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Abstract We investigate how large baryon densities (and
possibly high temperatures) may induce spontaneous par-
ity violation in the composite meson sector of vector-like
gauge theory (presumably QCD or techni-QCD). The analy-
sis at intermediate energy scales is done by using an extended
o-model lagrangian that includes two scalar and two pseu-
doscalar multiplets and fulfills low-energy constraints for
vector-like gauge theories. We elaborate on a novel mecha-
nism of parity breaking based on the interplay between light-
est and heavier meson condensates, which therefore cannot
be realized in the simplest o model. The results are rele-
vant for idealized homogeneous and infinite nuclear (quark
or techniquark) matter where the influence of the density
can be examined with the help of a constant chemical poten-
tial. The model is able to describe satisfactorily the first-
order phase transition to stable nuclear matter, and it pre-
dicts a second-order phase transition to a state where parity
is spontaneously broken. We argue that the parity breaking
phenomenon is quite generic when a large enough chemi-
cal potential is present. Current quark masses are explicitly
taken into account in this work and shown not to change the
general conclusions.

1 Introduction

The emergent parity violation for sufficiently large values of
the baryon chemical potential (and/or temperature) has been
attracting much interest during several decades (see reviews
[1-5]). Yet areliable prediction of parity violation effects has
not been done from first principles. In our work we investi-
gate how large baryon densities (and possibly high temper-
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atures) may induce spontaneous parity violation in the com-
posite meson sector of vector-like gauge theory (presumably
QCD or techni-QCD). The analysis is performed by using
an extended o-model lagrangian that includes two scalar
and two pseudoscalar multiplets and fulfills low-energy con-
straints. This is a model inspired by, but not exactly equiva-
lent to QCD, as its coupling constants are taken as empirical
parameters to be measured in meson physics.

At finite baryon density pion condensation has been con-
jectured in nuclear physics long ago in [6—10] and it seems to
be a plausible possibility which, however, cannot be proved
in simple models describing pion—nucleon interactions. In
this paper this long-standing idea will in fact be vindicated.

In this paper we shall attempt to explore the interesting
issue of parity breaking employing effective lagrangian tech-
niques, useful to explore the range of nuclear densities where
the hadron phase still persists and quark percolation does not
occur yet. Our effective lagrangian is a realization of the gen-
eralized linear o model, but including the two lowest-lying
resonances in each channel, those that are expected to play a
role in this issue. This seems to be the minimal model where
the interesting possibility of parity breaking can be realized.
Namely, condensation of one of the pseudoscalar fields can
arise on the background of two-component scalar conden-
sate so that the chiral constant background cannot be rotated
away by transformation of two complex scalar multiplets pre-
serving space parity. The use of effective lagrangians is also
crucial to understand how parity breaking originating from
a finite baryon density would eventually reflect in hadronic
physics.

A pre-QCD attempt to describe two multiplets of scalar
and pseudoscalar mesons was done in [11] with a reduced
set of operators and a chiral symmetry breaking (CSB) pat-
tern not quite compatible with QCD. We have been basically
inspired by our previous work on extended quark models
[12,13,18] where two different schemes with linear and non-
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linear realization of chiral symmetry were adopted to incor-
porate heavy pions and scalar mesons within an effective
quark model with quark self-interactions. A certain resem-
blance can also be found with the model [20-25] where
two SU(3) r multiplets have been associated with two-quark
and four-quark meson states, although we do not share the
assumption in [20-25] concerning the dominance of four-
quark component in radially excited mesons. The model
in [26,27] is also of relevance in studying of vacuum for
extended o models.

The present work is an extension of the preliminary results
concisely reported in [28-31], which includes corrections
beyond the chiral limit, linear in the current quark masses. We
will give also a qualitative explanation of a possible origin of
the model, provide the detailed proofs of several statements
that were only enunciated in [28-31], and derive a number
of new thermodynamic relations for finite temperatures and
chemical potentials.

The paper is organized as follows. In Sect. 2 the bosoniza-
tion of QCD quark currents in the color-singlet sector is dis-
cussed and the ingredients of the generalized o model are
indicated. In Sect. 3 we introduce the o model with two mul-
tiplets of isosinglet scalar and isotriplet pseudoscalar fields.
The effective potential for two multiplets of scalar and pseu-
doscalar mesons is obtained and the mass-gap equations and
second variations at the minima are derived. In Sect. 4 the
existence of a region in the coupling constant space is proven
where there are four minima of the effective potential play-
ing the crucial role in realization of stable baryon matter
via a first-order phase transition. In Sect. 5 we shall intro-
duce the finite chemical potential and temperature and see
how they modify the effective theory and the vacuum state.
Temperature and baryon chemical potential appear through
the one-quark loop free energy. In Sect. 6 we investigate the
emergence of spontaneous parity breaking (SPB) phase. The
mass-gap equations and critical lines for the parity breaking
phase transition are derived and corrections beyond the chi-
ral limit are taken into account to the leading order in quark
masses. In Sect. 7 it is established that the transition to the
SPB phase is of second order. In Sect. 8 the kinetic terms
are considered in order to determine the physical masses
of scalar and pseudoscalar mesons and extract some phys-
ical consequences. In particular, it is proven that for mas-
sive quarks only three massless states characterize the SPB
phase transition. In SPB phase the masses of four light pseu-
doscalar states are obtained. We notice, however, that in the
SPB phase strictly speaking there are no genuine scalar or
pseudoscalar states as each of the massive states can equally
well decay into two and three (pseudo)scalars. Section 9 is
devoted to a description of nuclear matter and the approach
to the condensation point of stable baryon matter. In order to
describe adequately the saturation point transition to stable
baryon matter we supplement the effective lagrangian with
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an w meson coupling to the isosinglet quark current, which
influences the repulsive part of the nuclear forces [32,33] and
thereby supports the formation of stable nuclear matter. We
obtain a first-order phase transition at the saturation point.
In Sect. 10 we attempt to confront the on-set of empirical
constants of a two-multiplet model with meson and nuclear
matter phenomenology. We summarize our findings in the
Conclusions section. In Appendix A we prove that the chi-
ral collapse affecting the simplest o models and/or the one-
multiplet Nambu—Jona-Lasinio (NJL) models [34] does not
occur in our two-multiplet model. In Appendix B the pro-
posal for a description of (in)compressibilities in the mean-
field approach is formulated with the help of matching quark
and nuclear matter.

The range of intermediate nuclear densities where our
effective lagrangian could be used is of high interest, as
they may be reached in both compact stars [35] and heavy-
ion collisions [36]. Its relevance can be qualitatively moti-
vated by the fact that at substantially larger densities typical
distances between baryons are shrinking considerably and
meson excitations with Compton wavelengths much shorter
than the pion wavelength start playing an important role. Can
the spontaneous parity breaking be realized in heavy-ion col-
lisions or in neutron stars? In order to answer this question we
might appeal to lattice QCD for help and, in fact, this possibil-
ity has been studied intensively for quite some time [37-39].
However, the lattice results for sufficiently large values of the
baryon chemical have not become known quantitatively and
rigorously yet.

It is worth to mention some previous studies dealing
with the problem of strong interactions at zero tempera-
ture and finite chemical potential: depending on the value of
the nuclear density, a variety of methods are involved from
using meson—nucleon [1,40—42] or quark—meson [35,43,44]
lagrangians for low-density nuclear matter to models of
the NJL type [45-51] for high-density quark matter [52—
54]. Although the issue of SPB in hadronic phase has been
touched upon in the pion—nucleon theory [1,40—42,55] and
in NJL models [56-60], the reliability of the models used is
not quite clear for intermediate nuclear densities. The reason
is discussed in the next section: they are not rich enough to
explore the subtle phenomenology involved.

More recently the phenomenon of parity breaking was
assumed to be present in meta-stable nuclear bubbles with
non-zero axial charge generated by a non-trivial topological
charge in hot nuclear matter [61-65] and/or in the presence
of strong background magnetic fields [66-74]. It was also
shown [75-79] that the associated axial chemical potential
causes a distortion of the energy spectrum of photons and
vector particles (p and @ mesons) due to the Chern—Simons
term that is generated. In addition scalar and pseudoscalar
mesons get a momentum dependent effective mass [80,81].
However, this phenomenon is theoretically somewhat differ-
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entin origin from the previous one and it will not be discussed
in the present paper.

2 Bosonization of vector-like gauge theories
in the color-singlet sector

In order to elaborate an effective lagrangian for composite
meson states starting from QCD or QCD-like theories we
revisit the properties of color-singlet (quasi)local quark cur-
rents in the vacuum with spontaneously broken chiral sym-
metry. This phenomenon emerges due to a non-zero value
of quark condensate (gg) and can be associated to the CSB
scale A (in QCD it is presumably ~1 GeV). This CSB due
to quark condensation makes the quark bilinears interpolat-
ing operators for meson fields (in the limit of large number
of colors). In particular, the scalar and pseudoscalar quark
densities effectively describe the creation or annihilation of
scalar and pseudoscalar mesons,

o
- 1
Gq(0) =AYz Vo (v
=1
N (1)
_ 1
Gystiq(x) ~ A2y V7l ),
=1

where the normalized meson fields oy, nl“ describe the fam-
ilies of resonances with the same quantum numbers but
increasing masses (radial Regge trajectories) [82] and the
set of normalization constants Z l( is introduced. The con-
stituent quark fields are denoted ¢, ¢, and ¢, a = 1,2,3
stand for the Pauli matrices. At this stage we consider the
chiral limit of the zero current quark masses. Accordingly
the global chiral covariance of quark operators (1) is trans-
mitted to the set of boson operators leading to an equal nor-
malization of scalar and pseudoscalar fields. This is a basic
framework of linear sigma models [83] (see the next section).
On the other hand the CSB phenomenon must be transmitted
to condensation of scalar fields so that the quark condensate
is interpolated by the VEVs (o7) of the scalar fields,

(Gq) ~ £*Y" 2" (o), 2)
=1

which represents the condition on the choice of potential
in a QCD motivated sigma model. In this paper we restrict
ourselves with consideration of two light flavors related to
u, d quarks and therefore the approximate chiral symmetry
of the quark sector is SU(2); x SU(2)g.

Keeping in mind confinement we have retained in (1) only
the one-resonance states as leading ones, while being aware
of the fact that the total saturation of quark currents includes,
of course, also multi-resonance states. Thus we use the large-

N, approach where resonances behave like true elementary
particles with zero widths, and multi-resonant states can be
neglected.

Let us comment a bit more on the previous relation. On the
left-hand side one sees an operator of canonical dimension
3 whereas on the right-hand side one finds field operators of
canonical dimension 1. This drastic change in dimensions is a
consequence of CSB and it modifies the dimensional analysis
of what must be included into an effective lagrangian. More
exactly, in order to replace the non-perturbative regime of
QCD at low and intermediate energies by a hadron effective
lagrangian one has to apply this dimensional counting in the
CSB phase [13—-17] to all possible combinations of color-
singlet operators arising in the chiral expansion in inverse
powers of the CSB scale A.

To be specific the chiral invariant local operators playing
the leading role in the low-energy effective lagrangian for
meson dynamics are

| O - 4
ﬁ[(qq) — qY5TaqqVsT q]

o0
2
~ A Y 2010w + 7 Tam:
I,m=1
Lo - _a 12
F[(qq) —qY5TqqysT q]
o
4
= Z Zl(m)nr[alam + nﬁ”a,m][(aizar + n;”a.r];

I,m,n,r=1

1
F[Bu(éq)a"(éq) — 0,(qy51aq) 3" (qy5Tq)]

o
52
~ 3 Z0,019 o + By 9 g ), 3)

I,m=1

where the matrices Zl(ﬁl), Zl(i)nr’ Zl(i) must be symmetric

under transposition of indices in order to provide global chi-
ral invariance. The superscript numbers indicate the powers
of interpolating meson fields. The terms quadratic in scalar
fields must trigger an instability in the potential that leads to
CSB in the effective meson theory due to condensation of
scalar fields, (o7) # O for some [ (see. e.g. [13—17,20,34]).

The above set of operators is not complete and can be
extended with the help of form factors that are polynomials
in derivatives [13—17]. For example, using the same CSB
scale A one can add into the effective quark lagrangian the
vertices built of the elements

5 2% o0
G @) = A? ; Z" o1 (0);

2%k 00

_ d 4
qyy:“vq(x) x~ AZZZI(I)J(JTIG(X), “)
=1

T2 L7, (-,
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which may give numerically comparable contributions for
several k [13-17].

3 Generalized sigma model

3.1 Effective potential for two multiplets of scalar
and pseudoscalar fields

The simplest hadronic effective theory is the linear sigma
model of Gell-Mann and Levy [83], which contains a mul-
tiplet of the lightest scalar o and pseudoscalar ¢ fields.
Spontaneous CSB emerges due to a non-zero value for
(o) ~ (qq)/A*, A ~ 4w F, with F, being a weak pion
decay coupling constant. Current algebra techniques indicate
that in order to relate this model to QCD one has to choose a
real condensate for the scalar density, with its sign opposite
to the current quark masses, and to avoid any parity breaking
due toa VEV of the pseudoscalar density. The introduction of
achemical potential does not change the phase of the conden-
sate and therefore does not generate any parity breaking. This
is just fine, because under normal conditions parity break-
ing does not take place in QCD. However, if two different
scalar fields condense with a relative phase between the two
VEVs the opportunity of spontaneous parity breaking may
arise.

Let us consider a model with two multiplets of scalar (6 ;)
and pseudoscalar (Fr;‘) fields

Hj =6+t j=12 HH=(57+G))L
5)

where I is an identity 2 x 2 matrix and 7; = 7¢7“ with
7% being a set of Pauli matrices. We shall deal with a scalar
system globally symmetric respect to SU(2);, x SU(2) g rota-
tions in the exact chiral limit and next consider the soft
breaking of chiral symmetry by current quark masses. We
should think of these two chiral multiplets as represent-
ing the two lowest-lying radial states for a given J”¢. Of
course one could add more multiplets, representing higher
radial and spin excitations, to obtain a better description
of QCD, but the present model, without being completely
realistic, already possesses all the necessary ingredients
to study SPB. Inclusion of higher-mass states would be
required at substantially larger baryon densities when typ-
ical distances between baryons are shrinking considerably
and meson excitations with Compton wavelengths much
shorter than the pion wavelength start playing an important
role.

Let us define the effective potential of this generalized
sigma model. First we write the most general Hermitian
potential at zero u,

@ Springer

2
1 i i
Verr = St} = Z HAjiHy + 11 (H| H))?
jok=1
2 oy gt
+r2(Hy Ho)? + A3 H| HyH) Hy

5 ha(H]| HyH{ Hy + H) Hy H} Hy)

1 .
+§)»5(H1' H; + H;Hl)HlTHl

1 + t + |H|®
+§)»6(H1H2+H2H1)H2H2 + 0O a2 )

(6)

which contains nine real constants A jx, Aa; A =1,...,6.
However, this set of constants can be reduced (see Sect. 4).
QCD bosonization rules in the large N limit prescribe A j; ~
Aa ~ N¢. The neglected terms will be suppressed by an
inverse power of the CSB scale A ~ 1 GeV. If we assume
the VEV of H; to be of the order of the constituent mass
0.2-0.3 GeV, it is reasonable to neglect these terms.

One could add five more terms (breaking parity mani-
festly): an imaginary part of A1, with an operator

ite | (H H = H )| )

and four more operators

ite | HY o H Hy — Y HyHH |

ite | (M Ho = H]Hy) B HL

. 1 ¥ ¥ ®)
1tr{(H1 Hy — H2H1) H, Hz} ;

(o] )]

But for the scalar multiplets (5) in SU(2);, x SU(2) g rep-
resentation these operators identically vanish (see below).

There are also two operators with two disconnected traces
which seem to complete the full set of operators

(o))" + e ]

SR EEAS

However, for the scalar multiplets (5) they are not indepen-
dent and can be expressed as the linear combination of opera-
tors with constants 13, A4 in (6). The proofs of the above state-
ments can easily be done with the help of the so-called chiral
parameterization. Namely, one can use the global invariance
of the model to factor out the Goldstone boson fields with
the help of the chiral parameterization
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Hy(x) = 01 ()&% (x);
Hy(x) = £(x) (02(x) + ift2(x)) E(x);

& =exp infta
N 2F) (10)
J@h? a J@)?
= cos ! +1i 71 Ta sin ! s

2Fy /(nla)z 2F),

which differs from Eq. (5) in notation. The constant Fy is
related to the bare pion decay constant and will be defined
later when the kinetic terms are normalized. This kind of
parameterization preserves the parities of o7 (x) and 75 to
be even and odd, respectively, in the absence of SPB. Then
the contribution of the four additional operators (7) and (8)
vanishes identically, whereas the operator (9) turns out to be
a combination of operators with constants A3 4. Finally the
potential (6) is further simplified to

2

2

Vet = — Z 0jAjrox — Ap(my)
J.k=1

2\? 2
32 ((75)°) +(Ga—ra)of+ 160102424203 (mf)
110} 4 2205 + (A3 + A)oi o7 + Asoior + Ae0105.
(11)

The current quark mass m, corresponds to the average
of the external scalar sources M;(x) = s;(x) + it p? (x),

namely, (M;(x)) = —%d img, and thus the relevant new
terms beyond the chiral limit can be produced with the help
of the formal replacement H; — c;m, in all quadratic and
quartic operators included in (6) and by adding these new
terms with new constants into the effective potential. We will
consider the two flavor case and retain the terms softly break-
ing the chiral symmetry and linear in H; and mg, thereby
neglecting terms cubic in the scalar fields exploiting the non-
linear equivalence transformation

Hj — Hj + Z bjklmHkH]THm'
k,l,m=1,2

It corresponds to the choice of external scalar sources lin-
ear in Hj, Zj:l,2 tr (Mj'.Hj + H;Mj). Thus we add two
new terms to our effective potential (11),

1
—3mg w [di(Hy + H]) + do(Hy + H)) | (12)
Making use of our chiral parametrization of the fields H;

through the chiral field

|7Td| ..L.ana ) |7T£l|
UE.’;:2=COS—1+I al sin ——.
Fy |7[1| Fo

. 13)

one derives the following extension of the effective potential

(11):

7.[(1
AVegr(my) = 2my |:—(d1<71 + dpoy) cos |F1 |

B i @} . (14)
[7f| Fo

The effective potential (11, 14) will be used to search for
CSB and for the derivation of the meson masses.

3.2 Mass-gap equations and second variations od effective
potential

Let us now investigate the possible appearance of a non-zero
VEVs of pseudoscalar fields. Some time ago it was proved
in [84-88] that parity and vector flavor symmetry could not
undergo spontaneous symmetry breaking in a vector-like
theory such as QCD under normal vacuum conditions at
zero chemical potential. Finite baryon density, however, may
result in a breaking of parity invariance by simply circum-
venting the hypothesis of the theorem. Indeed the presence of
a finite chemical potential leads to the appearance of a con-
stant imaginary zeroth component of a vector field and the
conditions under which the results of [84—88] were proven
are not fulfilled anymore.

Accordingly let us check the possibility of condensation
of the neutral isospin pseudoscalar components (in order not
to violate charge conservation),
nf =703, 7§ = ps, (15)
and for the vacuum solutions take 711jt = nzi = 0. Inthis case
one obtains four mass-gap equations as the pion condensate
(m%) # 0 becomes, in principle, possible, unlike in the chiral
limit,

py
—2(A1101 + A1202) — 2myd; cos FO + 4)»1013

+3450702 + 2(A3 + Aa)o105 + X607

+p* (2(h3 — Aa)o1 + Ae02) =0, (16)
0
b4
—2(A1201 + A203) — 2myd; cos o + )»5013
0
+2(A3 + )\4)0’]2(72 + 3)»601022 + 4)»2023
+p% (Ao + 42202) =0, (17)
70 70
(do1 + dron) sin — 4+ drpcos — =0, (18)
Fo Fo
0

o
mgd> sin F +p <—A22 + (A3 — A.4)O—12 + Ago102
0

+202(03 + p7)) =0
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qu22 cos 7 A2y + (A3 — Ag) 2
=p|l——-""7=-— — — Axp 3 — Mo
(d1o1 + dr02) Fy !
+Ag0100 + 2)\2(0‘22 + ,02)> s (19)

where the last equality follows from Eq. (18). The equality

p = Oentails 70 = 0 fromEq. (18) as wellif djo1+da02 # O
and d» # 0. However, as will be seen below, the combination
dyoy + dro7 is related to the quark condensate,

(dio1 + dro2) = —{qq) > 0; (20)

hence, this combination cannot be zero. For d, = 0 one has
always (7°) = 0 and the parity breaking pattern remains the
same as for the massless case. We neglect the possibilities
(no) = Fonm,n = 0, x1,4£2, ..., as not relevant for the
physics studied in this paper. For d> # 0 both pseudoscalar
VEV (7% and p can arise simultaneously only. To avoid
spontaneous parity breaking in then normal vacuum of QCD,
it is thus sufficient to impose,

(A3 — )»4)62+)»66162+2)»262—A22—mq—d% >
! : (dioy+dpror) ~
(2D
on the mass-gap solutions o; = (o;) in the vicinity of a

minimum of effective potential. It follows from the last line
in Eq. (19). Since QCD under normal conditions does not lead
to parity breaking, the low-energy model must fulfill (21).

For the parity-even vacuum state the necessary condition
to have a minimum for non-zero o; = (o;) (for vanish-
ing p), equivalent to the condition of having CSB in QCD,
can be derived from the condition to get a local maximum
(or at least a saddle point) for zero o;. At this point the
extremum is characterized by the matrix —A j; in (6). It must
have at least one negative eigenvalue. This happens either
for DetA > 0, tr{A} > 0 (maximum at the origin) or for
DetA < 0 (saddle point at the origin) at 0; = (o). The
sufficient conditions follow from the positivity of the second
variation for a non-trivial solution of the two first equations
(16), (17) at p = 0. The matrix containing the second varia-
tions V@ for the scalar sector is

1
§V1(12)G =—-An+ 6)»1(712 + 3As50107 + (A3 + )»4)0’22,
VY7 = —2A15 + 3ks0l + 4(A3 + Aa)o102 + 3he07,
1
EVZ(QZ)G = —A»n+ (A3 + )»4)(712 + 3Ag0102 + 6)»2022.

(22)
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In turn, the non-zero elements of the second variations
V@ in the pseudoscalar sector are

@\ _ @ cab.
(V™) = v,

1 dio) + dro 2md
) 101 202 @) qa2

EVH =my —F02 s V12 = T(), (23)

1

Evz(zz)n = —Ax + (A3 — Ag)of + Aeo102 + 202073 .

The required conditions are given by tr{\7(2)} > 0 and
DetV® > 0 at o = (o). For positive matrices it means
that

Vj(?)a > 0; Vk(lf)ﬂ > 0. (24)

The diagonalization of the matrix (Vj(,f)”) leads to physi-
cal mass states for pseudoscalar mesons 7, IT which are the
mixtures of 71, my. The eigenvalues of (23) eventually give
their masses squared and thereby must be positive according
to the inequality (21). The latter corresponds to the positivity
of the determinant,

dioy + dror
qT <— A+ (A3 — 14)012

0
d2
_ Medy , (25)
(dio1 + dr07)

DetV®7 — 4m

+A60102 + 20207 —

from which it becomes evident that the inequality (21) is also
a necessary condition for the absence of spontaneous parity
breaking. Indeed it follows from the positivity of matrix ele-
ment Vl(lz)” that the combination (d|o1 4+ d>07) > 0. In fact,
to the leading order in m, the masses of a lighter 7 and a
heavier IT meson are proportional to Vl(l2 ™ and V2(22 " ,respec-
tively (see 23). A more detailed analysis of the pseudoscalar
meson spectrum will be given in Sect. 8.2. The requirement to
have a positive determinant of the matrix Vj(,%) ™ is supported
by (21).

The two sets of conditions, namely those presented in
Eq. (21) and in Eq. (24), represent restrictions that the sym-
metry breaking pattern of QCD imposes on its low-energy
effective realization at vanishing chemical potential.

One can easily find the correction linear in m, to the vac-
uum solution in the chiral limit

(0))(mg) = (0)(0) + 2my AS;

Ao (2 -1
AUE<A%>=(V()G> -d
1 a7 — v\
DetV @2 \ v —a,v5 )’

dz(2>.

Using these equations the corrections to the masses
of scalar and heavy pseudoscalar mesons can be derived



Eur. Phys. J. C (2014) 74:2932

Page 7 of 23 2932

straightforwardly. In particular, for scalar mesons the cor-
rections to the mass matrix are

~ -1
AV  =omg Y VP (VA7) dy [0 =]
jm :

jm=1,2
A ~1
=g Yy AV (V)
j.m=1,2 l Jm
N N —1
= 2my b (v@)o) : (v@)") .d, (26)
whereas in the pseudoscalar sector
R -1
AV =2mg Y0 vy (V7)) d @)
jm

j.m=12

The latter term saturates the current quark mass correction
for heavy pseudoscalar meson masses.

4 Reduction of coupling constants and extrema
of effective potential

Let us investigate how many extrema the effective potential
possesses for different values of the coupling constants. In
this section we take the chiral limit m, = 0 for simplicity. It
turns out that when the chemical potential and temperature
are zero one can eliminate one of the constant in the effec-
tive potential by a redefinition of the fields. Indeed, one can
change the variable
Hy = aHy + BH, (28)
using a linear transformation with real coefficients ¢, 8 (to
preserve reality of 5, rr;?). With the help of this redefinition
one can diagonalize the quadratic part in (6) and make its
coefficients equal All = Azz =det A /A2 = A. Then

2
> wlHajH ) = aw|HH+ AR
k=1

(29)

A further reduction of the coupling constants affects the
dependence of free energy on finite chemical potential and
temperature (see below), but it can be implemented when
both external control parameters vanish; namely we perform
the orthogonal rotation of two fields:

H| = cos¢ﬁ1 + sin¢ﬁ2,

H> = —sin¢H; + cos ¢ Ho. (30)

Then the coefficient in the operator (I-Vlf 1:12 + ng I-Vll ) IV-VIIT I-VIl
becomes equal to

is
cost ¢

= A5 —2(A3 + A4 —2X1() tan ¢

—3(As — Ag) tan® @ + 2(Az + Ag — 2%2) tan’ @
— g tan* ¢ = P, (tan ). (31)

One can always fix A¢ < 0 by reflection of H>. Then
if A5 < 0, then P;(0) < 0; but evidently for tan¢ > 1,
we have Py, (tan¢) ~ —Aig tan*¢ > 0 and therefore the
equation Py (tan ¢) = 0 has at least one (positive) real root.
In the complementary region A5 > 0 and therefore Py (0) >
0. In this case one considers tan ¢ = +1 where
Pos(£1) = =2(&5 — 26) £4(A1 — A2), (32)
so that one of these combinations is negative. Again the com-
parison with the asymptotics allows one to conclude that there
is a real root for Py (tan ¢) = 0. Thus for any sign of A5 it
can be eliminated by a proper rotation of scalar fields.

Let us take the basis of operators with %5 = 0. Then, after
renaming the fields,

2 2\ | % a2\?
Vet = —A ((01) + (02) ) + A2 ((ﬂz) )
+(7r§l)2 (—A + (5»3 — 5»4)012 + 5\60'10'2 + 25»2022)

—Himf + )120? + ()13 + )v»4)012022 + 5»601023. (33)

This potential simplifies the mass-gap equations and sec-
ond variations in order to investigate their solutions analyti-
cally. The effective potential must provide the familiar CSB
under normal conditions (u = 7 = 0). Thus in the chiral
limit there are at least two minima related by the symmetry
rotation o1 2 — —o7q 2 and one maximum at the origin. This
is implemented by assigning a real singlet VEV (o1) > 0 to
Hi, thereby selecting one of the minima.

In this section we shall assume 15 = 0 in order to deter-
mine the different vacua of the theory at zero temperature
and chemical potential.

4.1 Search for the extrema of effective potential

In the parity-symmetric case the second equation (17) reads
v v 2 3 v v 2
o2 | —A+ (A3 + Ao + 5160102 +2x05 ) =0. (34)

One of its solutions is 02(0) = 0 and directly from Eq. (16)
one finds

o =0, (of‘”)2 -2 (35)

201

For stable solutions i 1 > 0 and therefore A > 0.

@ Springer
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Fig. 1 Extrema of effective potential in the reduction basis: the maxi-
mum is placed in the square, four minima are located in the circles and
the corresponding four saddle points are depicted by the lentils. The
existence of two solutions #®, 13 with positive values of & j is gov-
erned by condition (38). Which one corresponds to the true minimum
depends on the actual value of the phenomenological constants

Another set of solutions 01(";); m = 1,2,3 comes from

Eq. (34) for oo # 0. With a combination of the mass-gap
equations (16) and (34) one can decouple the equation in
terms of the ratio t = 03 /07,

Pi(t) =1> —at> —bt + ¢ =0,

a:uk+%—ﬂq
_)Vﬁ

szdy+@—2hx
—X6

b =3, (36)

where the sign is fixed for *6 < Oand ¢ > Oasisshown in the
next subsection. As the order of the equation is odd there may
one or three (as in Fig. 1) real solutions. Because P3(0) >
0, Pé (0) < O one concludes that one of the solutions is
negative.

Let us analyze the extrema of P3(r)

/ 2 2
P3t)=0—1 —gat—bzo,

1 1
ti:§a:|: §a2+b, ty >0, t <0.

Altogether it means that a negative solution rV < 0
always exists and (if any) two more solutions are positive,
1@ < @ and that they are separated by a minimum of
cubic polynomial P3. Therefore the existence of two posi-
tive solutions is regulated by the sign of P3(¢4). They exist
if

(37)

@ Springer

2
2
a a a
P =c—3 |3+ 5 +b ] <o
e+ /Y +b
c<a>VY° (38)

44/ 4b

Evidently it takes place for some positive a, i.e. for
A3+ g > 2%, (39)

Finally we can have at most two minima for positive o7,
namely, at 02(0) = 0and at @ or t® which entails two more
minima for negative o due to symmetry under o; — —o;.
Then other solutions correspond to saddle points as four min-
ima must be separated by four saddle points situated around
the maximum; see Fig. 1. This configuration is unique for
potentials bounded below, namely, any saddle point connects
two adjacent minima. Later on we will see that in order to
implement a first-order phase transition to stable nuclear mat-
ter we just need two minima for positive o. Thereby, in the
half plane of positive o1 one has to reveal four solutions,
namely, one is 02(0) = 0 and three for oo # 0, which are
inevitably signs of one more minimum and two saddle points.
Thereby the condition (38) should be satisfied in order to be
able to describe the saturation point.

After the appropriate roots ¢; are found one can use
Eq. (34) and find the VEV of o/,

5 A
o = —~ < 3y Y 5
(A3 + A4) + 56t + 2)‘2tj

>0; oy =tjo;. (40)

The latter inequality holds for any ¢; if
v v v 9 v 2
Aa(A3 + A4) > ﬁ(kﬁ) . (41)

Otherwise the existence of real oy for solutions 7; needs a
more subtle investigation.

Letus recall that all the inequalities obtained in this section
are referred to the field basis with fully diagonal A;; = A§;;
and with 5\5 = 0. However, it is evident that the qualitative
structure of extrema is independent of the choice of the basis.

4.2 Selection of the minima

In all cases the conditions of the minimum come from the
positive definiteness of the matrix of second variations of
effective potential,

I e

Vil = —A+6ii07 + (A3 +ig)of >0,
V1(22)U = 4():3 + 5»4)0102 + 35»6022,
1 v . . .
3 2(22)0 =—-A+ A3+ )u4)(712 + 3Xg0102 + 6)»20’22 > 0,



Eur. Phys. J. C (2014) 74:2932

Page 9 of 23 2932

1 N Y N v

Evz(zz)n =—-A+ (3 — 14)012 + Ago102 + 212022 > 0;
Vit = v =o. (42)
For 02(0) = 0 they read

(5\3 :I:)VL4) > 2)VL1, — )VL3 > |)VL4| (43)

for A > 0 as it is required by the absence of chiral col-
lapse (and the spectrum at the SPB point; see below). It gives
support to the condition ¢ > 0 in the previous subsection.

For az(m) # 0 one obtains a number of bounds on the
solution from the second variation

I S
VP = @4k - 5he’] > 0.

2
Vi3 = (1) [4(;\3 + ha)t + 35@2],

1 r3. .
Evz(?o = (01)? E)Lét +4kzt2] > 0,

1 r v 1.
3 2(22)” = (01)?| — 2hs — 5)\6l] > 0. (44)

Evidently if A4 > Othenoy > 0 — ¢ > 0. The remaining
bound must come from the positivity, det V® > 0.

5 Finite temperature and baryon chemical potential
5.1 Coupling the effective lagrangian to the environment

We are building a model of meson medium starting from the
quark sector of QCD. Its thermodynamical properties and
relationship to a dense baryon matter will be examined with
the help of thermodynamical potentials derived from the con-
stituent quark model in the large N, (mean field) approach.
This gives a prescription to connect the properties of quark
and nuclear matter and estimate the parameters of our model
to reproduce meson phenomenology and the bulk charac-
teristics of nuclear matter such as binding energy, normal
nuclear density and (in)compressibility.

The meson degrees of freedom present in our model
appear after bosonization of QCD in the vacuum and the
relevant effective potential is given in Sect. 3, Eq. (6). The
effects of infinite homogeneous baryon matter on the effec-
tive meson lagrangian are described by the baryon chemical
potential x, which is transmitted to the meson lagrangian via
a local quark—meson coupling (in the leading order of chi-
ral expansion p?/A?). In turn, in the large N, limit one can
neglect the temperature dependence due to meson collisions.
The temperature 7 is induced with the help of the imaginary
time Matsubara formalism for quark Green functions [89]

_ (@n+Dr 1

wp B , B= ﬁ (45)

For real physics with three colors this approximation to ther-
mal properties of mesons is expected to be less precise as
meson loops contribute substantially to the thermodynamic
characteristics for large temperatures (first of all a hot pion
gas). Nevertheless it should be sufficient to describe qualita-
tively the interplay between baryon density and temperature
at the phase transition.

Without loss of generality we can specify one of the col-
lective fields H;, namely, H; as that one which has local
coupling to quarks: this actually defines the chiral multiplet
H;i. The set of coupling constants in (6) is sufficient to sup-
port this choice as well as to fix the Yukawa coupling constant
to unity. Accordingly, we select the basis in which finite den-
sity and temperature were transmitted to the boson sector by
means of

AL; = qrHiqL +éLHiQR — 0010, (46)

where Q7 = &qr, Qr = &'qpr; & = expl{it /2Fy) stand for
constituent quarks [18, 19]. Then for finite temperatures and
chemical potentials the free Fermi gas contribution to the
generalized o model lagrangian originates from the quark
action in Euclidean space-time (thermal field theory) [90],

B
S, =/dr/d3qu (ﬁ—VoM+(H1PL+HfPR))q
0

B
x~ /df / Fx0(f — you +01) Q. (47)
0
where P, p = %( 1 £ ys5). As we want to calculate the effec-

tive potential we neglect the gradient of chiral fields 9, ~ 0
in the last expression.

After averaging over constituent quarks one obtains the
free Fermi gas contribution to the vacuum effective potential
[90],

AVete (o1, i, B) = Verr, 0 (o1, i, B) — Vetr, (01, 0, 0)
N [d

=5 7” {log (1 + exp(—B(E — 1))

+log (1 +exp(—=B(E + )}

4 o0
= —%/ / dEE/E? — o} {log (1 + exp(—B(E — 1))
(4]

+log (1 4 exp(—=B(E + 1))} (48)

cosh(Bu) + cosh(BE)’

where E =/ p? + 012. The last expression for the Fermi gas
free energy in (48) can be obtained with the help of integration
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by part and an appropriate change of energy and momentum
variables.

Accordingly the complete effective potential is specified
as
Vett (0, s, B) = Verr (0, 55 0, 0) + AVege (01, 1, B)-
Following this recipe the quark temperature and chem-
ical potential dependence can be derived for mass-gap
equations—the conditions for a minimum of the effective
potential. Namely, taking into account the choice of variables
(10) the first equation (16) is modified to

0
T
—2A01 — 2mgyd; cos o + 4)\1(713 + 3)»50']2(72
0

+2(A3 + A4)0105 + 2605 + p* (2(h3 — Aa)T1 + A602)
+2NoiA(or, i, B) =0, (49)

A(or, i, B) = ===—00, AVepr (o1, B, 1)

2N
_ [0 2 cosh(Bu) + exp(—BE)

=2 f dE VE ' cosh(Bu) + cosh(BE) (50)
When using the gap equations (17), (18), (19), and (49)

one finds the value of the effective potential at its minima
(“on shell”),

. . a.
Veﬁ (0J7 T[j s M, :8) 0_/:(0’]); j'[1“:83a<710); ﬁgzghp

~ 1
= Vet (. ) = =52 ({007 + (0202 + p?)

3
+§mq -

1
+AVerr ((01), 1, B) — EN(UUZA((UI)’MHB)? D

d J (70 e )
(di{o1) + 2(0’2))COSTO+ zpsmTO]

1
AVefp — 5]\/(01)2,4

1 K 1/2
= -3V / dEGE? — (@) (E* = (01)?)
(o1)
y cosh(Bu) + exp(—BE)
cosh(Bu) + cosh(BE)

(52)

In order to derive it we split the vacuum potential (11),
(14) into three pieces according to their field dimension,

Vet (07, m9:.0,0) = VF + VY + AV (my). (53)

Next let us multiply Eq. (49) by o1, Eq. (17) by 03, and
Eq. (19) by p and sum up. In this way the following on-shell

@ Springer

identity is obtained:

1 1
v (o)) = 2 e&?((oﬂ)—ZAve&?(quwj»
‘EN (01)2 A1), 1, B). (54)

The final result (51) can be derived by insertion of this
identity in Eq. (53).

Let us notice that the chosen specification of collective
fields H; is compatible with the transformation (28) and
therefore one can proceed to the diagonal quadratic part of the
potential (6). However, the additional linear transformation
(30) would split the constituent mass in the quark Yukawa
vertex into two fields,

grH1q1 +h.c. — gg(cos ¢I:11 + sin ¢>I-V12)qL + h.c.

It means that a possible change of the basis used in Sect. 4 to
eliminate the constant A5 would affect the chemical potential
driver:

AVegr(ot, B, 1)
— AVesr(v/(cosd &1 +sing 52)2 + 52, B ). (55)

Thereby all the mass-gap equations (16)-(19) would
obtain new contributions depending on 7" and n making the
equations less tractable. In order to keep the simplified form
of the mass-gap equations we prefer to retain the single scalar
field in the Yukawa vertex and include the dependence on the
environment conditions in one mass-gap equation only. Cor-
respondingly we take, in general, A5 # 0.

However, the qualitative results derived in the previous
section on the different vacua for vanishing temperature and
chemical potential remain obviously valid. Namely, in the
CSB regime one has at most one maximum, four minima
and four saddle points at our disposal in order to simulate
nuclear matter properties.

5.2 Thermodynamic properties of the model at T # 0

Thermodynamically the system is described by the pressure
P, the energy density, ¢ and the entropy density S. The pres-
sure is determined by the potential density difference with
and without a chemical potential, dP = —dV,

Verr (0, 0) — Vegr (1, B). (56)

P(u, B) =

The energy density is related to the pressure, baryon density,
and entropy density by

e=—P+ N.uop+TS. 57
The chemical potential is defined as

Bon = Nelt, (58)
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with the entropy and volume held fixed. The factor N, is
introduced to relate the quark and baryon chemical potentials.
Since ¢ is independent of w

1 1 ~
—0duP =90p= _Vcauveff

N
Ny [ inh(8 1)
_ f B B sSin 12
=— | dEEVE? — ;
w2 / {o1) cosh(Bu) 4 cosh(BE)
(o1)
(59)
where (o1) = o1(u, B) on shell.
In turn the entropy is defined as
S=0rP =—0rVetr, TS =g Verr, (60)

with the baryon density and volume held fixed.

The above equation allows one to calculate the energy
density (57) in our model in terms of the effective potential
on shell,

e = (=1 +pnd, — Bp) Verr (1, B). (61)

5.3 Zero temperature and finite density

In this subsection we consider the zero-temperature case and
study the regime of chemical potentials comparable with the
VEV o7. At zero temperature 7 = 0 the contribution from
1 to the effective potential is

m
4 3/2
AVefr (01, ) = —0( — 01)5/\// dE (E2 - 012)

a1

N 2p
= 79(M —o1) /wlz\/ltz —of — ?(Hz —op)?
12— o}
— Y . (62)

01

4
—o; In

The total value of the effective potential at its minimum is

~ 1
Verr () = =34 (t00? + (02)* + p?)

> d d ") | dypsin
+§mq —(di{o1) + 2(02>)COST0+ zpsmTO

N

3/2
—Su (1= (00) " 0= (o). (63)

Higher-order terms of the chiral expansion in 1/ A? are
not considered.

Accordingly in the first mass-gap equation (49) we have

"
A1, . p) " Z20(u — m)/dbu/E2 — o}
gl
pu? —of
=0(u—o) | uy/u? -0l —ofln ——v— |
o1

(64)

Then the second variation of effective potential is modified
only in the element

1
— VP = — Ay + 61107 + 3450102 + (A3 + Aa)os

2
Lt Ju?—of
+NO(u—o1) M,//ﬂ—df—?aol an— .
1

(65)

The effective potential (62), (63) is normalized to repro-
duce the baryon density for the quark matter,

1
0B = _FauAVeff(Ulv )
¢ o1=(o1)=01(1)
1 dVegr(n) Ny 3 Ny ( 2 2 )3/2
=N dp anPrT W)
(66)

where the quark Fermi momentum is

pr =/ pu*—ol(n).

6 Spontaneous parity breaking phase
6.1 Mass gap and critical lines for the SPB transition

Let us examine the possible existence of a critical point, in the
chiral limit, m; = 0, for simplicity, where the strict inequal-
ity (21) does not hold and instead for u > p.ri; we have

(3 = Aol + Aeo102 + 222 (03 + p?) = A, (67)

so that Eq. (19) admits non-zero values of p and thereby
SPB arises. After substituting A from (67) into the second
equation (16) one finds that

A5t +4hso10s + a6 (0F + ) =0, (68)

where we have taken into account that (o7) # 0. This,
together with (67) completely fixes the VEVs of the scalar
fields op 2. If A2 = 0 and/or Ag = 0 Eqgs. (67) or (68) unam-
biguously determine the relation between (o) and (07). Oth-
erwise if Aohe 7# O these two equations still allow one to
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get rid of the VEV of the pseudoscalar field leading to the
relation

Qhsha+Ag(hg — A3)) 02+ (8A2k4—k§) 010y ==,

(69)

whose solution is

B
(o2) = Afo1) + — > 0;
(o1)
2A5A Ag(Ag — A AgA
A= 522+ 6(ha — A3) B=— 6 _ 70)
Ag — 8oy Ag — 8oy

Thus in the parity breaking phase the relation between the
two scalar VEVs is completely determined and, in particular,
does not depend on p, nor on u.

The first mass-gap equation (49) can be brought into the
form

A = 22107 + 150102 + (A3 — A4)(0F + p?)
+N Aot . B, (71

if one employs Eq. (68). Together with Eq. (70) it allows
one to find all VEVs of the scalar fields o}, o as functions of
temperature and chemical potential.

Let us now find the critical value of the chemical potential,

namely the value where p(u.) = 0, but Egs. (67), (68), and
(70) hold. Combining Eqs. (67) and (68) we have
@. (72)
(o1)
In order for a SPB phase to exist this equation has to pos-
sess real solutions. If L¢ = O there is only one solution
corresponding to a second-order transition, but there may
exist other solutions that fall beyond the accuracy of our low
energy model (which becomes inappropriate for small values
of o1).

We stress that Eqs. (70) and (72) contain only the structural
constants of the potential and do not depend on temperature or
chemical potential manifestly. Thus using the critical values

—204 & /40 — Ashe
(73)
A6

one can immediately calculate

)\.61‘2 +4rqr +A15=0; r

Ferit =T+ =

(o (A ) = [——

1 LAY P r:t _ A ’
(02)5(A, 2) = relon)™, (74)
where (0;)T are the corresponding critical values.

After substituting these values into Eq. (71) for each criti-
cal set of (o;) one derives the boundary of the parity breaking
phase:

NAGE, eries Berit) = A — 221 ((o1)5)?
—As(o1)F(02)F — (k3 — Aa) ((02)5)2. (75)

@ Springer

It must be positive at critical values of (o;)*. The relation
(75) defines a strip in the T, i plane where parity is sponta-
neously broken. From (50) one obtains A > 0 and A — oo
when 7', 4 — oo. It means that for any non-trivial solution
(01)F, (02)™ the parity breaking phase boundary exists.

Thus we have proved that if the phenomenon of parity
breaking is realized for zero temperature it will take place in
a strip including lower chemical potentials but higher tem-
peratures.

6.2 Mass-gap equations in SPB beyond the chiral limit

Let us now examine again the possible existence of a critical
point where the strict inequality (21) does not hold and for

M > Merit
(A3 — A4)07 + Aeo109 + 240 (022 + ,02) - A

m d2 0 m d2
= #cos 7;— = 1= ’
(d1oy + dpro2) 0 \/d22p2 + (dyoq +d2(72)2

(76)

where the following consequence of Eq. (18) has been used:

0 d d
cos — = 101+ 202 (77)

Fo \/dgzpz + (dio] + dr02)?

When combining Eq. (76) with (16), (17) one finds that
d ()»50'12 + 4rg0102 + Ao(0] + ,02))
=24, (—A + 20102 + 50107
+03 = A)(@F + 91 + NA@1, 1. B)) (78)
dy (ksﬁlz + 4140102 + ho(0F + ,02))
=24 (=& + G = A9)o?
+A60102 + 202 (07 + p2)) : (79)

where we have taken into account that (o1) # 0. These two
relations determine the VEVs of the scalar fields o 2. If A, =
Ae = 0 and/or A3 = A4, A¢ = 0 Egs. (78) and (79) firmly fix
the relation between (o) and (o2). Otherwise an appropriate
combination of these two equations still allows us to get rid
of the VEV of the pseudoscalar field.! Thus in the parity
breaking phase the relation between the two scalar VEVs
is completely determined and in particular does not depend
neither on p nor on w. Using Egs. (76), (78) and (79) one
can easily eliminate the variables p and o3, obtaining an
equation for the variable 012 /u?. The latter completes the
determination of the VEVs.

1 We recall that in the presence of SPB the distinction between scalars
and pseudoscalars is a nominal one.
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We notice that in the chiral limit m, — 0 the constants
di, d» become arbitrary and therefore (78), (79) entail three
independent relations coinciding with (67), (68), (71).

7 Approaching the SPB phase transition

Let us find the character of the phase transition to the SPB
phase. In this section, for brevity, we employ the VEVs of
variables 0; = (o) = 0j(u), p = (p) = p(u) as functions
of the chemical potential © on shell. For small values of
u —or(u) > 0, we know that the value of the odd parity
condensate (p) is zero. Setting p = 0 in Egs. (16), (17), (49)
and using (71) and differentiating w.r.t. ;© we get

Y VR 040k = —4No1y 12 — 081, (80)

k=12

or, after inversion of the matrix of second variations,
(2)o

VY,
d = —4N 2 _g2_"22 0
w1 IV T h @ T
4No1\/u? — o? V" (81)
o) o —.
Ouo2 = ! ~ 7 DtV @0

The possibility of SPB is controlled by the inequality 21;
in order to approach a SPB phase transition when the chem-
ical potential is increasing we have to diminish the Lh.s. of
inequality (21) and therefore we need to have

2
oy (K3—14)UE+160102+2A2022—L <0
(dio1+dr07)

(82)
This is equivalent (using 81) to
myds
A 42 a2y
< 601 + 4A202 + o +d202)2> 12
m d1d2 2)
2(A3 — Aa)oy + Ag0n + —— 7.
< ( (A3 — A4)o1 + A0 dron +d202)2> 7
(83)

This last inequality is a necessary condition that has to
be satisfied by the model at zero chemical potential for it
to be potentially capable of yielding SPB. Evidently, this
inequality must hold across the critical point in order that
30 >0,0,(7%% > 0.

7.1 Second variations of effective potential in the SPB
phase: character of the phase transition in the chiral
limit

Once a condensate for ng appears spontaneously the vec-
tor SU(2) symmetry is broken to U(l) and two charged

IT mesons are expected to possess zero masses as dictated
by the Goldstone theorem. For simplicity let us consider
zero temperature. In the chiral limit the matrix of second
variations in essential variables oy, o7, ng has the rank 3,
Vo — (V,,%)); m,n = 1,2,0, where the index 0’ is
engaged for variation of the neutral pseudoscalar field ng .
This matrix reads

1
EVI(IZ)U =—-A+ 6k1012 + 3As50107

+(A3 + Aa)of + (A3 — Ag)p?

pJut—of |
+N | /2 — ot — 302 ———— | = 2V,
o1 2
V57 = 3ks0? + 40k + ha)o102
+3x603 + Aep* = V12,
|
Evg)" = —A+ (A3 + Ag)ol + 3he0102
2 2 1
+61205 +2h0° = 5]/22, (84)
V(z)m (4(A3 — Ag)o1 + 24602) p = Viop,
VAT = (20401 + 8%202) p = Vaop,
1 1
2v@)” = 4i2p” = S Voor’. (85)

We notice that the second variation of charged pseudoscalar
fields nzi vanishes Vﬁ%ﬂ = 0 and therefore these fields are
massless Goldstone bosons.

Now we are able to check the character of the phase
transition. The qualitative behavior of the order parame-
ters, dynamical mass o7 (1) and parity-odd condensate p (i),
is shown on Fig. 2. It is justified when using consistently
Egs. (17), (49) and the condition (76) in the SPB phase.
Then one obtains the differential equations on functions
oj(u), p(n), following the same strategy as for (81),

5> V22 Voo Vi

0,01 = —4Noy,/ u? — o220 70

nel ! % DetV

/ 2 VioVao — Vi2Voo
o) = —4NO' S —
O ! 1 DetV
dup = —4Noy 2 — o IWZJ(;;WV]M (86)
c

The last derivative must be positive in order to generate parity
breaking and this is guaranteed by the inequality (83).

Let us compare the derivatives of the dynamic mass o
across the phase transition point. For u — peie — i0 its
derivative is given by (81) and for & — ftcrit + 10 it is given
by (86).
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Fig. 2 The SPB phase transition of second order: the dashed line
depicts the SPB breaking phase and the solid line stands for the VEV
of “dynamical” mass. The plot is only qualitative

Their difference reads

81101 — 3M01

Herit+i0

Herit—i0

el L e
= —4Noy /2 — o} 270~ 720 '
Det) DetV 2o
2
2 2
(Vo3 = Va3
:—4/\/01,/#2—012 <0,

DetV DetV 0o

(87)

provided that both determinants are positive (they determine
the spectrum of meson masses squared ) and inequality (83)
holds throughout. Thus the dynamic mass derivative is dis-
continuous and the phase transition is of second order.

7.2 Inclusion of current quark masses

For non-vanishing current quark masses the deviation lin-
ear in m, in the parity breaking phase affects also the pseu-
doscalar parameters (p) = p(un) and (7% = 7%w). After
usage of Eq. (77) one finds

n Aoy (mq) Ay
A = AO'Z(mq) ~ qu %2 : (88)
Ap(mg) 70
Aq
A = 1AD)
Ao
d
-1
= (V) : d dyoy + dyory |
d 2 2 5
Toridios \/dzp + (dio1 + dr02)

where in order to keep the leading order all parameters
must be taken in the chiral limit. As to the VEV of neu-
tral pion field it does not need any mass corrections to the
leading order and must be taken from the mass independent
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Eq. (18)

d
0 20
m° = —arctan| ——— ] . 89
(dlcn—i—dzaz) (89)

Accordingly, the mass corrections to the matrix of second
variation AV®, Eq. (85), takes the form

2 2 29 A
V.i(l o (mq) = Vj(l o 0) + Z O (V./(l )0) Am: G0
m=1,2,0
y®
o

JjT

ymg) = VI + 3 8 (Vi) A OD)
’ m=1,2,0

(Om) = (80'1 s 8(72’ ap) )

2mgd 0 ' d 0
Oy =i, v, =2 T (92
o117 Fy Fy 027} Fy Fy
1 @0 dioy +dyoo 7w dp . 7O
_V11 =mg|\ — 5 COS— — —=sin— |,
2 F Fo F}  Fo
93)
o 2mgd 70
= cos —, (94)
Fy Fo
1 0
Ev;?” = 4020%(0) + 16my 12 Ao
myd> 70
__am2 cos —, (95)
dyoy +dror Fo
d 0
v = om, 2P sin T
T (7-[0)2 Fy
-2
d d Sin” &~
—2m, 101 -g 2202 F(? ’ (96)
(%) cos
0
2md, 0
V(%_) = V(%_) = M sin T[_’ (97)
Ty T T T b4 Fy
2mgd? 70
@ _ ) , 98)

= S —
Y o
Ty T, dio1 + dros Fy

where the terms of the r.h.s. are evaluated with the help of
Eqgs. (16)-(18), (76-78) and the VEVs for ¢}, p are taken in
the chiral limit. We notice that convexity around this min-
imum implies that all diagonal elements are non-negative.
This gives positive masses for two scalar and four pseu-
doscalar mesons, whereas the doublet of charged of 7 mesons
remains massless. The latter can be easily checked from the
vanishing determinant of the last matrix V;i)nl, in Egs. (96)—

(98). Of course, quantitatively the mass spectrum can be
obtained only after kinetic terms are properly normalized.

If the soft breaking of chiral symmetry occurs only in
the H; channel, d» = 0, then it follows from Eq. (18) that
light pions do not condense (7°) = 0 and do not mix with
other states as the off-diagonal matrix elements (92), (94),
and (97) vanish. The second pair of charged pseudoscalars
nzi becomes massless manifestly.
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8 Kinetic terms in two-multiplet c model

In this section we examine the fluctuations around the con-
stant solutions of the mass-gap equations (49), (17), (18),
and (19), and we introduce appropriate notations for the
fluctuations X;, I1 around VEVs (0j), {p) so that o; =
(0j) + 2,71 = i3(n%) + 7, 72 = 13(p) + [1. These VEVs
(o), (p) must be used in all previous relations for the sec-
ond variation of the potential. In calculations of the kinetic
term we retain only the terms in the chiral limit keeping our
interest to the masses of scalar and pseudoscalar mesons at
the leading order of the expansion in current quark masses,
mg. Thus in the kinetic terms we take (%) ~ 0 according to
Egs. (18), (19).

8.1 General form of kinetic terms from chiral symmetry

Once we have fixed the interaction to the quark matter we
are not free in the choice of the kinetic term for scalar fields.
Namely one cannot rotate two fields and rescale the field H;
without changes in the chemical potential driver (62). How-
ever, the rescaling of the field H> is possible at the expense of
appropriate redefinitions of other coupling constants and this
freedom can be used to fix one of the constants which appear
in the kinetic term. Thus we take the general kinetic term
symmetric under SU(2); x SU(2)r global rotations to be

2
1
Lan=7 Y Ajeer {0, " He ] (99)
jk=1

With the chiral parameterization (10) one can separate the
bare Goldstone boson action,

2
1
Lyin = z Z Ajkaﬂﬁjaudk
=1
1 2
+Z Z Ajrojoy tr{BHUTBMU}
k=1

2
1 N
+5i Y aptrfo; (£70,0%" - 9,66"H%0) 72
j=1

—o;ET 0, UET0 7y + aﬂajgfaﬂusfﬁz}
—i—%Azz tr [8uﬁ23“ﬁ2 — 23M§§Tﬁ2§T3M§ﬁ2
—(ut8T0 e +£79,66T01E) (7)?
+IET, 8,817, a“ﬁz]} . (100)

After selecting out the VEV (H;) = (o) let us explore
the kinetic part quadratic in fields. We expand U = 1 +
in/Fo+---, E =1+i7/2Fy+ --- and use the notations

defined at the beginning of this section. Then the quadratic
part looks as follows:

2
1
(2)
[’kin = 5 Z
jk=1

1
+F—02(aj)(ak)8ﬂn“8“n“:|

Ajk[aMEja“Ek

+— ZA,z[ )9, %070 4 (o >3un“a“n“}

1 (p)
+§A22|:F—028Mn08"710 + 9,9 |, (101)
which shows manifestly the mixture between bare pseu-
doscalar states and, in the SPB phase, also between scalar
and pseudoscalar states.

Let us define

2
F() = Z Ajr{oj){ok),
Jj.k=1

(102)

2
Z j2(oj).

8.2 Parity-symmetric phase

In the symmetric phase {(p) = 0, 7, = I1 one diagonalizes
by shifting the pion field

74 = 79— ¢TI, (103)
1 1
Lo, = F0uT T+ S (An — )8, I1“9" 114,
2 det A
Ay —gr =g (104)
F()

Taking into account the modification of the matrix of sec-
ond variations (93)—(98) after shifting (103) one finds the
masses of light and heavy pseudoscalars to the leading order
in the current quark mass:

(Vl(lz)ﬂ)ab — (Vl(lz)ﬂ)ab
= g, LN L LD _ a2
Fg
( (2)7T)ab (V(z)”)ab g(vl(lz)ﬂ)ab
d d d
— 5o, 2 ¢ 1(01>+2 2(02) ’
Fy FO

(‘72(22)n)ab — ((V2(22)7T)ab _ Zg(vl(zz)ﬂ)ab + §2(V1(12)7T)ab)

— 8ab2 ( _
24 di(o1) +d
F20a(0) = emg L+ ¢ %)

0

A+ (A3 — Aa)(01)* + Ae{o1) (02)

=5"((Axa — ¢M))miy + O(m}). (105)
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Fig. 3 Masses of pseudoscalar states in P-symmetric and in SPB
phases. The light and heavy charged pseudoscalars are depicted with
solid lines, the dotted line corresponds to the neutral light pseudoscalar
and the dashed line stands for the neutral heavy one. The plot is only
qualitative

at the leading order in m, because it is assumed that mp >
my far below the P-breaking transition point in chemical
potential (see Fig. 3). We notice that in this region the off-
diagonal element does not make any influence.
At the point of the SPB phase transition one has to impose
the condition (76), which leads to
~ ()7 ab 8962mq di(o1)+da (o) \*
V2™ =d—( z—é“—) .
1{o1)+d2{02) Fo
(106)

Evidently the determinant of (‘7(2)” ) vanishes and one
reveals zero modes for all three pion states, one neutral and
two charged. They represent the true Goldstone modes (in
the limit of exact isospin symmetry m, = mg ). At the P-
breaking transition point (o) = 0, when taking into account
the normalization of kinetic terms (101) with the definitions
(102) one finds the values of three massive modes

Ands —2Andidy + And?
detA(di(o1) + d2(02))
(X jh=1.24d; (A~ jkdr)
Zj,k:m djoj)
Thus in the chiral limit, at the phase transition point one

reveals six zero modes and beyond the chiral limit only three
ones (see Fig. 3).

2 _

= 2m, (107)

8.3 Masses of light states in SPB phase

In the SPB phase the situation is more involved: pseudoscalar
states mix with scalar ones. In particular, the diagonalization
of kinetic terms is different for neutral and charged pions
because the vector isospin symmetry is broken: SU(2)y —
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U (1). Namely
At =gt 4+ ;Hi,

F2 () 2
~0 0 0 0 /
7l =n" 4+ ———"——|¢II __E AinX;

(108)

In this way SPB induces mixing of both massless and
heavy neutral pions with scalars. The (partially) diagonal-
ized kinetic term has the following form:

A 2
22(f> ) 8,701 7
FO

1
Lign = QA58 7T + (1 +

+(An — ¢33, e I
F02 29, 109" T1°
F§ + Axn(p)? :

1 o~ AjFE + (p)2detAs) ;1
2 Z F§ + Ap(p)?

1
Z(Ary —
+2( 2

X R Lab I8
k=1

Fo(p) -
S0 ) Aty

[ L (109)
F + Ax(p) =

We see that even in the massless pion sector the isospin
breaking SU(2)y — U(1) occurs: neutral pions become less
stable with a larger decay constant. Another observation is
that in the charged meson sector the relationship between
massless 7 and I remain the same as in the symmetric phase.

Beyond the chiral limit one can derive the masses of the
lightest pseudo-goldstone states. When (p) > my then in
the mass matrix (90)—(98) the heavy mass parts (90), (91),
(95) and the light mass ones (93), (96)—(98) combine into
an approximately block diagonal form with additional off-
diagonal elements (92) and (94), proportional to m,. The
latter leads to factorization of the light pseudoscalar meson
sector from the heavy meson one to the order of m?l. Thus
neglecting the mixture of heavy and light states one deals
with the light sector built of (93), (96)—(98) which after diag-
onalizing the kinetic term by (108) projected on the light state
sector gives the light pseudoscalar masses

An(p)?\
2
mﬁo = qu (1 + F2

0

<d1<al>+d2<oz> (7% dap) . <n°>>
X CO — Sin s

S
F} Fo F} Fo
mii =0, (110)
2 ) COS%
m = 4iim
M7 T Ay — £2)(di (01) + da(02))
2
di(o1) +dr(on) (70
><<d2—§ ! 1(710) tan == ) (111)



Eur. Phys. J. C (2014) 74:2932

Page 17 of 23 2932

Thus in the SPB one finds two massless charged pseu-
doscalars and three light pseudoscalars with masses linear in
the current quark mass (see Fig. 3). These equations represent
the generalization of the Gell-Mann—Oakes—Renner relation
in the phase with broken parity.

We notice that the masses of neutral and charged pseu-
doscalars do not coincide in the well developed SPB phase,
just realizing the spontaneous breaking of isospin symmetry.
One can also guess that the manifest breaking of SU(2) sym-
metry due to the different masses of the u and d quarks will
supply the Goldstone bosons 7+ with tiny masses, propor-
tional to the difference m, — mg.

9 Description of baryon matter in the mean-field
approach

When keeping in mind QCD we assume that quark matter
is equivalent to nuclear matter when their average baryon
densities coincide, at least as regards the meson properties.
One could also consider techniquarks and the two multiplets
of composite Higgs mesons.

Thermodynamical characteristics of such a matter are the
pressure, P, and the energy density, €. The pressure is deter-
mined in the presence of chemical potential by (56), defined
for o; satisfying the mass-gap equation. The pressure at zero
nuclear density must vanish. In this case the energy and
baryon densities are related to the pressure as follows:

&= —P+ Nepop; 0P = Neop; 96 = Nept. (112)
The direct connection between energy density and pressure
reads

reoin i)
BTe OB '

Evidently the energy per baryon has an extremum when the
pressure vanishes. Since the pressure is an increasing func-
tion of the density as we have seen, obviously vanishing at
zero density, and infinite nuclear matter is stable (thus imply-
ing zero pressure) the phase diagram in the P, op plane is
necessarily discontinuous with values of the density in the
interval (0, og) not corresponding to equilibrium states (gq
is the nuclear matter density). We will see below how this is
realized in our model.

(113)

9.1 On the way to stable nuclear matter

Our model consisting of two scalar isomultiplets is still some-
what too simple in one respect. The stabilization of nuclear
matter requires not only attractive scalar forces (scalars)
but also repulsive ones (vector-mediated). Conventionally

[32,33], the latter ones are associated to the interactions
mediated by the isosinglet vector @ meson. Let us supple-
ment our action with the free @ meson lagrangian and its
coupling to the quarks,

1 1
AL, = —waa)’w + =

Sm (114)

wuw gwqqqyp.w q,
with a coupling constant .z, ~ O(1/+/N.). After bosoni-
zation of QCD or QCD-like theories, on symmetry grounds,
any vector field interacts with scalars in the form of a com-
mutator and therefore w, does not show up in the effective
potential H fields to the lowest order. However, in the quark
lagrangian the time component w interplays with the chem-
ical potential and it is of importance to describe the dense
nuclear matter properties. Let us assign a constant VEV for
this component g4 (o) = @. Then one needs to compute
the modification of the effective potential due to the replace-
ment 4 — @ + @ = . The variable @ and, accordingly,
[ are dynamical and in addition appear quadratically in the
mass term in (114) which reads

1 (i — p)?
2
AVo = _Em‘“<w°> -2 G,

2
8wiq 1
Gp=—>2>20—).
T m? <Nc

w

)

(115)

The term (115) supplements the effective potential (63):
Vet (1) = Verr() + AV, (s, ). Correspondingly the
extremum condition for the variation of the variable &
involves both the scalar part of the effective potential (63)
and the vector one (115) and due to (59) takes the following
form:
— [
Gw

Ny
pF(u) ; (116)

N
Neop(p) = 37
from this one finds /i (w) after solving the mass-gap equations
(49), (17) and (19).

Finally the extended effective potential at a minimum
reads

~ 1
Vetto () = =38 (o7 0) + 030) + () (D))

N~ . _\3/2
- [?“ (HZ - Ul(u))
8N . -
+G, T(M —al(u)> ]G(M—Ul(u)),

(117)

where (0;) = o (ft). Letus define the VEVs of scalar field o

in vacuum at the two minima as o;*(0) < crltI (0). Let us select
out the parameter subspace such that the minimum corre-
sponding to crltt 0), o§ (0) is lower than the other minimum at
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Fig. 4 Saturation point meets spontaneous parity breaking: at ;© = p
the pressures for the two solutions 0%, ¢* become equal and the solu-
tions interchange realizing the first-order phase transition. At a larger
chemical potential p. the second-order SPB phase transition occurs

01 (0), 05(0). Then for parity-even matter (p) = 0, one seeks
the nuclear matter stability at a value of the chemical poten-
tial ji; witho*(0) < jiy < alﬁ (0). The corresponding baryon
matter stability condition AP = P(Uf (0)) = P(of (i1s) =
0, Eq. (56), can be formulated as

A (@) + @) = (of (i) = (03 (1))

2272
NeNp oo 5 o NCNf 6~
= n2 s pr(ts) + Gy 93 Pr(iLs)
C ~ 22
= TI'LSQB(MS) + Ga)NcQB(Ms),

taking into account (117) and (115). Here fi; is related to the
physical value of us by (116) and it is assumed that parity
is not violated, (o) = 0. This relation represents the con-
dition for the formation of stable symmetric nuclear matter
as a result of the first-order phase transition [32,33]. It can
be fulfilled by an appropriate choice of the vector coupling
constant G, as typically the first term in the r.h.s. of (118)
is smaller than the one on the l.h.s. The first-order phase
transition at the saturation point is illustrated in Fig. 4.

At finite temperatures one has to modify the thermody-
namic relations. The modification of the effective potential
due to w mesons is given by (115). Thus Veff’w(,u,, B) =
Veff(/l, B) + AV, (jx, ), which should henceforth be used
in all the previous thermodynamical formulas. The replace-
ment i — [ makes all expectation values depend rather on
L, which is determined via the variation of Veff:

(118)

o=

G. (119)

= —IN¢OB (:3? M, 01) = aﬂveff(ﬂv :3)

The saturation point at 4 = ug, where nuclear matter
forms, is characterized by the energy crossing condition for
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P, T #0,

A (o) + (o2 = @ = 02)
Ne - « f
= s (.QB(/B, s 01) — 0B, s, 60)

1
+§T (S(ﬂ, s, 01) — S(B, s, GF))

+GuN? (03 (B s o) = 0} (B o)), (120)

where [i, is related to the physical value of j; by Eq. (119)
and o = 07 (i, B): o = 0 (fis. ).

The latter relation represents the condition for the exis-
tence of symmetric nuclear matter. It can be always fulfilled

by an appropriate choice of G,.

9.2 Saturation point meets spontaneous parity breaking

Let us search for the domain of parameters in the model
providing the realization of both stable nuclear matter and
the regime of SPB. The former is associated with a first-order
phase transition and implies the existence of two minima at
zero chemical potential which are possibly moving when
the chemical potential increases. The highest, meta-stable
minimum must start moving at chemical potentials ¢ smaller
than the value of the dynamical mass of the lowest minimum,
olﬁ and larger than the VEV al* at the highest minimum, crl* <

n< (rlu. This meta-stable minimum may reach the lowest one
if the density and omega meson effects are taken into account.
Then a first-order phase transition to normal nuclear matter
occurs when pressures become equal, Eq. (118).

In order to simplify our search we make a particular choice
of A5 = 0 (not a reduction by 30). In this case one of the
solutions is 02(0) = 0and2X (01(0))2 = Aanditis aminimum
as it follows from (22), (23) (in the chiral limit) provided
that &1 > 0, (A3 + A4) > 2. When 65” = 0 a higher
symmetry Z, x Zj arises for the effective potential in the
vicinity of such a minimum as the contribution of the vertex
with Ag into the second variation vanishes with 02(0). For
072 # 0 one can obtain Eq. (36) for the ratio t = 02 /07. As is
analyzed in Sect. 4.2, it has, in general, one or three real roots.
For our purposes Eq. 36 must have three real solutions: one
corresponding to a minimum ¢ > 0 and two corresponding
to saddle points r'V < 0, #?) > 0. The inequality controlling
the existence of three real solutions is derived in Sect. 4.2
from the analysis of the minimum of the polynomial (36).
Finally for a given solution & one finds a unique solution
for oy > 0 from (16) (or 49) and (17).

Let us assume the minimum with o,” = 0 to be the

higher one at zero chemical potentials 01(0) = oy For this

choice to be realized it is sufficient to fulfill the inequality
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01(0) =0 < 01(3 ) = olu. It turns out that in order to provide

it one has to satisfy the inequality

3
20t + Shet + O3 +Aa = 20) <0, (121)
which implies
93§ 2 3203 + A = 20); 0<t® < -2 (122)
2

When at the critical value of u = uy < olu , the solution with
o = 0 describes a saturation point then the further evolution
of the meson background for higher chemical potentials is
characterized by the following equation for o} (u*):

201(07)* () = A = N Aot ). (123)

As the last term is monotonously increasing with chemical
potential, the VEV of scalar field is decreasing. Now we
approach the P-breaking regime and employ Eq. (67) at the
expected phase transition point. Its solution is

A
The T 3 =g 2
Thus the feasibility of spontaneous P-breaking depends on
the realization of the inequality o1 . < 0" < af . The combi-
nation of the regime of nuclear matter saturation for normal
baryon density and of the P-breaking phase at a higher baryon
density is qualitatively depicted on Fig. 4.

Let us collect the inequalities providing the required con-
vexity of the two minima and the very existence of both the

stable nuclear matter and a parity breaking phase for higher
densities (see [28-31])

<(ohH? = (124)

3
A123.4 >0, A3 > A4, EA% > 8hohg > )»%,

A >0, A3EXrg) >2x, (A3 4+ Ag) > 2N, (125)

in addition to those ones derived above. For a more defi-
nite numerical estimation of these six constants associated
to QCD there is not at present enough experimental or phe-
nomenological information.

10 Confronting the two-multiplet model with meson
and nuclear matter phenomenology

We assume that the quark matter is equivalent to nuclear
matter when their average baryon densities coincide, at least
in what respects meson properties. Thus the two-multiplet
model investigated in our paper could be exploited to explore
baryon matter properties in the mean-field approach. The
baryon matter normalization we will apply at the normal
baryon density. The normal density of infinite nuclear matter

[32,33] is o9 =~ 0.15= 0.16 fm~3 that corresponds to the
average distance 1.8 = 1.9 fm between nucleons in nuclear
matter. The two-multiplet model investigated in our paper
contains a number of empirical parameters which at present
are difficult to calculate directly from QCD. Instead fol-
lowing the assumption that QCD governs exactly the phe-
nomenology of hadron physics one can attempt to derive
these parameters and coupling constants from the very meson
and nuclear matter experimental data. In total we have three
dim-2 vertices with mass-like parameters A;;, three normal-
ization parameters for Kinetic terms A;; and six coupling
constants for dim-4 meson self-interaction A;. Beyond the
chiral limit one has also the two vertices linear in current
quark masses parameterized by d;. At last in order to pro-
vide the first-order phase transition to stable baryon matter
one has to include the repulsive forces generated by @ meson
with the relevant coupling constant G, in (115). All together
one has 15 constants to be found from spectral characteristics
of mesons and stable baryon matter.

The reparameterization (28) of the scalar field H, dis-
cussed in Sect. 4 allows to reduce the mass-like parameters
to only one, A;; — AJd;;. Thus 13 independent parameters
must be fixed from hadron phenomenology.

The first source for determination of coupling constants
and mass scales of the model comes from the mass spec-
trum of two lightest multiplets of scalar isoscalar and pseu-
doscalar isotriplet mesons. The pseudoscalar meson masses
are known with a reasonable precision according to [91]. In
particular the heavy pion IT mass starts from ~1300 MeV
in the vacuum, at zero temperature and chemical potential.
The situation with scalar meson masses is less definite. In the
mass range below 2 GeV there might be at least four mixed
scalar mesons with a glueball among them. The decay con-
stants are well measured for light pions but not so precisely
known for heavy pions and scalars. But in principle one could
have 4 + 4 = 8 experimental inputs from meson masses and
decay constants in the dominating decay channels.

The fitting of nuclear matter properties could give more
inputs for determination of model parameters. Namely, the
normal density of infinite nuclear matter [32,33] is g9 =~
0.15+0.16 fm~3, which corresponds to the average distance
1.8 = 1.9 fm between nucleons in the nuclear matter. At the
saturation point P = 0 and

£
N = — = energy per baryon
OB

= my — Ebound = (939 — 16) MeV = 923 MeV.
(126)

The quark matter chemical potential is defined as 9,6 =
un = N . Therefore at the saturation point ;g = 308 MeV.
Then from (120) it can be established that if normal nuclear
matter is formed at the chemical potential ug; >~ 308 MeV,
then it can stabilized by w meson condensate with G, ~ (10—
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15) GeV~2 in qualitative agreement to what is known from
other model estimations [92,93].

Evidently for a more definite numerical estimation of the
entire set of 13 constants there is not at present enough
experimental or phenomenological information, although it
can be shown that the tentative values assumed in [28] for
A ~0.15 13 ~4, A ~0.03 GeV 2 may lead to the occur-
rence of SPB at about three times normal nuclear densities.

Still we pay hopes to collect the required number of inputs
from hadron phenomenology to falsify the realization of
spontaneous parity breaking in dense baryon matter or vice
versa the discovery of SPB in heavy-ion collisions [75-79]
might give the missing data to fix the model parameters with
a reasonable precision.

11 Conclusions

In this paper we followed the preliminary investigations in
[28-31] and explored the issue of parity breaking in dense
baryon matter employing effective lagrangian techniques.

— Our effective lagrangian is a realization of the general-
ized linear o model, but including the two lowest-lying
resonances in each channel, those that are expected to
play arole in this issue. It can be associated with QCD or
QCD-like technicolor models and includes the vertices of
soft breaking of chiral symmetry presumably generated
by current quark masses. In this minimal model conden-
sation of one of the pseudoscalar fields can arise on the
background of two-component scalar condensate so that
the chiral constant background cannot be rotated away
by transformation of two complex scalar multiplets pre-
serving space parity. The use of effective lagrangians is
crucial to understand how would parity breaking origi-
nating from a finite baryon density eventually reflect in
hadronic physics.

— We conclude that parity breaking is a realistic possibil-
ity in nuclear matter at moderate densities and non-zero
current quark masses. To prove it we included a chem-
ical potential for the quarks that corresponds to a finite
density of baryons and investigate the pattern of sym-
metry breaking in its presence. The necessary and suffi-
cient conditions (beyond the chiral limit) were found for
a phase where parity is spontaneously broken to exist. It
also extends to finite temperature although for large tem-
peratures the hot pion gas corrections must be taken into
account.

— As a consequence of SPB a strong mixing between
scalar and pseudoscalar states appears that translate spon-
taneous parity breaking into meson decays. The mass
eigenstates will decay both in odd and even number of
“pions” simultaneously.

@ Springer

— At the very point of the phase transition leading to parity
breaking one has six massless pion-like states in the chiral
limit and the three massless states when the quark masses
are taken into account. After crossing the phase transition,
in the parity broken phase, the massless charged pseu-
doscalar states remain as Goldstone bosons enhancing
charged pion production, whereas the additional neutral
pseudoscalar state becomes massive.

— As a bonus we have gotten a rather good description of
several aspects of nuclear physics; in particular a good
description of the physics associated to the condensation
transition where nuclear matter becomes the preferred
solution. The model is rich enough to provide the relevant
characteristics while avoiding some undesirable proper-
ties of simpler models, such as the chiral collapse (see
Appendix A). Other nuclear properties such as (in)com-
pressibilities are well described too (see Appendix B).

We have presented our results trying to avoid as much as
possible specific numerical values for the different quantities
and parameters. Not only is this procedure more general but
also the logical connections are better outlined. The main
conclusion of our studies is that spontaneous parity breaking
seems to be a rather generic phenomenon at finite density. It
would be interesting to investigate how this new phenomenon
could modify the equation of state of neutron stars (the den-
sity of such objects seems to be about right for it). It is also
mandatory to investigate in detail the appearance of a SPB
phase in heavy-ion collisions.
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Appendix A: Stable baryon matter without chiral
collapse

A viable model of dense baryon (quark/nucleon) matter must
reveal the phase transition to a stable bound state at the normal
nuclear density op = o for infinite homogeneous symmet-
ric nuclear matter at the so called “saturation point”. This
phase transition is believed to be of first order, similar to the
vapor condensation into liquid: from droplets of heavy nuclei
to a homogeneous nuclear liquid. However, in simple quark
models of the NJL type [34] this phase transition (for van-
ishing current quark masses) goes to the chirally symmetric
phase with zero dynamical mass (zero VEV of scalar fields),
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the so-called “chiral collapse”. When it happens the typi-
cal baryon density is substantially larger that the normal one
0B.c = 2.800. For this reason these simple models cannot be
areasonable guide to phase transitions in very dense nuclear
matter.

Let us examine under which conditions the saturation
point in our model happens to be at normal nuclear density
and is not accompanied by the chiral collapse keeping the
dynamical mass different from zero. To analyze this prob-
lem we have to examine the pressure in cold (T = 0), dense
baryon matter.

We recall that in so far as our system undergoes sponta-
neous CSB the effective potential (33) does not reveal any
minimum at the origin in variables o; (for 1 = 0) and may
have either a saddle point,

det [\7(2)] (0j=0)<0
or a maximum,
det [\7@] ©) > 0, tr{W)} 0) < 0.

One has a positive definite matrix of second variations (22),
(23) of the effective potential in the vicinity of a CSB solution,

det [\7(2)] (0}:) > 0; tr{V(z)} (aj:.t) > 0.

It means that

Veff (U,ﬁ) < Vetr(0).

These properties allow us to guess that at some value
of chemical potential u; < o'ltt and smaller values of the
VEVs for the scalar fields 01* < g the deficit in scalar
background energies on the left-hand side of (118) may be
exactly compensated by contributions from the nuclear den-
sity and omega meson repulsion on the right-hand side so
that P(o;‘, is) = 0 and the system undergoes a first-order
phase transition to the stable quark (nuclear) matter.

Let us now prove that for a large variety of coupling con-
stants admitting CSB (and SPB; see below) one of the VEV
oj’?‘ # 0 in the chiral limit, and the chiral collapse is impos-

sible. Indeed, suppose that o]’." =0at u* < Glﬁ where the
pressure vanishes then

8GLN 3
(nH* + — )0 = —v Veir (0, 11 = 0)] .

In this case the second variation matrix for the effective
potential (22), (65) reads

(127)

e
EVfl)" = —A+ N2,
1
@ ®)
Ve =0, v =—A. (128)

2

In order to induce SPB one takes A > 0 (see below). Then
from (128) one finds that for any value of u* the second

variation matrix is never positive definite and one reveals
either a saddle point or a maximum at a presumed saturation
point whereas a maximum remains for vacuum values with
uw* < (rlu. As we have to guarantee the existence of stable
nuclear matter with the normal baryon density we consider
further on A > 0.

It is instructive to reduce the two-multiplet sigma model
to a one-multiplet lagrangian associated to a NJL quark
model. In relations (128) it simply corresponds to taking only
one matrix element Vl(lz)(’ to describe the behavior around
extremum at the origin. Evidently, there is always a value
of u* for which it becomes positive and chiral collapse is
inevitable. But when comparing with our model one con-
cludes that the reason for appearance of chiral collapse is not
the absence of confinement [34] but the inefficiency of a one-
channel linear sigma model in representing the complicated
chiral dynamics in hadronic physics.

Appendix B: Proposal for (in)compressibilities: matching
quark and nuclear matters

The (in)compressibility in the quark matter must be defined
as K () = 0,5 P, where the derivative is made with the help
of the function op (1) given in (66). For a zero pressure state
(such as stable nuclear matter) this equals

&
i )
BZon 0B

which must be positive since it corresponds to a minimum of
the energy per baryon. In our model this is indeed the case:

(129)

P=0

2 ~
pr (i)
K (1) = NeQpdpyit = 7———————— +9G,05 (1),
(i — 019301(11))
2)
~ VO’ (o)
9,01 = —4No, /a2 — o2 —22_ <0 (130)
" D det v

where N. = 3 is assumed and 0} = o (f1).

In order to adjust the properties of stable baryon matterin a
quark description we parameterize the (in)compressibility as
follows: K = aN.0pd, | p=o. Letus show that the matching
of quark and nuclear matter at the saturation point is provided
by the normalization factor @ = 9 in meson—nucleon models
and @ = 1 for quark-meson models. The incompressibility
must be positive (giving a minimum of the energy per baryon)
when a stable nuclear matter is formed at zero pressure. The
derivative of the dynamical mass is given in (130) from which
it follows that the derivative of the pressure is always positive.
Thus if there is a solution with o] = o1(u*) < u* < crlTi
providing P = 0, the phase transition emerges for the stable
nuclear matter state.

In the terms of the nuclear DOF one defines

e=—P+ unos. (13D

@ Springer
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At the saturation point P = 0 and

UN = £ = energy per baryon = my — Epound- (132)
OB

The quark matter chemical potential is defined as d,e =

un = N . Letususe this point for the quark—hadron match-

ing

o0B(uN) = 0B (1s),
Prn = (un)® = (my) = pf, = (u)* = (of)%, (133)

if we neglect the vector meson shift it ~ ©. However, the
matching of densities does not provide the equivalence of
derivatives w.r.t. chemical potentials. Namely around the sat-
uration point

2 2
a’i ~2uN =2Neps # a’i >~ 2uy,
oun o
where (subdominant) derivatives of dynamical masses are
neglected for amoment. Now let us try to extend the matching
to the (in)compressibilities, providing the correct N, factors.
For hadron matter

(134)

dop\ ' . p:  3p?
Kn(is) = 905 (i) Sk LAl (135)
N UN  Neps
whereas for quark matter,
dop\ ' N.p?
Ko(us) = Neos (i> ~ P, (136)
o 3us

they match for N. = 3. One could do things even better. If
we redefine the coefficient for the hadron matter, 9 — 3N,
and we introduce the coefficient 3/ N, for the quark matter,
then both definitions match for any N, to the leading order.
At least one then could succeed in their matching around
normal density.

Going back to the quark matter description it would mean
that

2 ~
K (1) = — pF(//LS)

—— +3N.Gyop(us)
(s — 010501 (fLs)) o ’

(137)

has a finite limit at large N, coinciding with what we get for
hadron matter if one remembers that G, ~ 1/N,.
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