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The Zhitnitsky and Dine, Fischler and Srednicki (DFSZ) model is a natural extension of the two-Higgs-
doublet model containing an additional singlet, endowed with a Peccei-Quinn symmetry, and leading to a
physically acceptable axion. In this paper we reexamine this model in the light of some new developments.
For generic couplings the model reproduces the minimal Standard Model showing only tiny deviations
(extreme decoupling scenario) and all additional degrees of freedom (with the exception of the axion) are
very heavy. Recently it has been remarked that the limit where the coupling between the singlet and the two
doublets becomes very small is technically natural. Combining this limit with the requirement of exact or
approximate custodial symmetry, we may obtain an additional 0þ Higgs at the weak scale, accompanied by
relatively light charged and neutral pseudoscalars. The mass spectrum would then resemble that of a
generic two-Higgs-doublet model, with naturally adjustable masses in spite of the large scale that the axion
introduces. However, the couplings are nongeneric in this model. We use the recent constraints derived
from the Higgs-WW coupling together with oblique corrections to constrain the model as much as possible.
As an additional result, we work out the nonlinear parametrization of the DFSZ model in the generic case
where all scalars except the lightest Higgs and the axion have masses at or beyond the TeV scale.
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I. INTRODUCTION

An invisible axion [1–3] constitutes to this date a very
firm candidate to provide all or part of the dark matter
component of the cosmological budget. There are several
extensions of the minimal Standard Model (MSM) provid-
ing a particle with the characteristics and couplings of the
axion [4,5]. In our view a particularly interesting possibility
is the model suggested by Zhitnitsky and Dine, Fischler and
Srednicki (DFSZ) more than 30 years ago that consists of a
fairly simple extension of the popular two-Higgs-doublet
model (2HDM). As a matter of fact, it could probably be
argued that a good motivation to consider the 2HDM is that
it allows for the inclusion of a (nearly) invisible axion
[6–8]. Of course, there are other reasons why the 2HDM
should be considered as a possible extension of the MSM.
Apart from purely aesthetic reasons, it is easy to reconcile
such models with existing constraints. They may give rise
to a rich phenomenology, including possibly (but not
necessarily) flavor-changing neutral currents at some level,
custodial symmetry breaking terms or even new sources of
CP violation [9,10].
Following the discovery of a Higgs-like particle with

mh ∼ 125 GeV, there have been a number of works
considering the implications of such a finding on a generic
2HDM, together with the constraints arising from the lack
of detection of new scalars and from the electroweak
precision observables [11]. Depending on the way that
the two doublets couple to fermions, they are classified as

type I, II or III (see e.g. [9] for details), with different
implications on the flavor sector. Consideration of all the
different types of 2HDM plus all the rich phenomenology
that can be encoded in the Higgs potential leads to a wide
variety of possibilities with different experimental impli-
cations, even after applying all the known phenomeno-
logical low-energy requirements.
Requiring a Peccei-Quinn (PQ) symmetry leading to an

axion does, however, severely restrict the possibilities, and
this is in our view an important asset of the DFSZ model.
This turns out to be particularly the case when one includes
all the recent experimental information concerning the
125 GeV scalar state and its couplings. Exploring this
model, taking into account all these constraints is the
motivation for the present work.
The structure of this paper is as follows. In Sec. II we

discuss the possible global symmetries of the DFSZ model,
namely Uð1ÞPQ (always present), and SUð2ÞL × SUð2ÞR
(the SUð2ÞR subgroup may or may not be present).
Symmetries are best discussed by using a matrix formalism
that we review and extend. Section III is devoted to the
determination of the spectrum of the theory. We present up
to four generic cases that range from the extreme decou-
pling, where the model–apart from the presence of the
axion–is indistinguishable from the MSM at low energies,
to one where there are extra light Higgses below or around
the TeV scale. This last case necessarily requires some
couplings in the potential to be very small; a possibility that
is nevertheless natural in a technical sense and therefore
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should be contemplated as a viable theoretical hypothesis.
We discuss in detail the situation where custodial symmetry
is exact or approximately valid in this model because the
combination of this symmetry and naturally small cou-
plings allows us to keep the additional scalars ‘naturally
light’ if we so wish with only one exception, meaning that
the ‘contamination’ from the large scale present in the
theory is under control.
However, while additional scalars may exist at or just

above the weak scale in this model, they can also be made
heavy, with masses in the multi-TeV region or beyond. In
Sec. IV we discuss the resulting nonlinear effective theory
emerging in this generic situation.
Next in Sec. V we analyze the impact of the model on the

(light) Higgs effective couplings to gauge bosons and the
constraints that can be derived from the recent LHC data. In
Sec. VI we compare the potential of the DFSZ model with
the most general potential in the 2HDM. We find out which
terms of the general potential are forbidden by the PQ
symmetry and which ones are recovered when it is sponta-
neously broken by the VEV of the scalar fields. Finally in
Sec. VII the restrictions that the electroweak precision
parameters, particularly Δρ, impose on the model are
discussed. These restrictions are relevant only in the case
where all or part of the additional spectrum of scalars is light
as we find that they are automatically satisfied otherwise.
We would like to emphasize that even after imposing the

constraints derived from the PQ symmetry the model still
contains enough degrees of freedom to reproduce the mass
spectrum of a generic 2HDM, so there is no predictivity at
the level of the spectrum. However, this nearly exhausts all
freedom available, particularly if exact or approximate
custodial symmetry is imposed. Then the scalar couplings
are largely fixed and in this sense the model is far more
predictive than a generic 2HDM—and in addition it
contains the axion, which is its raison d’être.

II. MODEL AND SYMMETRIES

The DFSZ model contains two Higgs doublets and one
complex scalar singlet, namely,

ϕ1 ¼
�
αþ
α0

�
; ϕ2 ¼

�
βþ
β0

�
; ϕ; ð1Þ

with vacuum expectation values (VEVs) hα0i ¼ v1,
hβ0i ¼ v2, hϕi ¼ vϕ and hαþi ¼ hβþi ¼ 0. Moreover,
we define the usual electroweak vacuum expectation value
v ¼ 246 GeV as v2 ¼ ðv21 þ v22Þ=2 and tan β ¼ v2=v1. The
implementation of the PQ symmetry is only possible for
type II models, where the Yukawa terms are

LY ¼ G1q̄L ~ϕ1uR þG2q̄Lϕ2dR þ H:c:; ð2Þ

with ~ϕi ¼ iτ2ϕ�
i . The PQ transformation acts on the

scalars as

ϕ1 → eiX1θϕ1; ϕ2 → eiX2θϕ2; ϕ → eiXϕθϕ ð3Þ

and on the fermions as

qL → qL; lL → lL; uR → eiXuθuR;

dR → eiXdθdR; eR → eiXeθeR: ð4Þ

For the Yukawa terms to be PQ-invariant we need

Xu ¼ X1; Xd ¼ −X2; Xe ¼ −X2: ð5Þ

Let us now turn to the potential involving the two doublets
and the new complex singlet. The most general potential
compatible with PQ symmetry is

Vðϕ;ϕ1;ϕ2Þ ¼ λϕðϕ�ϕ − V2
ϕÞ2 þ λ1ðϕ†

1ϕ1 − V2
1Þ2

þ λ2ðϕ†
2ϕ2 − V2

2Þ2
þ λ3ðϕ†

1ϕ1 − V2
1 þ ϕ†

2ϕ2 − V2
2Þ2

þ λ4½ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ − ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ�
þ ðaϕ†

1ϕ1 þ bϕ†
2ϕ2Þϕ�ϕ

− cðϕ†
1ϕ2ϕ

2 þ ϕ†
2ϕ1ϕ

�2Þ ð6Þ

The c term imposes the condition −X1 þ X2 þ 2Xϕ ¼ 0. If
we impose that the PQ current does not couple to the
Goldstone boson that is eaten by the Z, we also get
X1cos2β þ X2sin2β ¼ 0. If furthermore we choose1

Xϕ ¼ −1=2 the PQ charges of the doublets are

X1 ¼ −sin2β; X2 ¼ cos2β: ð7Þ

Global symmetries are not very evident in the way fields
are introduced above. To remedy this let us define the
matrices [12]

Φ12 ¼ ð ~ϕ1ϕ2Þ ¼
�

α�0 βþ
−α− β0

�
;

Φ21 ¼ ð ~ϕ2ϕ1Þ ¼
�

β�0 αþ
−β− α0

�
¼ τ2Φ�

12τ2 ð8Þ

and

I ¼ Φ†
12Φ12 ¼

�
ϕ†
1ϕ1

~ϕ†
1ϕ2

−ϕ†
1
~ϕ2 ϕ†

2ϕ2

�
;

J ¼ Φ†
12Φ21 ¼ ϕ†

2ϕ1I: ð9Þ

Defining also the constant matrix W ¼ ðV2
1 þ V2

2ÞI=2þ
ðV2

1 − V2
2Þτ3=2, we can write the potential as

1There is arbitrariness in this choice. This election conforms to
the conventions existing in the literature.
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Vðϕ; I; JÞ ¼ λϕðϕ�ϕ − V2
ϕÞ2 þ

λ1
4
fTr½ðI −WÞð1þ τ3Þ�g2

þ λ2
4
fTr½ðI −WÞð1 − τ3Þ�g2 þ λ3½TrðI −WÞ�2

þ λ4
4
Tr½I2 − ðIτ3Þ2�

þ 1

2
Tr½ðaþ bÞI þ ða − bÞIτ3�ϕ�ϕ

−
c
2
TrðJϕ2 þ J†ϕ�2Þ: ð10Þ

A SUð2ÞL × SUð2ÞR global transformation acts on our
fields as

Φij → LΦijR†; I → RIR†; J → J: ð11Þ

We now we are in a better position to discuss the global
symmetries of the potential. The behavior of the different
parameters under SUð2ÞR is shown in Table I. See also [13].
Finally, let us establish the action of the PQ symmetry

previously discussed in this parametrization. Under the PQ
transformation:

Φ12 → Φ12eiXθ; ϕ → eiXϕθϕ ð12Þ

with

X ¼ X2 − X1

2
I −

X2 þ X1

2
τ3; Xϕ ¼ X2 − X1

2
ð13Þ

Using the values for X1;2 given in Eq. (7)

X ¼
�
sin2β 0

0 cos2β

�
; Xϕ ¼ −

1

2
: ð14Þ

III. MASSES AND MIXINGS

We have two doublets and a singlet, so a total of
4þ 4þ 2 ¼ 10 spin-zero particles. Three particles are
eaten by the W� and Z and 7 scalars fields are left in
the spectrum; two charged Higgs, two 0− states and three
neutral 0þ states. Our field definitions will be worked out in
full detail in Sec. IV. Here we want only to derive the
spectrum. For the charged Higgs mass we have at tree
level,2

m2
H� ¼ 8

�
λ4v2 þ

cv2ϕ
s2β

�
: ð15Þ

The quantity vϕ is proportional to the axion decay
constant. Its value is known to be very large (at least

107 GeV and probably substantially larger ∼109 GeV if all
astrophysical constraints are taken into account, see [14] for
several experimental and cosmological bounds). It does
definitely make sense to organize the calculations as an
expansion in v=vϕ.
In the 0− sector there are two degrees of freedom that

mix with each other with a mass matrix which has a
vanishing eigenvalue. The eigenstate with zero mass is the
axion and A0 is the pseudoscalar Higgs with mass

m2
A0

¼ 8c

�
v2ϕ
s2β

þ v2s2β

�
: ð16Þ

Eq. (16) implies c ≥ 0. For c ¼ 0, the mass matrix in the 0−

sector has a second zero, i.e. in practice the A0 field behaves
as another axion.
In the 0þ sector, there are three neutral particles that mix

with each other. With hi we denote the corresponding 0þ
mass eigenstates. The mass matrix is given in Appendix B.
In the limit of large vϕ, the mass matrix in the 0þ sector can
be easily diagonalized [7] and presents one eigenvalue
nominally of order v2 and two of order v2ϕ. Up toOðv2=v2ϕÞ,
these masses are

m2
h1

¼ 32v2ðλ1c4β þ λ2s4β þ λ3Þ

− 16v2
ðac2β þ bs2β − cs2βÞ2

λϕ
; ð17Þ

m2
h2

¼ 8c
s2β

v2ϕ þ 8v2s22βðλ1 þ λ2Þ

− 4v2
½ða − bÞs2β þ 2cc2β�2

λϕ − 2c=s2β
; ð18Þ

m2
h3
¼ 4λϕv2ϕ þ 4v2

½ða − bÞs2β þ 2cc2β�2
λϕ − 2c=s2β

þ 16v2
ðac2β þ bs2β − cs2βÞ2

λϕ
: ð19Þ

The field h1 is naturally identified with the scalar boson of
mass 125 GeV observed at the LHC.
It is worth it to stress that there are several situations

where the above formulae are nonapplicable, since the
nominal expansion in powers of v=vϕ may fail. This may
be the case where the coupling constants a, b, c connecting
the singlet to the usual 2HDM are very small, of order say
v=vϕ or v2=v2ϕ. One should also pay attention to the case
λϕ → 0 (we have termed this latter case as the “quasifree
singlet limit”). Leaving this last case aside, we have found
that the above expressions for mhi apply in the following
situations:

Case 1: The couplings a, b and c are generically
of Oð1Þ

2Here and in the following we introduce the short-hand
notation snmβ ≡ sinnðmβÞ and cnmβ ≡ cosnðmβÞ.
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Case 2: a, b or c are of Oðv=vϕÞ
Case 3: a, b or c are of Oðv2=v2ϕÞ but c ≫ λiv2=v2ϕ.

If c ≪ λiv2=v2ϕ the 0− state is lighter than the lightest 0þ
Higgs and this case is therefore already phenomenologi-
cally unacceptable. The only other case that deserves a
separate discussion is

Case 4: Same as in case 3 but c ∼ λiv2=v2ϕ.
In this case, the masses in the 0þ sector read, up to
Oðv2=v2ϕÞ, as

m2
h1;h2

¼ 8v2ðK∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − L

p
Þ and m2

h3
¼ 4λϕv2ϕ; ð20Þ

where

K ¼ 2ðλ1c2β þ λ2s2β þ λ3Þþ
cv2ϕ

2v2s2β
;

L¼ 4

�
ðλ1λ2þ λ1λ3þ λ2λ3Þs22β þ

cv2ϕ
v2s2β

ðλ1c4β þ λ2s4β þ λ3Þ
�
:

ð21Þ

Recall that here we assume c to be of Oðv2=v2ϕÞ. Note that

m2
h1
þm2

h2
¼ 32v2

�
λ1c2β þ λ2s2β þ λ3 þ

cv2ϕ
4v2s2β

�
: ð22Þ

In the “quasifree singlet” limit, when λϕ → 0 or more
generically λϕ ≪ a; b; c it is impossible to sustain the
hierarchy v ≪ vϕ, so again this case is phenomenologically
uninteresting (see Appendix C for details).
We note that once we set tan β to a fixed value, the

lightest Higgs to 125 GeV and vϕ to some large value
compatible with the experimental bounds, the mass spec-
trum in Eq. (15), (16) and (17)–(19) grossly depends on the
parameters: c, λ4 and λϕ, the latter only affecting the third
0þ state that is anyway very heavy and definitely out of
reach of LHC experiments; therefore the spectrum depends
on only two parameters. If case 4 is applicable, the situation
is slightly different and an additional combination of
parameters dictates the mass of the second (lightish) 0þ
state. This can be seen in the sum rule of Eq. (22) after
requiring that mh1 ¼ 125 GeV. Actually this sum rule is
also obeyed in cases 1, 2 and 3, but the r.h.s is dominated
then by the contribution from the parameter c alone.

A. Heavy and light states

Here we want to discuss the spectrum of the theory
according to the different scenarios that we have alluded to
in the previous discussion. Let us remember that it is
always possible to identify one of the Higgses as the scalar
boson found at LHC, namely h1.

Case 1. all Higgses except h1 acquire a mass of order
vϕ. This includes the charged and 0− scalars, too. We
term this situation ‘extreme decoupling’. The only light

states are h1, the gauge sector and the massless axion.
This is the original DFSZ scenario [4]
Case 2. This situation is similar to case 1 but now the
typical scale of masses of h2,H� and A0 is

ffiffiffiffiffiffiffiffivvϕ
p . This

range is beyond the LHC reach but it could perhaps be
explored with an accelerator in the 100 TeV region, a
possibility being currently debated. Again the only
light particles are h1, the axion and the gauge sector.
This possibility is natural in a technical sense as
discussed in [7] as an approximate extra symmetry
would protect the hierarchy.
Cases 3 and 4 are phenomenologically more interest-
ing. Here we can at last have new states at the weak
scale. In the 0þ sector, h3 is definitely very heavy but
m2

h1
andm2

h2
are proportional to v2 once we assume that

c ∼ v2=v2ϕ. Depending on the relative size of λi and
cv2ϕ=v

2 one would have to use Eq. (17) or (20).
Because in case 3 one assumes that cv2ϕ=v

2 is much
larger than λi, h1 would still be the lightest Higgs and
mh2 could easily be in the TeV region. When examin-
ing case 4 it would be convenient to use the sum
rule (22).
We note that in case 4 the hierarchy between the

different couplings is quite marked: typically to be
realized one needs c ∼ 10−10λi, where λi is a generic
coupling of the potential. It is the smallness of this
number what results in the presence of light states at
the weak scale. For a discussion on the “naturalness” of
this possibility see [7].

B. Custodially symmetric potential

While in the usual one doublet model, if we neglect the
Yukawa couplings and set the UYð1Þ interactions to zero,
custodial symmetry is automatic, the latter is somewhat
unnatural in 2HDM as one can write a fairly general
potential. These terms are generically not invariant under
global transformations SUð2ÞL × SUð2ÞR and therefore in
the general case after the breaking there is no custodial
symmetry to speak of. Let us consider now the case where a
global symmetry SUð2ÞL × SUð2ÞR is nevertheless present
as there are probably good reasons to consider this limit.

TABLE I. In total, there are 11 parameters: 7 are custodially
preserving and 4 are custodially breaking. See the text for our
usage of the expression ‘custodial symmetry’ in the context of a
2HDM.

Parameter Custodial limit

λ1; λ2; λ4 λ1 ¼ λ2 ¼ λ and λ4 ¼ 2λ
λ3 λ3
λϕ λϕ
V2
1; V

2
2 V2

1 ¼ V2
2 ¼ V2

Vϕ Vϕ

a; b a ¼ b
c c

DOMÈNEC ESPRIU, FEDERICO MESCIA, AND RENAU ALBERT PHYSICAL REVIEW D 92, 095013 (2015)

095013-4



We may refer somewhat improperly to this situation as to
being ‘custodially symmetric’ although after the breaking
custodial symmetry proper may or may not be present. If
SUð2ÞL × SUð2ÞR is to be a symmetry, the parameters of
the potential have to be set according to the custodial
relations in Table I. Now, there are two possibilities to
spontaneously break SUð2ÞL × SUð2ÞR and to give mass to
the gauge bosons.

1. SUð2Þ × SUð2Þ → Uð1Þ
If the VEVs of the two Higgs fields are different

(tan β ≠ 1), the custodial symmetry is spontaneously bro-
ken to Uð1Þ. In this case, one can use the minimization
equations of Appendix A to eliminate V, Vϕ and c of
Eq. (10). c turns out to be of order ðv=vϕÞ2. In this case
there are two extra Goldstone bosons: the charged Higgs is
massless

m2
H� ¼ 0: ð23Þ

Furthermore, the A0 is light:

m2
A0

¼ 16λv2
�
1þ v2

v2ϕ
s22β

�
ð24Þ

This situation is clearly phenomenologically excluded.

2. SUð2ÞL × SUð2ÞR → SUð2ÞV
In this case, the VEVs of the Higgs doublets are equal, so

tan β ¼ 1. The masses are

m2
H� ¼ 8ð2λv2 þ cv2ϕÞ; m2

A0
¼ 8cðv2 þ v2ϕÞ

and m2
h2
¼ m2

H� : ð25Þ

These three states are parametrically heavy, but they may be
light in cases 3 and 4. The rest of the 0þ mass matrix is
2 × 2 and has eigenvalues (up to second order in v=vϕ)

m2
h1

¼ 16v2
�
λþ 2λ3 −

ða − cÞ2
λϕ

�
and

m2
h3

¼ 4

�
λϕv2ϕ þ 4v2

ða − cÞ2
λϕ

�
: ð26Þ

It is interesting to explore in this relatively simple case
what sort of masses can be obtained by varying the values
of the couplings in the potential (λ, λ3 and c). We are
basically interested in the possibility of obtaining a lightish
spectrum (case 4 previously discussed) and accordingly we
assume that the natural scale of c is ∼v2=v2ϕ. We have to
require the stability of the potential discussed in
Appendix D as well as mh1 ¼ 125 GeV. The allowed
region is shown in Fig. 1. Since we are in a custodially
symmetric case there are no further restrictions to be
obtained from Δρ.

C. Understanding hierarchies

As is well known in the MSM the Higgs mass has
potentially large corrections if the MSM is understood as an
effective theory and one assumes that a larger scale must
show up in the theory at some moment. This is the case, for
instance, if neutrino masses are included via the see-saw
mechanism, to name just a possibility. In this case to
keep the 125 GeV Higgs light one must do some amount of
fine-tuning.
In the DFSZ model such a large scale is indeed present

from the outset and consequently one has to envisage the
possibility that the mass formulae previously derived may
be subject to large corrections due to the fact that vϕ leaks
in the low-energy scalar spectrum. Let us discuss the
relevance of the hierarchy problem in the different cases
discussed in this section.
In case 1 all masses in the scalar sector but the physical

Higgs are heavy, of order vϕ, and due to the fact that the
couplings λi in the potential are generic (and also the
couplings a; b; c connecting the two doublets to the singlet)
the hierarchy may affect the light Higgs quite severely and
fine-tuning of the λi will be called for. However, this fine-
tuning is not essentially different from the one commonly
accepted to be necessary in the MSM to keep the Higgs
light if a new scale is somehow present.
In cases 3 and 4 the amount of additional fine-tuning

needed is none or very little. In these scenarios (particularly
in case 4) the scalar spectrum is light, in the TeV region,
and the only heavy degree of freedom is contained in the
modulus of the singlet. After diagonalization this results in
a very heavy 0þ state (h3), with a mass or order vϕ.

200 400 600 800 1000

200

400

600

800

1000

M A 0
(GeV)

(G
eV

)
M

H
M

h
2

Custodial Limit : Stability & M h 125 GeV

FIG. 1 (color online). Dark/green: allowed region in the
custodial limit after requiring vacuum stability (see e.g.
Appendix D). Each point in this region corresponds to a valid
set of parameters in the DFSZ potential. Note that c is assumed to
be of order v2=v2ϕ and cv2ϕ=v

2 has to be ∼λi (case 4 discussed in
the text).
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However, inspection of the potential reveals that this degree
of freedom couples to the physical sector with an strength
v2=v2ϕ and therefore may change the tree-level masses by a
contribution of order v—perfectly acceptable. In this sense
the “natural” scenario proposed in [7] does not apparently
lead to a severe hierarchy problem in spite of the large scale
involved.
Case 2 is particularly interesting. In this case the

intermediate masses are of order ffiffiffiffiffiffiffiffivvϕ
p , i.e. ∼100 TeV.

There is still a very heavy mass eigenstate (h3) but again is
nearly decoupled from the lightest Higgs as in cases 3 and
4. On the contrary, the states with masses ∼ ffiffiffiffiffiffiffiffivvϕ

p do couple
to the light Higgs with strength ∼λi and thus require—
thanks to the loop suppression factor—only a very mod-
erate amount of fine-tuning as compared to case 1.
It is specially relevant in the context of the hierarchy

problem to consider the custodial case discussed in the
previous section. In the custodial limit, the A0 mass is
protected as it is proportional to the extended symmetry
breaking parameter c. In addition mh2 ¼ mH� . Should one
wish to keep a control on radiative corrections, doing the
fine-tuning necessary to keep h1 and h2 light should suffice
and in fact the contamination from the heavy h3 is limited
as said above. Of course, to satisfy the present data we have
to worry only about h1.

IV. NONLINEAR EFFECTIVE LAGRANGIAN

We have seen in the previous section that the spectrum of
scalars resulting from the potential of the DFSZ model is
generically heavy. It is somewhat difficult to have all the
scalar masses at the weak scale, although the additional
scalars can be made to have masses in weak scale region in
case 4. The only exceptions are the three Goldstone bosons,
the h1 Higgs and the axion. It is therefore somehow natural
to use a nonlinear realization to describe the low-energy
sector formed by gauge bosons (and their associated
Goldstone bosons), the lightest Higgs 0þ state h1, and
the axion. Deriving this effective action is one of the
motivations of this work.
To construct the effective action we have to identify the

proper variables and in order to do so we will follow the
technique described in [12]. In that paper the case of a
generic 2HDM where all scalar fields were very massive
was considered. Now we have to modify the method to
allow for a light state (the h1) and also to include the axion
degree of freedom.
We decompose the matrix-valued Φ12 field introduced in

Sec. II in the following form:

Φ12 ¼ UM12: ð27Þ

U is a 2 × 2matrix that contains the three Goldstone bosons
associated to the breaking of SUð2ÞL (or more precisely of
SUð2ÞL ×Uð1ÞY to Uð1Þem). We denote by Gi these
Goldstone bosons:

U ¼ exp

�
i
~G · ~τ
v

�
: ð28Þ

Note that the matrices I and J of Eq. (9) entering the DFSZ
potential are actually independent of U. This is immediate
to see in the case of I while for J one has to use the property
τ2U� ¼ Uτ2 valid for SUð2Þ matrices. The effective poten-
tial then does depend only on the degrees of freedom
contained inM12 whereas the Goldstone bosons drop from
the potential, since, under a global SUð2ÞL × SUð2ÞR
rotation, Φ12 and U transform as

Φ12 → LΦ12R† U → LUR† ⇒ M12 → RM12R†: ð29Þ

Obviously, the same applies to the locally gauged
subgroup.
Let us now discuss the potential and M12 further.

Inspection of the potential shows that because of the term
proportional to c the phase of the singlet field ϕ does not
drop automatically from the potential and thus it cannot be
immediately identified with the axion. In other words, the
phase of the ϕ field mixes with the usual 0− scalar from the
2HDM. To deal with this let us find a suitable phase both in
M12 and in ϕ that drops from the effective potential—this
will single out the massless state to be identified with
the axion.
We write M12 ¼ M12Ua, where Ua is a unitary matrix

containing the axion. An immediate choice is to take the
generator of Ua to be the identity, which obviously can
remove the phase of the singlet in the term in the effective
potential proportional to c while leaving the other terms
manifestly invariant. This does not exhaust all freedom,
however, as we can include in the exponent of Ua a term
proportional to τ3. It can be seen immediately that this
would again drop from all the terms in the effective
potential, including the one proportional to c when taking
into account that ϕ is a singlet under the action of τ3 that of
course is nothing but the hypercharge generator. We will
use the remaining freedom just discussed to properly
normalize the axion and A0 fields in the kinetic terms to
which we now turn.
The gauge invariant kinetic term will be

Lkin ¼
1

2
ð∂μϕÞ�∂μϕþ 1

4
Tr½ðDμΦ

†
12ÞDμΦ12�; ð30Þ

where the covariant derivative is defined by

DμΦ12 ¼ ∂μΦ12 − i
g
2
~Wμ · ~τΦ12 þ i

g0

2
BμΦ12τ3: ð31Þ

By defining Ua ¼ exp ð2iaϕX=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕ þ v2s22β

q
Þ with X in

Eq. (14), all terms in the kinetic term are diagonal and
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exhibit the canonical normalization. Moreover the field aϕ
disappears from the potential. Note that the phase redefi-
nition implied in Ua exactly coincides with the realization
of the PQ symmetry on Φ12 in Eq. (12) as is to be expected
(this identifies uniquely the axion degree of freedom).

Finally, the nonlinear parametrization of Φ12 reads as

Φ12 ¼ UM12Ua; ð32Þ

with

M12 ¼
ffiffiffi
2

p
0
BB@

ðvþHÞcβ −
�
S − i vϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ϕþv2s2
2β

p A0

�
sβ

ffiffiffi
2

p
Hþcβ

ffiffiffi
2

p
H−sβ ðvþHÞsβ þ

�
Sþ i vϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ϕþv2s2
2β

p A0

�
cβ

1
CCA ð33Þ

and

vþH ¼ cβffiffiffi
2

p ℜ½α0� þ
sβffiffiffi
2

p ℜ½β0�;

S ¼ −
sβffiffiffi
2

p ℜ½α0� þ
cβffiffiffi
2

p ℜ½β0�;

H� ¼ cββ� − sβα�
2

; ð34Þ

in terms of the fields in Eq. (1). The singlet field ϕ is
nonlinearly parametrized as

ϕ¼

0
B@vϕþ ρ− i

vs2βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕþ v2s22β

q A0

1
CAexp

0
B@i

aϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕ þ v2s22β

q
1
CA:

ð35Þ

With the parametrizations above the kinetic term is diago-
nal in terms of the fields of M12 and ρ. Moreover, the
potential is independent of the axion and Goldstone bosons.
All the fields appearing in Eqs. (33) and (35) have
vanishing VEVs.
Let us stress thatH, S and ρ are not mass eigenstates and

their relations with the hi mass eigenstates are defined
through

H¼
X3
i¼1

RHihi; S¼
X3
i¼1

RSihi; ρ¼
X3
i¼1

Rρihi: ð36Þ

The rotation matrix R as well as the corresponding mass
matrix are given in Appendix B. H and S are the so-called
interaction eigenstates. In particular, H couples to the
gauge fields in the same way that the usual MSM Higgs
does.

A. Integrating out the heavy Higgs fields

In this section we want to integrate out the heavy scalars
in Φ12 of Eq. (32) in order to build a low-energy effective
theory at the TeV scale with an axion and a light Higgs.

As a first step, let us imagine that all the states in Φ12 are
heavy; upon their integration we will recover the Effective
Chiral Lagrangian [15]

L ¼ v2

4
TrDμU†DμU þ

X13
i¼0

aiOi; ð37Þ

where theOi is a set of local gauge invariant operators [16],
and the symbol Dμ represents the covariant derivative
defined in (31). The corresponding effective couplings ai
collect the low-energy information (up to energies
E≃ 4πv) pertaining to the heavy states integrated out.
In the unitarity gauge, the term DμU†DμU would generate
the gauge boson masses.
If a light Higgs (h ¼ h1) and axion are present, they have

to be included explicitly as dynamical states [17], and the
corresponding effective Lagrangian will be (gauge terms
are omitted in the present discussion)

L ¼ v2

4

�
1þ 2g1

h
v
þ g2

h2

v2
þ � � �

�
TrDμU†DμU

þ
�

v2ϕ
v2ϕ þ v2s2β

�
∂μaϕ∂μaϕ þ

1

2
∂μh∂μh − VðhÞ

þ
X13
i¼0

ai

�
h
v

�
Oi þ Lren; ð38Þ

where3

DμU ¼ DμU þ Uð∂μUaÞU†
a; ð39Þ

formally amounting to a redefinition of the “right” gauge
field and

3Note that the axion kinetic term is not well normalized in this
expression yet. Extra contributions to the axion kinetic term also
come from the term in the first line of Eq. (38). Only once we
include these extra contributions, the axion kinetic term gets well
normalized. See also discussion below.
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VðhÞ ¼ m2
h

2
h2 − d3ðλvÞh3 − d4

λ

4
h4; ð40Þ

Lren ¼
c1
v4

ð∂μh∂μhÞ2 þ c2
v2

ð∂μh∂μhÞTrDνU†DνU

þ c3
v2

ð∂μh∂νhÞTrDμU†DνU: ð41Þ

Here h is the lightest 0þ mass eigenstate, with mass
125 GeV but couplings in principle different from the
ones of a MSM Higgs. The terms in Lren are required for
renormalizability [18] at the one-loop level and play no role
in the discussion.
The couplings ai are now functions of h=v, aiðh=vÞ,

which are assumed to have a regular expansion and
contribute to different effective vertices. Their constant
parts aið0Þ are related to the electroweak precision param-
eters (“oblique corrections”).
Let us see how the previous Lagrangian (38) can be

derived. First, we integrate out from Φ12 ¼ UM12Ua all
heavy degrees of freedom, such as H� and A0, whereas we
retain H and S because they contain a h1 component,
namely

Φ12 ¼ UUaM̄12;

M̄12 ¼
ffiffiffi
2

p � ðvþHÞcβ − Ssβ 0

0 ðvþHÞsβ þ Scβ

�
; ð42Þ

where H and S stand, respectively, for RH1h1 and RS1h1.
When the derivatives of the kinetic term of Eq. (30) act

on M̄12, we get the contribution ∂μh∂μh in Eq. (38). Since
the unitarity matrices, U and Ua drop from the potential of
Eq. (10) only VðhÞ remains.
To derive the first line of Eq. (38), we can use Eqs. (39)

and (42) to work out from the kinetic term of Eq. (30) the
contribution

TrðDμUM̄12Þ†DμUM̄12

¼ v2

4

�
1þ 2

H
v
þ � � �

�
TrDμU†DμU þ Lðaϕ; hÞ: ð43Þ

Here we used that M̄12M̄
†
12 has a piece proportional to the

identity matrix and another proportional to τ3 that cannot
contribute to the coupling with the gauge bosons since
TrDμU†DμUτ3 vanishes identically. The linear contribution
in S is of this type thus decoupling from the gauge sector
and as a result only terms linear in H survive. Using that
½Ua; M̄12� ¼ ½Ua; τ3� ¼ 0, the matrix Ua cancels out in all
traces and the only remains of the axion in the low-energy
action is the modificationDμ → Dμ. The resulting effective
action is invariant under global transformations U → LUR†

but now R is an SUð2Þmatrix only if custodial symmetry is
preserved (i.e. tan β ¼ 1). Otherwise, the right global
symmetry group is reduced to the Uð1Þ subgroup. It
commutes with Uð1ÞPQ.

We then reproduce (38) with g1 ¼ 1. However, this is
true for the field H on the lhs of Eq. (43), not h ¼ h1 and
this will reflect in a reduction in the value of the gi when
one considers the coupling to the lightest Higgs only.
A coupling among the S field, the axion and the neutral

Goldstone or the neutral gauge boson survives in Eq. (43).
This will be discussed in Sec. V. As for the axion kinetic
term, it is reconstructed with the proper normalization from
the first term in (30) together with a contribution from the
‘connection’ ð∂μUaÞU†

a in TrDμUDμU (see Eq. (52) in the
next section). There are terms involving two axions and
the Higgs that are not very relevant phenomenologically at
this point. This completes the derivation of theOðp2Þ terms
in the effective Lagrangian.
To go beyond this tree level and to determine the low-

energy constants aið0Þ in particular requires a one-loop
integration of the heavy degrees of freedom and matching
the Green’s functions of the fundamental and the effective
theories.
See e.g. [15,16] for a classification of all possible

operators appearing up to Oðp6Þ that are generated in this
process. The information on physics beyond the MSM is
encoded in the coefficients of the effective chiral
Lagrangian operators. Without including the (lightest)
Higgs field h (i.e. retaining only the constant term in the
functions aiðh=vÞ) and ignoring the axion, there are only
two independent Oðp2Þ operators:

L2¼ v2

4
TrðDμUDμU†Þþa0ð0Þ

v2

4
ðTrðτ3U†DμUÞÞ2: ð44Þ

The first one is universal, its coefficient being fixed by the
W mass. As we just saw it is flawlessly reproduced in the
2HDM at tree level after assuming that the additional
degrees of freedom are heavy. Loop corrections do not
modify it if v is the physical Fermi scale. The other one is
related to the ρ parameter. In addition there are a fewOðp4Þ
operators with their corresponding coefficients

L4 ¼ 1

2
a1ð0Þgg0TrðUBμνU†WμνÞ

−
1

4
a8ð0Þg2TrðUτ3U†WμνÞTrðUτ3U†WμνÞ þ � � � :

ð45Þ

In the above expression Wμν and Bμν are the field strength
tensors associated to the SUð2ÞL and Uð1ÞY gauge fields,
respectively. In this paper we shall only consider the self-
energy, or oblique, corrections, which are dominant in the
2HDM model just as they are in the MSM.
The oblique corrections are often parametrized in terms

of the parameters ε1, ε2 and ε3 introduced in [19]. In an
effective theory such as the one described by the
Lagrangian (44) and (45) ε1, ε2 and ε3 receive one loop
(universal) contributions from the leading Oðp2Þ term
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v2TrðDμUDμU†Þ and tree-level contributions from the
aið0Þ. Thus,

ε1 ¼ 2a0ð0Þ þ � � � ε2 ¼ −g2a8ð0Þ þ � � �
ε3 ¼ −g2a1ð0Þ þ � � � ; ð46Þ

where the dots symbolize the one-loop Oðp2Þ contribu-
tions. The latter are totally independent of the specific
symmetry breaking sector. See e.g. [12] for more details.
A systematic integration of the heavy degrees of free-

dom, including the lightest Higgs as external legs, would
provide the dependence of the low-energy coefficient
functions on h=v, i.e. the form of the functions aiðh=vÞ.
However, this is of no interest to us here.

V. HIGGS AND AXION EFFECTIVE COUPLINGS

The coupling of h1 can be worked out from the one ofH,
which is exactly as in the MSM, namely

gSM1 HWμWμ

¼ gSM1 ðRH1h1 þ RH2h2 þ RH3h3ÞWμWμ ð47Þ

where RH1 ¼ 1 − ðv=vϕÞ2A2
13=2 and gSM1 ≡ 1. With the

expression of A13 given in Appendix B,

g1 ¼ gSM1 ×

�
1 −

2v2

v2ϕλ
2
ϕ

ðac2β þ bs2βc2β − cs2βÞ2
�
: ð48Þ

It is clear that in cases 1 to 3 the correction to the lightest
Higgs couplings to the gauge bosons are very small,
experimentally indistinguishable from the MSM case. In
any case the correction is negative and g1 < gSM1 .
Case 4 falls in a different category. Let us remember that

this case corresponds to the situation where c ∼ λiv2=v2ϕ.
Then the corresponding rotation matrix is effectively 2 × 2,
with an angle θ that is given in Appendix B. Then,

g1 ¼ gSM1 cos θ: ð49Þ

In the custodial limit, λ1 ¼ λ2 and tan β ¼ 1, this angle
vanishes exactly and g1 ¼ gSM1 . Otherwise, this angle could
have any value. Note, however, that when c ≫ λiv2=v2ϕ
then θ → 0 and the value g1 ≃ gSM1 is recovered. This is
expected as when c grows case 4 moves into case 3.
Experimentally, from the LHC results we know [20] that
g1 ¼ ½0.67; 1.25� at 95% C.L.
Let us now discuss the Higgs-photon-photon coupling in

this type of model. Let us first consider the contribution
from gauge and scalar fields in the loop. The diagrams
contributing to the coupling between the lightest scalar
state h1 and photons are exactly the same ones as in a
generic 2HDM, via a loop of gauge bosons and one of
charged Higgses. In the DFSZ case the only change with

respect to a generic 2HDM could be a modification in the
h1WW (or Higgs-Goldstone bosons coupling) or in the
h1HþHþ tree-level couplings. The former has already
been discussed while the triple coupling of the lightest
Higgs to two charged Higgses gets modified in the DFSZ
model to

λh1HþH−
¼ 8vRH1½ðλ1 þ λ2Þs22β þ 4λ3 þ 2λ4�
þ 16vs2βRS1ðλ2c2β − λ1s2βÞ
þ 8vϕRρ1ðas2β þ bc2β − cs2βÞ: ð50Þ

Note that the first line involves only constants that are
already present in a generic 2HDM, while the second one
does involve the couplings a; b and c characteristic of the
DFSZ model.
The coupling of the lightest Higgs to the up and down

quarks is obtained from the Yukawa terms in Eq. (2)

Lðu; d; h1Þ ¼
ffiffiffi
2

p
h1½G1ðRH1cβ − RS1sβÞūLuR

þ G2ðRH1sβ þ RS1cβÞd̄LdR þ H:c:� ð51Þ

The corresponding entries of the rotation matrix in the
0þ sector can be found in Appendix B. In cases 1, 2 and 3
the relevant entries are RH1 ∼ 1, RS1 ∼ v2=v2ϕ and
Rρ1 ∼ v=vϕ, respectively. Therefore, the second term in
the first line is always negligible but the piece in the second
one can give a sizeable contribution if c is ofOð1Þ (case 1).
This case could therefore be excluded or confirmed from a
precise determination of this coupling. In cases 2 and 3 this
effective coupling aligns itself with a generic 2HDM but
with large (typically ∼100 TeV) or moderately large (few
TeV) charged Higgs masses.
Case 4 is slightly different again. In this case RH1 ¼

cos θ and RS1 ¼ sin θ but Rρ1 ¼ 0. The situation is again
similar to a generic 2HDM, now with masses that can be
made relatively light, but with a mixing angle that because
of the presence of the c in (B9) terms may differ slightly
from the 2HDM. For a review of current experimental fits
in 2HDM the interested reader can see [11].
In this section we will also list the tree-level couplings of

the axion to the light fields, thus completing the derivation
of the effective low-energy theory. The tree-level couplings
are very few actually as the axion does not appear in the
potential, and they are necessarily derivative in the bosonic
part. From the kinetic term we get

Lðaϕ; hÞ ¼
2RS1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ϕ þ v2s22β
q h1∂μaϕð∂μG0 þmZZμÞ

þ terms with 2 axions; ð52Þ
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From the Yukawa terms (2) we also get

Lðaϕ; q; q̄Þ ¼
2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ϕ þ v2s22β
q aϕðmus2βūγ5uþmdc2βd̄γ5dÞ:

ð53Þ

The loop-induced couplings between the axion and
gauge bosons (such as the anomaly-induced coupling
aϕ ~FF, of extreme importance for direct axion detection
[14]) will not be discussed here as they are amply reported
in the literature.

VI. MATCHING THE DFSZ MODEL TO 2HDM

The most general 2HDM potential can be read4 e.g. from
[10,11]

Vðϕ1;ϕ2Þ ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 − ½m2

12ϕ
†
1ϕ2 þ H:c:�

þ Λ1

2
ðϕ†

1ϕ1Þ2 þ
Λ2

2
ðϕ†

2ϕ2Þ2

þ Λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ Λ4jϕ†
1ϕ2j2

þ
�
Λ5

2
ðϕ†

1ϕ2Þ2 þ Λ6ðϕ†
1ϕ1Þðϕ†

1ϕ2Þ

þ Λ7ðϕ†
2ϕ2Þðϕ†

1ϕ2Þ þ H:c:

�
: ð54Þ

This potential contains 4 complex and 6 real parameters
(i.e. 14 real numbers). The most popular 2HDM is obtained
by imposing a Z2 symmetry that is softly broken; namely
Λ6 ¼ Λ7 ¼ 0 and m12 ≠ 0. The Z2 approximate invariance
helps remove flavor-changing neutral current at tree level.
A special role is played by the term proportional to m12.
This term softly breaks Z2 but is necessary to control the
decoupling limit of the additional scalars in a 2HDM and to
eventually reproduce the MSM with a light Higgs.
In the DFSZ model discussed here vϕ is very large and at

low energies the additional singlet field ϕ reduces approx-
imately to ϕ≃ vϕ expðaϕ=vϕÞ. Indeed, from (35) we see
that ϕ has a A0 component but it can be in practice
neglected for an invisible axion since this component is
∝ v=vϕ. In addition the radial variable ρ can be safely
integrated out.
Thus, the low-energy effective theory defined by the

DFSZ model is a particular type of 2HDM model with the
nontrivial benefit of solving the strong CP problem thanks
to the appearance of an invisible axion.5 Indeed DFSZ
reduces at low energy to a 2HDM containing 9 parameters

in practice (see below, note that vϕ is used as input) instead
of the 14 of the general 2HDM case.
The constants Λ6;7 are absent as in many Z2 invariant

2HDM but also Λ5 ¼ 0. All these terms are not invariant
under the Peccei-Quinn symmetry. In addition the m12 that
sofly breaks Z2 and is necessary to control the decoupling
to the MSM is dynamically generated by the PQ sponta-
neously symmetry breaking. There is no μ ¼ m12 problem
here concerning the naturalness of having nonvanishing μ.
At the electroweak scale the DFSZ potential of eq. (6)

can be matched to the 2HDM terms of (54) by the
substitutions

m2
11 ¼ ½−2λ1V2

1 þ 2λ3ðV2
1 þ V2

2Þ þ av2ϕ�=4 ð55Þ

m2
22 ¼ ½−2λ1V2

2 þ 2λ3ðV2
1 þ V2

2Þ þ bv2ϕ�=4 ð56Þ

m2
12 ¼ cv2ϕ=4 ð57Þ

Λ1 ¼ ðλ1 þ λ3Þ=8; Λ2 ¼ ðλ2 þ λ3Þ=8 ð58Þ

Λ3 ¼ ð2λ3 þ λ4Þ=16; Λ4 ¼ −λ4=16; ð59Þ

Λ5 ¼ 0; Λ6 ¼ 0; Λ7 ¼ 0: ð60Þ

Combinations of parameters of the DFSZ potential can
be determined from the four massesmh1 ,mh2 ,mA0

andmHþ

and the two parameters g1 (or θ) and λh1HþH−
that controls

the Higgs-WW and (indirectly) the Higgs-γγ couplings,
whose expression in terms of the parameters of the potential
has been given. As we have seen for generic couplings, all
masses but the lightest Higgs decouple and the effective
couplings take their MSM values. In the phenomenologi-
cally more interesting cases (cases 3 and 4) two of the
remaining constants (a, b) drop in practice from the low-
energy predictions and the effective 2HDM corresponding
to DFSZ depends only on seven parameters. If in addition
custodial symmetry is assumed to be exact or nearly exact,
the relevant parameters are actually totally determined by
measuring three masses and the two couplings (mh2 turns
out to be equal to mHþ if custodial invariance holds).
Therefore LHC has the potential of fully determining all the
relevant parameters of the DFSZ model.
Eventually the LHC and perhaps a LC will be hopefully

able to assess the parameters of the 2HDM potential and
their symmetries to check the DFSZ relations. Of course
finding a pattern of couplings in concordance with the
pattern predicted by the low-energy limit of DFSZ model
would not yet prove the latter to be the correct microscopic
theory as this would require measuring the axion couplings,
which are not present in a 2HDM. In any case, it should be
obvious that the effective theory of the DFSZ is signifi-
cantly more restrictive than a general 2HDM.
We emphasize that the above discussion refers mostly to

case 4 as discussed in this work and it partly applies to case

4We have relabeled λ → Λ to avoid confusion with the
potential of the DFSZ model.

5Recall that mass generation due to the anomalous coupling
with gluons has not been considered in this work.
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3 too. Cases 1 and 2 are in practice indistinguishable from
the MSM up to energies that are substantially larger from
the ones currently accessible, apart from the presence of the
axion itself. As we have seen, the DFSZ in this case is quite
predictive and it does not correspond to a generic 2HDM
but to one where massive scalars are all decoupled with the
exception of the 125 GeV Higgs.

VII. CONSTRAINTS FROM ELECTROWEAK
PARAMETERS

For the purposes of setting bounds on the masses of the
new scalars in the 2HDM, ε1 ¼ Δρ is the most effective
one. For this reason we will postpone the analysis of ε2 and
ε3 to a future publication.
ε1 can be computed by [19]

ε1 ≡ ΠWWð0Þ
M2

W
−
ΠZZð0Þ
M2

Z
; ð61Þ

with the gauge boson vacuum polarization functions
defined as

Πμν
VVðqÞ ¼ gμνΠVVðq2Þ þ qμqνterms ðV ¼ W;ZÞ: ð62Þ

We need to compute loops of the Fig. 2 type. These
diagrams produce three kinds of terms. The terms propor-
tional to two powers of the external momentum, qμqν, do
not enter in ΠVVðq2Þ. The terms proportional to just one
power vanish upon integration. Only the terms proportional
to kμkν survive and contribute.
Although it is an unessential approximation, to keep

formulae relatively simple we will compute ε1 in the
approximation g0 ¼ 0. The term proportional to ðg0Þ2 is
actually the largest contribution in the MSM (leaving aside
the breaking due to the Yukawa couplings) but it is only
logarithmically dependent on the masses of any putative
scalar state and it can be safely omitted for our purposes
[12]. The underlying reason is that in the 2HDM custodial
symmetry is “optional” in the scalar sector and it is natural
to investigate powerlike contributions that would provide
the strongest constraints. We obtain, in terms of the mass
eigenstates and the rotation matrix of Eq. (36),

ε1 ¼
1

16π2v2

�
m2

H� −
v2ϕ

v2ϕ þ v2s22β
fðm2

H� ; m
2
A0
Þ ð63Þ

þ
X3
i¼1

R2
Si

�
v2ϕ

v2ϕ þ v2s22β
fðm2

A0
; m2

hi
Þ − fðm2

H� ; m
2
hi
Þ
��

;

ð64Þ

where fða; bÞ ¼ ab=ðb − aÞ log b=a and fða; aÞ ¼ a.
Setting vϕ → ∞ and keeping Higgs masses fixed, we

VV

qq
k + q

k

X

Y

FIG. 2. Feynman diagram relevant for Πμν
VVðqÞ.
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FIG. 3 (color online). Exclusion region for a “quasicustodial” 2HDM potential with a λ4B ¼ λ4 − 2λ custodial breaking term. In this
limit, the masses depend on the free parameters λ4B ¼ λ4 − 2λ, λ3 and c̄ ¼ cv2ϕ=v

2, and then the vacuum stability conditions of
Appendix D and ΔT can be used to exclude regions of the free parameters above. The left, right plots are for λ3 ¼ −0.05, λ3 ¼ 0,
respectively. Different color regions imply different cuts assuming that all masses (mA0

, mH� and mh2 ) are greater than 100, 300 or
600 GeV (light to dark). The potential becomes unstable for λ3 > 0.03.
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formally recover the Δρ expression in the 2HDM (see the
Appendix in [12]), namely

ε1 ¼
1

16π2v2

�
m2

H� − fðm2
H� ; m

2
A0
Þ

þ
X3
i¼1

R2
Siðfðm2

A0
; m2

hi
Þ − fðm2

H� ; m
2
hi
ÞÞ
�
: ð65Þ

Now, in the limit vϕ → ∞ and mH� → mA0
(cases 1, 2 or 3

previously discussed) the Δρ above will go to zero as

v=vϕ at least and the experimental bound is fulfilled
automatically.
However, we are particularly interested in case 4 that

allows for a light spectrum of new scalar states. We will
study this in two steps. First we assume a “quasicustodial”
setting whereby we assume that custodial symmetry is
broken only via the coupling λ4B ¼ λ4 − 2λ being nonzero.
Imposing vacuum stability (see e.g. Appendix D) and the
experimental bound of ðε1 − εSM1 Þ=α ¼ ΔT ¼ 0.08ð7Þ
from the electroweak fits in [21] one gets the exclusion
plots shown in Fig. 3.
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FIG. 4 (color online). Exclusion plot imposed by the constraint from ΔT on the second 0þ state (i.e. “second Higgs”) and the charged
Higgs masses for two reference values of MA0

(left: 300 GeV, right: 600 GeV) in the “quasicustodial” case discussed in Fig. 3. The
concentration of points along approximately two axis is easy to understand after inspection of the relevant formula for ΔT. ΔT is
vanishing at the custodial limit Mh2 ¼ MH� , and also for MH� ¼ MA0

. The regions excluded by considerations of stability of the
potential are shown.
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FIG. 5 (color online). Exclusion plot imposed by the constraint from ΔT on the second 0þ state (i.e. ‘second Higgs’) and the charged
Higgs masses for several reference values of mA0

and tan β in the general case. The value cos θ ¼ 1 is assumed here. The successive
horizontal bands correspond to different values of mA0

. The stability bounds have already been implemented, effectively cutting off the
left and lower arms of the regions otherwise acceptable.
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It is also interesting to show (in this same “quasicusto-
dial” limit) the range of masses allowed by the present
constraints on ΔT, without any reference to the parameters
in the potential. This is shown for two reference values of
mA0

in Fig. 4. Note the severe constraints due to the
requirement of vacuum stability.
Finally let us turn to the consideration of the general

case 4. We now completely give up custodial symmetry and
hence the three masses mA0

, mH� and mh2 are unrelated,
except for the eventual lack of stability of the potential.
In this case, the rotation R can be different form the
identity which was the case in the “quasicustodial” scenario
above. In particular, RS2 ¼ cos θ from Appendix B and
the angle θ is not vanishing. However, experimentally
cos θ is known to be very close to one (see Sec. V). If we
assume that cos θ is exactly equal to one, we get the
exclusion/acceptance regions shown in Fig. 5. Finally,
Fig. 6 depicts the analogous plot for cos θ ¼ 0.95 that is
still allowed by existing constraints. We wee that the
allowed range of masses are much more severely restricted
in this case.

VIII. CONCLUSIONS

With the LHC experiments gathering more data, the
exploration of the symmetry breaking sector of the
Standard Model will gain renewed impetus. Likewise, it
is important to search for dark matter candidates as this is a
degree of freedom certainly missing in the minimal
Standard Model. An invisible axion is an interesting
candidate for dark matter; however, trying to look for
direct evidence of its existence at the LHC is hopeless as it

is extremely weakly coupled. Therefore we have to resort to
less direct ways to explore this sector by formulating
consistent models that include the axion and deriving
consequences that could be experimentally tested.
In this work we have explored such consequences in the

DFSZ model, an extension of the popular 2HDM. A
necessary characteristic of models with an invisible axion
is the presence of the Peccei-Quinn symmetry. This restricts
the form of the effective potential. We have taken into
account the recent data on the Higgs mass and several
effective couplings, and included the constraints from
electroweak precision parameters.
Four possible scenarios have been considered. In vir-

tually all points of parameter space of the DFSZ model we
do not really expect to see any relevant modifications with
respect to the minimal Standard Model predictions. The
new scalars have masses of order vϕ or ffiffiffiffiffiffiffiffivvϕ

p in two of the
cases discussed. The latter could perhaps be reachable with
a 100 TeV circular collider although this is not totally
guaranteed. In a third case, it would be possible to get
scalars in the multi-TeV region, making this case testable in
the future at the LHC. Finally, we have identified a fourth
situation where a relatively light spectrum emerges. The
last two cases correspond to a situation where the coupling
between the singlet and the two doublets is of order v2=v2ϕ;
i.e. very small (10−10 or less) and in order to get a relatively
light spectrum in addition one has to require some
couplings to be commensurate (but not necessarily
fine-tuned).
The fact that some specific couplings are required to be

very small may seem odd, but as it has been argued
elsewhere it is technically natural, as the couplings in
question do break some extended symmetry and are
therefore protected. From this point of view these values
are perfectly acceptable.
The results on the scalar spectrum are derived here at tree

level only and are of course subject to large radiative
corrections in principle. However, one should note two
ingredients that should ameliorate the hierarchy problem.
The first observation is that the mass of the 0− scalar is
directly proportional to c; it is exactly zero if the additional
symmetries discussed in [7] hold. It is therefore somehow
protected. On the other hand, custodial symmetry relates
different masses, helping to maintain other relations. Some
hierarchy problem should still remain but of a magnitude
very similar to the one already present in the minimal
Standard Model.
We have imposed on the model known constraints such

as the fulfilment of the bounds on the ρ-parameter. These
bounds turn out to be automatically fulfilled in most of
parameter space and become only relevant when the
spectrum is light (case 4). This is particularly relevant as
custodial symmetry is by no means automatic in the
2HDM. Somehow the introduction of the axion and the
related Peccei-Quinn symmetry makes possible custodially
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FIG. 6 (color online). Exclusion plot imposed by the constraint
from ΔT on the second 0þ state (i.e. ‘second Higgs’) and the
charged Higgs masses for several reference values of mA0

. Here
we take tan β ¼ 1 and allow cos θ ¼ 0.95, which is consistent
with present constraints.
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violating consequences naturally small. We have also
considered the experimental bounds on the Higgs-gauge
bosons and Higgs-two photons couplings. Together
with four scalar masses, these parameters determine in
an almost unique way the DFSZ potential, thus showing
that it has subtantial less room to maneuver than a generic
2HDM.
In conclusion, DFSZ models containing an invisible

axion are natural and, in spite of the large scale that
appears in the model to make the axion nearly invisible,
there is the possibility that they lead to a spectrum that can
be tested at the LHC. This spectrum is severely constrained,
making it easier to prove or disprove such possibility
in the near future. On the other hand, it is perhaps more
likely that the new states predicted by the model lie beyond
the LHC range. In this situation the model hides itself by
making indirect contributions to most observables quite
small.
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APPENDIX A: MINIMIZATION CONDITIONS
OF THE POTENTIAL

The minimization conditions for the potential (6) are

λ1ð2v2c2β − V2
1Þ þ λ3ð2v2 − V2

1 − V2
2Þ

þ v2ϕ
2
ðaþ c tan βÞ ¼ 0; ðA1Þ

λ2ð2v2s2β − V2
2Þ þ λ3ð2v2 − V2

1 − V2
2Þ

þ v2ϕ
2

�
bþ c

tan β

�
¼ 0; ðA2Þ

λϕðv2ϕ − V2
ϕÞ þ 2v2ðac2β þ bs2β − cs2βÞ ¼ 0: ðA3Þ

These allow us to eliminate the dimensionful parameters
Vϕ, V1 and V2 in favor of the different couplings, v and vϕ.
In the case where λϕ ¼ 0, it is also possible to eliminate c.

APPENDIX B: 0þ NEUTRAL SECTOR
MASS MATRIX

The 3 × 3 mass matrix is

MHSρ ¼ 4

0
BBB@

8v2ðλ1c4β þ λ2s4β þ λ3Þ 4v2ð−λ1c2β þ λ2s2βÞs2β 2vvϕðac2β þ bs2β − cs2βÞ
4v2ð−λ1c2β þ λ2s2βÞs2β

2cv2ϕ
s2β

þ 2v2ðλ1 þ λ2Þs22β −vvϕ½ða − bÞs2β þ 2cc2β�
2vvϕðac2β þ bs2β − cs2βÞ −vvϕ½ða − bÞs2β þ 2cc2β� λϕv2ϕ

1
CCCA: ðB1Þ

This is diagonalized with a rotation

0
B@

H

S

ρ

1
CA ¼ R

0
B@

h1
h2
h3

1
CA: ðB2Þ

We write the rotation matrix as

R¼ exp

�
v
vϕ

Aþ v2

v2ϕ
B

�
; AT ¼−A; BT ¼−B ðB3Þ

and work up to second order in v=vϕ. We find

A12 ¼ B13 ¼ B23 ¼ 0; ðB4Þ

so the matrix is

R¼

0
BBBBB@

1− v2

v2ϕ

A2
13

2
−v2

v2ϕ

A13A23−2B12

2
v
vϕ
A13

−v2

v2ϕ

A13A23þ2B12

2
1− v2

v2ϕ

A2
23

2
v
vϕ
A23

− v
vϕ
A13 − v

vϕ
A23 1− v2

v2ϕ

A2
13
þA2

23

2

1
CCCCCA
; ðB5Þ

with

A13 ¼
2

λϕ
ðac2β þ bs2β − cs2βÞ;

A23 ¼
ða − bÞs2β þ 2cc2β

2c
s2β

− λϕ
; ðB6Þ

B12 ¼ −
2

c
s22βðλ1c2β − λ2s2βÞ

þ s2β
λϕc

c − λϕs2β
2c − λϕs2β

ðac2β þ bs2β − cs2βÞ

× ½ða − bÞs2β þ 2cc2β�: ðB7Þ
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In the case of Sec. III when the breaking of custodial symmetry is SUð2Þ × SUð2Þ → Uð1Þ the mass matrix is

MHSρ ¼ 4

0
BBBBB@

8v2½λ3 þ λðs4β þ c4βÞ� −2λv2s4β 2vvϕ
�
aþ 2λ v2

v2ϕ
s22β

�

−2λv2s4β −4λv2c22β 2λ v3
vϕ
s4β

2vvϕ
�
aþ 2λ v2

v2ϕ
s22β

�
2λ v3

vϕ
s4β λv2ϕ

1
CCCCCA
: ðB8Þ

For case 4 of Sec. III the rotation matrix is

R ¼

0
B@

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

1
CA;

tan 2θ ¼ −
ðλ1c2β − λ2s2βÞs2β

ðλ1c2β − λ2s2βÞc2β þ λ3 − cv2ϕ=ð4v2s2βÞ
: ðB9Þ

APPENDIX C: THE LIMIT λϕ ¼ 0

The eigenvalues of the 3 × 3mass matrix in the 0þ sector
are

m2
h1
¼ 32v2ðλ1c4β þ λ2s4β þ λ3Þ

m2
h2
¼ v2ϕ

2
s22βðac2β þ bs2βÞ þOðv2Þ

m2
h3
¼ −8v2

ðacβ − bsβÞ2
ac2β þ bs2β

: ðC1Þ

Eitherm2
2 orm

2
3 is negative. Note that the limit of a, b small

cannot be taken directly in this case.

APPENDIX D: VACUUM STABILITY
CONDITIONS AND MASS RELATIONS

Vacuum stability implies the following conditions on the
parameters of the potential [10]:

λ1 þ λ3 > 0;

λ2 þ λ3 > 0;

2λ3 þ λ4 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 þ λ3Þðλ2 þ λ3Þ

p
> 0;

λ3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 þ λ3Þðλ2 þ λ3Þ

p
> 0: ðD1Þ

In the case of custodial symmetry except for λ4B ≠ 0, these
conditions reduce to

λþ λ3 > 0; λþ 2λ3 > 0; 4λþ 4λ3 þ λ4B > 0

ðD2Þ

and assuming a, b, c very small (e.g. case 4) they impose
two conditions on the masses for

m2
A0

þm2
h1
−m2

h2
> 0; m2

H� þm2
h1
−m2

A0
> 0: ðD3Þ

APPENDIX E: VERTICES AND FEYNMAN
RULES IN THE DFSZ MODEL

In the limit of g0 ¼ 0, all the diagrams involved in the
calculation of ε1 are of the Fig. 2 type. All the relevant
vertices are of the type seen in Fig. 7, with all momenta
assumed to be incoming. The relevant Feynman rules are as
follows:

Interaction term Feynman rule for the vertex

λVαX∂αY λpμ
Y

λVαX∂↔αY
λðpY − pXÞμ

To compute ΠZZ entering Eq. (61), we need diagrams
like Fig. 2 with V ¼ Z. The X, Y pairs are

X Y Interaction term Feynman rule for the vertices

Hþ H− − i
2
gWα

3Hþ∂
↔

αH−
g2

4
ð2pþqÞμð2pþqÞν

S A0 g
2

vϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕþv2s2

2β

p Wα
3S∂

↔

αA0 −g2

4

v2ϕ
v

2

ϕþv2s22βð2pþqÞμð2pþqÞν
S aϕ g vsin2βffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ϕþv2s2
2β

p Wα
3S∂αaϕ −g2 v2 sin2 2β

v2ϕþv2s2
2β
ðpþqÞμðpþqÞν

H G0 −gWα
3H∂αG0 −g2ðpþqÞμðpþqÞν

Gþ G− i
2
gWα

3Gþ∂
↔

αG−
g2

4
ð2pþ qÞμð2pþ qÞν

To compute ΠWW entering Eq. (61), we need diagrams
like Fig. 2 with V ¼ Wþ. The X, Y pairs are

X

Y

V

FIG. 7. Two scalars and a gauge boson.
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X Y Interaction term Feynman rule for the vertices

Hþ S i
2
gWαþH−∂

↔

αS
g2

4
ð2pþ qÞμð2pþ qÞν

Hþ A0 g
2

vϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕþv2s2

2β

p WαþA0∂
↔

αH−− −g2

4

v2ϕ
v

2

ϕþv2s22βð2pþqÞμð2pþqÞν
Hþ aϕ −g v sin 2βffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ϕþv2s2
2β

p WαþH−∂αaϕ −g2 v2sin22β
v2ϕþv2s2

2β
ðpþqÞμðpþqÞν

H Gþ −gWαþH∂αG− −g2ðpþ qÞμðpþ qÞν
Gþ G0 i

2
gWαþG0∂

↔

αG−
g2

4
ð2pþ qÞμð2pþ qÞν
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