Bernabeu
et al. (2011), and see that the conclusions change.

We assume that Λ is somehow an intrinsic property of
spacetime rather than an effective description valid at extremely
large scales. If so, it is expected to be present at virtually all
scales, with the possible exception of gravitationally bound
objects such as galaxies or local groups of galaxies. If Λ is
a fundamental constant of nature, there should be a way of
determining its value locally. By “locally” here we mean at
redshifts z � 1. This question has been addressed by Sereno &
Jetzer (2006), Balaguera-Antolinez et al. (2006), Iorio (2008a,
2008b), Suto (1993, 1996), Peebles (1976, 1980), Adkins et al.
(2007), Rindler (1998, 2006), Kottler (1918), and Bernabeu et al.
(2010) with varying conclusions. We will see that GWs might

open an effective window to realize this program. In fact, our
results suggest that the currently observed non-zero value of Λ
may actually facilitate the first direct detection of GWs under
certain circumstances.

This paper is organized as follows. In Section 2 we present
the wavefunctions used, define the way in which the timing
residuals are calculated, and include a brief explanation of the
coordinate systems involved. Section 3 is devoted to presenting
our numerical analysis. In Section 4 we discuss the possibility
of using this method to obtain some results on the value of the
cosmological constant. We sum up our conclusions in Section 5.

2. GRAVITATIONAL WAVES AND TIMING
RESIDUALS WITH Λ �= 0

In Minkowski spacetime, GWs obey the simple wave equation
�h = 0. It is possible to show (Bernabeu et al. 2011) that
in de Sitter spacetime with Λ �= 0 and within the linearized
approximation one can find solutions of the linearized Einstein
equations in the traceless Lorenz gauge (TT gauge; Price &
Yang 2008) which obey the same equation of motion:

�hSdS
μν = 0. (1)

Spherical massless waves are solutions of this equation away
from the source:

hSdS
μν = 1

r
(Eμν cos[w(t − r)] + Dμν sin[w(t − r)]). (2)

However, as shown in Bernabeu et al. (2011), this simple
linearized solution only holds in a specific set of coordinates
closely related to the Schwarzschild–de Sitter (SdS) coordinates.
This is easily seen by considering a linearized background
solution (rather than wave-like solutions) and realizing that their
unique static solution is the (linearized) SdS metric (Bernabeu
et al. 2011).

Although they provide a perfectly valid solution for GWs,
SdS coordinates are not adequate for making observational
predictions. The proper isotropic and homogeneous coordinates
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Figure 1. Relative coordinates of the GW source (R = 0), the Earth (located at
Z = ZE) with respect to the GW source, and the pulsar located at coordinates
P = (PX, PY , PZ) with respect to the source. The Z direction is chosen to be
defined by the source-Earth axis. Angles α and β are the polar and azimuthal
angles of the pulsar with respect to this axis.

are the Friedmann–Robertson–Walker (FRW) ones1 and the
solution (2) in such coordinates, neglecting O(Λ) and higher
terms, reads

hFRW
μν = Eμν

R

(
1 +

√
Λ
3

T

)

× cos

[
w(T − R) + w

√
Λ
3

(
R2

2
− T R

)]

+
Dμν

R

(
1 +

√
Λ
3

T

)

× sin

[
w(T − R) + w

√
Λ
3

(
R2

2
− T R

)]
, (3)

where R is the usual radial FRW comoving coordinate and T is
cosmological time. Note that the linearization process that has
been used makes sense as long as ΛT 2, ΛR2 � 1 and also that,
in the TT gauge, the only spatial components of the metric that
are different from zero are the X, Y entries of the polarization
tensors Eμν , Dμν . Although some temporal components of Eμν

and Dμν are also non-zero in these coordinates, they are several
orders of magnitude smaller than the spatial ones and therefore
will not be relevant for the present study.

We note that the phase velocity of propagation of the GW in
such coordinates is not vp = 1 but vp ∼ 1 − √

(Λ/3)T + O(Λ)
(Bernabeu et al. 2011). On the other hand, with respect to the
ruler distance traveled (computed with gij), the velocity is still
1 (up to terms in Λ of higher order than those considered).

Consider the set-up depicted in Figure 1 describing the
relative situation of a GW source (possibly a very mas-
sive black hole binary), the Earth, and a nearby pul-
sar. The timing residual (Deng & Finn 2011) induced by

1 Note that the FRW metric cannot be approximated to obey any linearized
Einstein equation; see Bernabeu et al. (2011) for a detailed discussion.

Equation (3) will be given by

H (TE,L, α, β, ZE,w, ε, Λ) =
− L

2c
n̂i n̂j

∫ 0

−1
dx hFRW

ij

(
TE +

L

c
x, P + L(1 + x)n̂

)
(4)

along the null geodesic from the pulsar to the Earth, where we
assume2 ε ∼ |Eij | ∼ |Dij |, i, j = X, Y and the unit vector n̂ is
given by (− sin α cos β,− sin α sin β, cos α), ZE is the distance
from the Earth to the source, L is the distance to the pulsar,
and TE is the time of arrival of the wave to the local system.
In deriving the previous timing residual we have neglected the
(non-zero) time components of Eμν,Dμν that, as previously
indicated, are several orders of magnitude smaller. The speed of
light has been restored. We have assumed that from the pulsar to
the Earth the electromagnetic signal follows the trajectory given
by the line of sight R(x) = P +L(1+x)n̂. Since we assume2 that
within the Galaxy Λ = 0, L is also the ruler distance. Explicitly

R(x) = P + L(1 + x)n̂

= (−xL sin α cos β,−xL sin α sin β,ZE + xL cos α)

(5)

or in modulus

R(x) =
√

Z2
E + 2xLZE cos α + x2L2 � ZE + xL cos α, (6)

since we are considering L � ZE . This approximation does
not affect in any significant way the results below, nor do we
consider the known contribution to the timing residual H from
Earth’s peculiar motion. The integral is of course independent
of the angle β for any single pulsar but it will depend on the
relative angles when several pulsars are averaged.

Let us consider the arguments of the trigonometric functions
in Equation (3) and define

Θ(x, TE, L, α, β, ZE,w, Λ)

≡ w

(
TE +

L

c
x − ZE

c
− x

L

c
cos α

)

+ w

√
Λ
3

((
ZE

c
+ x L

c
cos α

)2

2
−

(
TE +

L

c
x

)

×
(

ZE

c
+ x

L

c
cos α

) )
. (7)

Then

H (TE,L, α, β, ZE,w, ε, Λ)

= −1

2

Lε

c
(sin2 α cos2 β + 2 sin α sin β cos2 β − sin2 α sin2 β)

×
∫ 0

−1
dx

1

(ZE + xL cos α)

(
1 +

√
Λ
3

(
TE +

L

c
x

))

× (cos Θ + sin Θ). (8)

At this point one should ask whether the observationally
preferred, exceedingly small value of the cosmological constant
(Riess et al. 1998, 2004; Perlmutter et al. 1999; Riess 2000;
Linder & Perlmutter 2007; Kowalski et al. 2008; Wood-Vasey

2 This approximation is inessential and can be easily discarded.
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Figure 2. (Left) The raw timing residual for Λ = 10−35 s−2 as a function of the angle α subtended by the source and the measured pulsar as seen from the observer.
The figures are symmetrical for π � α � 2π . (Right) The same timing residual for Λ = 0. In both cases we take ε = 1.2 × 109 m, L = 1019 m, and TE = (ZE/c) s
for ZE = 3 × 1024 m; with these values |h| ∼ (ε/R) ∼ 10−15 which is within the expected accuracy of PTA (Jenet et al. 2006). Similar results are obtained for other
close values of TE .

(A color version of this figure is available in the online journal.)

et al. 2007; Riess & Livio 2006; Spergel et al. 2007; Eisenstein
et al. 2005; Seo & Eisenstein 2003; Fu et al. 2008; Guzzo et al.
2008) affects the timing residuals from a pulsar at all. To answer
this question we take reasonable values of the parameters both
for the GW and one pulsar location and plot a snapshot of the
resulting timing residuals as a function of the angle α for the time
of arrival, TE, of the wave to the local system. The comparison
is shown in Figure 2. The figure speaks for itself and strongly
suggests that the angular dependence of the timing residual is
influenced by the value of the cosmological constant, in spite
of its small value. A feature that catches the eye immediately
is an enhancement of the signal for a specific small angle α
(corresponding generally to a source of low Galactic latitude, or
a pulsar nearly aligned (but not quite as otherwise Eij n̂

i n̂j = 0,
although the total timing residual is non-vanishing due to the
O(Λ) time components for TT waves) with the source.

To understand this enhancement let us analyze the behavior
of the integral

I =
∫ 0

−1
dx(cos Θ + sin Θ), (9)

with Θ defined in Equation (7), as the prefactors in Equation (8)
are not relevant for the discussion. The result can be expressed as
a combination of Fresnel functions, and sines and cosines. In the
limit where Λ → 0 the Fresnel functions approach a constant
and the behavior is the usual for trigonometric functions. In this
respect, the Fresnel functions are responsible for the position
and magnitude of the enhancement. This is clearly seen when I2

is plotted3 as a function of the angular separation α between the
source and the pulsar. I2 always shows a maximum, the position
of which is quite stable under changes of most of the parameters
involved. It turns out to only depend strongly on the value of
Λ and on the distance to the source. It actually depends on the
timescales involved rather than on the distance to the source
but since the time of arrival of the wave to the local system is
directly related to the distance, the dependence is correlated.
This is evidenced in Figure 3, which shows plots of I 2 for
different values of frequency, distance to the pulsar, distance
to the source and cosmological constant. In Figure 3(a) the
following reasonable values ZE = 3 × 1024 m, w = 10−8 s−1,

3 We plot I2 rather than I to deal with a positive quantity.

Figure 3. Integral I 2 plotted for different values of the parameters involved.
(a) corresponds to the reasonable values w = 10−8 s−1, L = 1019 m,
ZE = 3 × 1024 m, Λ = 10−35 s−2, and TE = 1016 s; (b) change in pulsar
distance to L = 1021 m; (c) change in frequency to w = 10−7 s−1; (d) change
in time to TE = (1016 + 108) s; (e) change in time and distance to the source to
ZE = 3 × 1023 m and TE = 1015 s; (f) change in the cosmological constant to
Λ = 10−36 s−2.

(A color version of this figure is available in the online journal.)

TE = (ZE/c) s, and L = 1019 m are used. In (b) there is a change
in the distance to the pulsar; in (c) we change the frequency; in
(d) we keep the distance to the source fixed and use the time
at the end of a hypothetical three-year observation; in (e) we
change the distance to the source by one order of magnitude
(therefore time also changes); finally in (f) the cosmological
constant is changed. It is clear that the most dramatic changes
occur when either the distance to the source or the value of the
cosmological constant is modified.
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3. SIGNIFICANCE OF THE TIMING RESIDUALS

Now we would like to make a more detailed study of this
possible signal. For that we use the ATNF pulsar catalogue
(Manchester et al. 2005). As is well known, pulsars are re-
markably stable clocks whose periods are known to a very high
accuracy, up to 10−14 s in some cases. However, to achieve this
extreme precision requires some hypotheses that are not appro-
priate for the physical situation we are considering and we will
assume the more modest precision of σt = 9.6×10−7 ∼ 10−6 s.
This value is obtained by averaging the precision achieved for
the best measured pulsars included in the International Pulsar
Timing Array Project, Table 1 in Hobbs et al. (2010). We are
aware that only around 40 pulsars are monitored with such ac-
curacy for the time being. Any future improvements in precision
and scope would directly translate into an improvement of the
results presented in this section.

For each pulsar we have the Galactic latitude (φ), the Galactic
longitude (θ ), and the distance (L) to the Earth. We transform
these coordinates to (α, β), where α, as already explained, is
the angular separation between the Earth–GW source line and
the Earth–pulsar line. β corresponds to the azimuthal angle
of the pulsar with respect to the plane perpendicular to the
Earth–source line.

The statistical significance of the timing residual will be

σ =

√√√√√ 1

NpNt

Np∑
i=1

Nt∑
j=1

(
H

(
T

i,j

E , Li, αi, βi, ZE,w, ε, Λ
)

σt

)2

,

(10)
where σt is the accuracy with which we are able to measure
the pulsar signal period. We take σt = 10−6 s as mentioned.
The index i running from 1 to Np labels the pulsars included
in the average.

In the statistical average we assume an observation time span
of approximately three years, starting at the time the signal
is 1016 s old (time of arrival at our Galaxy). We assume that
we perform observations every 11 days, that is Nt = 101;
1016 s � TE � 1.00000001 × 1016 s. Since the coalescence
times of supermassive black hole binaries can be of the order of
107 s (Brown et al. 2007; this is a much shorter timescale than
the time of arrival of the perturbation to the local system), it is
justified to use TE = (ZE/c). In Figure 3(d) one can also see
that the position of the enhancement is not significantly altered
in the time span of the observation. While we are aware that
three years is a short time (most studies consider observational
periods from five to ten years) we only intend to present here a
proof of principle and we prefer to consider a short period for
our numerical analysis. Longer periods of observation will of
course reinforce the signal.

We turn to the angular dependence of the significance. In the
following σ (α) is plotted keeping α as a free parameter (note
that it is not summed), that is, using a set of five fixed pulsars
supposed to be exactly at the same angular separation4 from a
source the position of which we vary between 0 � α � π (the
result is again symmetrical for π � α � 2π ). This could be
done for any set of five pulsars, since, as shown in the previous
section, the position of the peak does not depend on the values

4 The chosen pulsars belong to a globular cluster that in principle cannot be
currently timed with the assumed accuracy due to the internal accelerations
within the cluster; in this respect this is still a theoretical exercise. We thank
the referee for pointing this out to us.

Table 1
List of Pulsars Whose Li and βi We Used to Calculate σ (α)

for a Hypothetical Source at Angular Separation α

Pulsars from the ATNF Catalogue

J0024−7204E
J0024−7204D
J0024−7204M
J0024−7204G
J0024−7204I

Li and βi . However, we used the set of real pulsars in Table 1,
which are all close to each other at a distance L ∼ 1020 m.

It must be borne in mind that although there are over 600
pulsars, making it easy to find clusters with a similar α (albeit
possibly with very different values of L and β), the precision with
which they are timed can vary widely. The overall magnitude
of the significance depends directly on the precision of the
measured period as well as on the amplitude of the wave. The
results presented in the following may not be entirely realistic
due to the uncertainties in these values, but the general features
of the analysis would remain unchanged if more realistic values
(eventually available) were used:

σ (α) =
√

1
5×101

5∑
i=1

101∑
j=1

(
H

(
T

i,j

E ,Li ,α,βi ,3×1024,10−8,1.2×109,10−35
)

10−6

)2

.

(11)

Lengths are given in meters, and frequencies in s−1. We observe
a huge peak at α ∼ 0.19 rad (see Figure 4). If a source
is located at such an angular separation5 from the average
angular position of the five pulsars chosen for observation, the
significance could be boosted some 50 times. Let us compare it
to the same calculation taking Λ = 0 and redshifted frequency
weff = w/(1 + z); z ∼ 0.008, which is the corresponding
redshift for an object 1024 m away, calculated using both matter
and energy densities. No peak is observed.

Now we take a list of observed pulsars well distributed in
the Galaxy. The angles (α, β) are calculated for all of them
considering two hypothetical sources of GWs: one located at
Galactic coordinates θS1 = 300◦, φS1 = −35◦ and another
located at θS2 = 4◦, φS2 = 10◦. We order the pulsars from
the lowest α to the largest and group them in sets of five. We
consider 27 sets of 5 pulsars, giving a list of 135. For each set
we calculate the significance

σk =
√

1
5×101

5k∑
i=1

101∑
j=1

(
H

(
T

i,j

E ,Li ,αi ,βi ,3×1024,10−8,1.2×109,10−35
)

10−6

)2

(12)

5 The angular position of the enhancement corresponds approximately to a
stationary point of the phase of the wave, i.e., the path along which the phase
of the gravitational wave is practically constant, making the integrated timing
residual maximal. If one considers the wave front of a Minkowskian spherical
wave, there is no path parameterized as the argument in Equation (4),
corresponding to a straight line in space, with a constant phase (other than
paths pointing to the source, for which the amplitude is zero). Instead, if one
considers a wave with a frequency and wave vector depending on the
spacetime coordinates, it is in principle possible to find a path where the
changes in frequency and wave vector compensate for the change in phase,
making the overall phase constant along that path. It can be seen by deriving
the phase of the trigonometric function in hij with respect to x and imposing
the stationary phase condition that one gets a solution for α �= 0 that depends
very weakly on x itself.
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Figure 4. Top: σ (α) for Λ = 10−35 s−2 , middle: zoom on the lower values for
Λ = 10−35 s−2, and bottom: comparison to Λ = 0.

and plot it as a function of the average angle of the set, ᾱk =∑5k

i=1(αi/5) with 1 � k � 27. Note that this is different from
Equation (11); here we choose two hypothetical fixed sources
and a long list of pulsars grouped by their angular separation
α to these sources. This could be a realistic calculation once
real sources are considered. The results obtained are plotted in
Figure 5. In both cases a very noticeable peak is observed at the
expected angle.

The reason why the peak for Source 2 is lower than that for
Source 1 is that Source 2 is located close to but not at the precise
angular separation of a real cluster of pulsars. This is meant to
illustrate that even in that case a significant enhancement of the
signal can be achieved.

Figure 5. Plot of σk(ᾱk), k = 1, 27. Λ = 10−35 s−2. Circles correspond to
Source 1 and squares to Source 2. The full range is shown at the top, and a zoom
on the lower values for Λ = 10−35 s−2 and comparison to Λ = 0 is shown on
the middle and bottom, respectively.

Finally, the dependence of σ on the frequency

σ (w) =
√

1
Np ·101

Np∑
i=1

101∑
j=1

(
H

(
T

i,j

E ,Li ,αi ,βi ,3×1024,w,1.2×109,10−35
)

10−6

)2

(13)

has also been investigated. Some of our preliminary checks
indicated that no differences at all were observed in the power
spectrum when the value of Λ was changed and that, as expected
(Hobbs 2008a, 2008b; Hobbs et al. 2010; Jenet et al. 2006), the
signal follows a power law σ ∼ (1/w). However, let us take
a closer look at the dependence on frequency for a short list
of pulsars located at the right angular separation to observe
the peak. We have already seen that the significance grows
notoriously in this angular region. Figure 6 (middle) shows the
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Figure 6. Top: σ (w) for 15 pulsars away from the peak angular region for
Source 1; the solid line corresponds to Λ = 10−35 s−2 and dots correspond to
Λ = 0. Middle: σ (w) for 15 pulsars at the peak angular region for the same
source; the solid line corresponds to Λ = 10−35 s−2 and the data close to the
horizontal axis correspond to Λ = 0. Bottom: zoom on the Λ = 0 case.

frequency dependence of the signal for 15 pulsars at the right
spot with respect to Source 1. As can be clearly seen, the signal
significance grows enormously again for Λ = 10−35 s−2 and
apparently does not follow a power law. For the same short list
of pulsars and for Λ = 0 the signal falls back to smaller values
and its envelope shapes toward a power law. In Figure 6 (top) we
also present the same plot for 15 pulsars located at an angular
separation of around α ∼ 1.1 rad, that is, away from the peak.
In this case we see no differences between the different values of
the cosmological constant, as well as a clear power-law behavior.
The magnitude of the signal is compatible with that of the 15
pulsars at the peak separation when Λ = 0.

Figure 7. Λ(α) obtained numerically from the positions of the peaks in the
σ (α) plots for different values of the cosmological constant (dots) and obtained
analytically from an approximation of the Fresnel functions involved in the
timing residual (line).

4. MEASURING THE COSMOLOGICAL CONSTANT

We have seen in the previous section that there is an
enhancement in the timing residual for a particular value of
the angle α when GWs propagating in de Sitter spacetime are
measured. Among all the dependences, and when the distance
to the source is well known, the most relevant appears to
be that related to the value of the cosmological constant Λ. The
position of the peak depends strongly on the value of Λ, and
moves toward the central values of the angle for larger values.

The values of Λ as a function of the position at which the peak
would be found are plotted in Figure 7 (dots) using the positions
found in the plots for σ (α) (Equation (11)) for different values
of the cosmological constant. This calculation was carried out
using two independent numerical methods to ensure that it is
free of numerical instabilities (this is a necessary precaution as
large numbers are involved).

We argued in Section 2 that the position of the peak is deter-
mined by the Fresnel functions one obtains when calculating the
timing residuals. Indeed, the integral I in Equation (9), which
captures the crucial effect, gives a prefactor times a combination
of Fresnel functions times a combination of ordinary trigono-
metric functions. The last are featureless; however, the prefactor
becomes quite large for a specific value of the parameters in-
volved. This particular value renders the Fresnel function close
to zero and the product is a number close to 2. Away from this
point the net result is small.

Using the series expansion of the Fresnel functions at first
order we are able to obtain an approximate analytical expression
for the relation Λ(α); that is, for the value of the cosmological
constant that (all other parameters being fixed) gives a strong
enhancement of the significance σ at a given angle α

Λ(α) = 12c2 sin4
(

α
2

)
((cTE − ZE) cos α + ZE)2 � 12c2 sin4

(
α
2

)
Z2

E

, (14)

which is also shown in Figure 7 (line). We have used the fact
that, taking into account the duration of a black hole merger,
cTE � ZE . Equation (14) is a clear prediction that could
be eventually tested. In fact, this effect could also facilitate
enormously the detection of GWs coming from massive binary
black holes by carefully selecting and binning groups of pulsars,
although the possibility of measuring Λ locally certainly looks
to us more exciting.

Throughout this work we have considered only the effect of Λ
on GWs and the way they affect pulsar timing residuals, and we
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have neglected the effect of matter or matter density. In fact, the
main effect of the latter would be through the familiar redshift
in the frequency of the GW. The overall frequency value does
not play a crucial role in the previous discussion provided it is
low enough to be detectable in the PTA. It is its dependence
on the space-time coordinates that brings about new effects.
It is probably useful to remind the reader that Λ is assumed
to be an intrinsic property of spacetime, present at all scales.
It would be easy to implement more realistic models in our
study, if reasonably well-defined ones were available. In fact,
these uncertainties constitute strong reasons to try to measure Λ
locally.

5. SUMMARY

The purpose of this work was to investigate the local effects
of the cosmological constant for the detection of GWs in PTAs.
The GW function is usually modeled as a massless wave, either
plane or spherical, traveling in flat spacetime. The expansion
of the universe is accounted for by including a redshift in the
frequency. Major problems are related to modeling the source
and assessing the strain of the amplitudes of the waves. Here we
obviate these by just assuming a spherical wave and focus on
the fact that the waves propagate in a de Sitter spacetime rather
than in a flat spacetime.

We use a wave solution previously derived in FRW coordi-
nates, which we expect to be more realistic than the redshifted
usual waves. With this, we calculate the timing residuals in-
duced in the signal of known pulsars in our Galaxy, predicting
a particular value of the angle subtended between the source
and the pulsar where an enhanced significance of the timing
residual is observed. We argue that the position of this peak de-
pends strongly on the value of the cosmological constant. This
peak is absent when the calculations are carried out with usual,
Minkowski solution, redshifted waves. We propose two hypo-
thetical sources at two distinct positions for which we calculate
the timing residuals’ significance using a real set of pulsars. The
peak is observed at the predicted angular position. Finally, we
obtain the angular dependence of the value of the cosmologi-
cal constant using the position of the peak for different values
of Λ and analytically from the Fresnel functions involved in
the calculation. This could represent an independent method to
determine the value of the cosmological constant.

We should finish with a disclaimer. The results presented
in this paper are by all means preliminary. We have addressed
the somewhat academic study of an isolated point-like source of
GWs and proceeded to analyze its influence on PTAs. In fact, we
should expect a complete background of sources. Preliminary
studies indicate that single-source detection may be feasible,
but at values of redshift larger than those considered here
(Hobbs et al. 2010). Of course these studies do not consider
the effects of Λ discussed in this paper. In addition, a full error
analysis, including all unknowns in the appropriate covariance
matrix, should be performed before drawing conclusions on
the statistical significance of the effect. Some of these studies

are only feasible by the PTA collaborations themselves whose
interest in the effect presented here we hope to have aroused.
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